

K93C46

Spring 2011

Features

- ►Low-voltage Operation
- 1.8 (VCC = 1.8V to 5.5V)
- ► Three-wire Serial Interface
- ► 2 MHz Clock Rate (5V) Compatibility
- ► Self-timed Write Cycle (5 ms max)

General Description

High-reliability

- Endurance: 1 Million Write Cycles
- Data Retention: 100 Years
- ▶8-lead PDIP/SOP/MSOP/TSSOP, 8-pad DFN packages

The K93C46 provides 1024 bits of serial electrically erasable programmable read only memory (EEPROM) organized as 64 words of 16 bits each, when the ORG pin is connected to VCC and 128 words of 8 bits each when it is tied to ground. The K93C46 is available in space-saving 8-lead PDIP, 8-lead SOP, 8-lead TSSOP, 8-lead MSOP, and 8-pad DFN packages. The K93C46 is enabled through the Chip Select pin (CS), and accessed via a 3-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK) signals. Upon receiving a Read instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO. The WRITE cycle is completely self-timed and no separate erase cycle is required before write. The Write cycle is only enabled when it is in the Erase/Write Enable state. When CS is brought "high" following the initiation of a write cycle, the DO pin outputs the Ready/Busy status.

Pin Configuration

► Table 1: Pin Configuration Pin Name Founctions CS **Chip Select** SK Serial Data Clock DI Serial Data Input DO Serial Data Output GND Ground Vcc Power Supply ORG Internal Organization Don't Connect DC

8-lead PDIP

		$\overline{}$		1	
cs 🗖	1	\sim	8	Þ	V_{cc}
sк 🗖	2		7	þ	DC
D1 🗖	3		6	þ	ORG
D0 🗖	4		5	þ	GND

8-lead SOP

8-pad DFN

Bottom view

CS

D1

2 SK

3

4 D0

Vcc

DC Z

ORG

GND 5

8

6

cs 🗖	1 O	8	Vcc
sк 🗖	2	7	
D1 🗖	3	6	ORG
D0 🗖	4	5	

8-lead TSSOP

8-lead MSOP

8 🗖 Vcc

7 🗖 DC

6 🗖 ORG

5 GND

CS [10

SK 🗖 2 D1 🗖 3

D0 **4**

cs 🗖	10	8	Vcc
sк 🗖	2	7	
D1 🗖	3	6	ORG
D0 🗖	4	5	GND

V1_2

Block Diagram

Function Descriptions

The K93C46 is accessed via a simple and versatile three-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. A valid instruction starts with a rising edge of CS and consists of a start bit (logic"1") followed by the appropriate op code and the desired memory address location.

► Table 2: Instruction Set for the K93C56/66 Address Data Instruction SB OP Code Comments x8 x16 x8 x16 READ Reads data stored in memory, at specified address 1 10 A8 - A0 A7 - A0 EWEN 11XXXXXXX 11XXXXXX Write enable must precede all programming modes 1 00 ERASE A7 - A0 1 11 A8 - A0 Erase memory location An - A0 WRITE 1 01 A8 - A0 A7 - A0 D7 - D0 D15 - D0 Writes memory location An - A0 ERAL 1 00 10XXXXXXX 10XXXXXX Erases all memory locations. Valid only at VCC = 4.5V to 5.5V WRAL 01XXXXXXXX 01XXXXXX 1 00 D7 - D0 D15 - D0 Writes all memory locations. Valid only at VCC = 4.5V to 5.5V DOXXXXXXX DOXXXXXX **FWDS** 1 00 Disables all programming instructions

Notes: The X's in the address field represent don't care values and must be clocked.

READ (**READ**): The Read (READ) instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock SK. It should be noted that a dummy bit (logic "0") precedes the 8- or 16-bit data output string.

ERASE/WRITE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable(EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the EWEN state, programming remains enabled until an EWDS instruction is executed or VCC power is removed from the part.

ERASE (ERASE): The Erase (ERASE) instruction programs all bits in the specified memory location to the logical "1" state. The self-timed erase cycle starts once the ERASE instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (TCS). A logic "1" at pin DO indicates that the selected memory location has been erased, and the part is ready for another instruction.

WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle, tWP, starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (TCS). A logic "0" at DO indicates that programming is still in progress. A logic "1" indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A Ready/Busy status cannot be obtained if the CS is brought high after the end of the selftimed programming cycle, TWP.

ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic "1" state and is primarily used for testing purposes. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (TCS). The ERAL instruction is valid only at VCC = $5.0V \pm 10\%$.

V1_2

K93C46 Three-wire Serial EEPROM 1K bits (128 X 8 or 64 X 16)

Function Descriptions

WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (TCS). The WRAL instruction is valid only at VCC = $5.0V \pm 10\%$.

ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturb, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the Read instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.

Timing Diagrams

► Table 3: Organization Key for Timing Diagram

I/O	K93C46(1K)		
1/0	X 16	X 8	
AN	A5	A6	
DN	D15	D7	

► Figure 2: READ Timing

Timing Diagrams

► Figure 4: EWDS Timing

► Figure 5: WRITE Timing

Timing Diagrams

► Figure 7: ERASE Timing

► Figure 8: ERAL Timing

Electrical Characteristics

Absolute Maximum Ratings					
DC Supply Voltage0.3V to +6.5V					
Input / Output Voltage GND-0.3V to Vcc+0.3V					
Operating Ambient Temperature40° C to +85° C					
Storage Temperature					

Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Applicable	over recommended oper	ating range from: TA = -4	0 [°] C to +85 [°] C, VCC =	+ 1.8V to + 5.	5V, (unle	ss otherwise no	oted)
Symbol	Parameter	Test Con	dition	Min	Тур	Max	Units
V _{CC1}	Supply Voltage	-		1.8	-	5.5	V
V _{CC2}	Supply Voltage	-		2.7	-	5.5	V
V _{CC3}	Supply Voltage	-		4.5	-	5.5	V
lcc	Supply Current	Vcc = 5.0V	Read at 1.0 MHz	-	0.5	2.0	mA
			Write at 1.0 MHz	-	2	3.0	mA
I _{SB1}	Standby Current	Vcc = 1.8V	CS = 0V	-	-	1.0	μA
SB2	Standby Current	Vcc = 2.7V	CS = 0V	-	-	1.0	μA
I _{SB3}	Standby Current	Vcc = 5.0V	CS = 0V	-	-	1.0	μA
IIL(1)	Input Leakage	VIN = 0V to Vcc		-	0.1	1.0	μA
IIL(2)	Input Leakage	VIN = 0V to Vcc		-	2.0	3.0	μA
lo∟	Output Leakage	VIN = 0V	to Vcc	-	0.1	1.0	μA
VIL1(3)	Input Low Voltage	2.7V ≤ Vo	5 5 V	-0.3	-	0.8	
VIH1(3)	Input High Voltage	2.7 V < VC	c < 0.0	2.0	-	Vcc + 0.3	V
VIL2(3)	Input Low Voltage	1.8V ≤ Vo	~ -2.7	-0.5	-	Vcc + 0.3	
V _{IH2(3)}	Input High Voltage	1.00 < 00	ε ≈ 2.7 γ	Vcc x 0.7	-	Vcc + 0.3	V
V _{OL1}	Output Low Voltage	2.7V ≤ Vcc ≤ 5.5V	IOL = 2.1 mA	-	-	0.4	V
V _{OH1}	Output High Voltage	2.1 V < VCC < 5.5 V	IOH = -0.4mA	2.4	-		V
V _{OL2}	Output Low Voltage	1.8V ≤ Vcc ≤ 2.7V	IOL = 0.15mA	-	-	0.2	V
V _{OH2}	Output High Voltage	1.0V ≈ VCC ≤ 2.7V	IOH = -100µA	Vcc-0.2	-	-	V

Note: VIL min and VIH max are reference only and are not tested.

Pin Capacitance

► Applicable over recommended operating range from TA = 25°C, f = 1.0 MHz, VCC = +1.8V (unless otherwise noted)					
Symbol	Test Conditions	Max	Unit	Conditions	
COUT	Output Capacitance (DO)	5	pF	VOUT = 0V	
CIN	Input Capacitance (CS, SK, DI, ORG)	5	pF	VIN = 0V	

AC Characteristics

CL = 1 TTL Gate and 100pF (unless otherwise noted)

Symbol	Parameter	Test Co	ondition	Min	Тур	Max	Units
		4.5V ≤ V	/cc ≤ 5.5V	0		2	
fsк	SK Clock Frequency	2.7V ≤ V	/cc ≤ 5.5V	0	-	1	MHz
		1.8V ≤ V	/cc ≤ 5.5V	0		0.25	
		4.5V ≤ V	/cc ≤ 5.5V	250			
tsкн	SK High Time	2.7V ≤ V	/cc ≤ 5.5V	250	-	-	ns
		1.8V ≤ V	/cc ≤ 5.5V	1000			
		4.5V ≤ V	/cc ≤ 5.5V	250			
tskl	SK Low Time	2.7V ≤ V	/cc ≤ 5.5V	250	-	-	ns
		1.8V ≤ V	/cc ≤ 5.5V	1000			
		4.5V ≤ V	$l cc \leq 5.5 V$	250			
tcs	Minimum CS Low Time	2.7V ≤ V	$l cc \leq 5.5 V$	250	-	-	ns
		1.8V ≤ V	/cc ≤ 5.5V	1000			
			$4.5V \leq Vcc \leq 5.5V$	50			
tcss	CS Setup Time	Relative to SK	$2.7V \leq Vcc \leq 5.5V$	50	-	-	ns
			$1.8V \leq Vcc \leq 5.5V$	200			
			$4.5V \leq Vcc \leq 5.5V$	100			
tois	DI Setup Time	Relative to SK	$2.7V \leq Vcc \leq 5.5V$	100	-	-	ns
			$1.8V \leq Vcc \leq 5.5V$	400			
tсsн	CS Hold Time	Relative to SK		0	-	-	ns
			$4.5V \leq Vcc \leq 5.5V$	100			
tын	DI Hold Time	Relative to SK	$2.7V \leq Vcc \leq 5.5V$	100	-	-	ns
			$1.8V \leq Vcc \leq 5.5V$	400			
			$4.5V \leq Vcc \leq 5.5V$			250	
t _{PD1}	Output Delay to "1"	AC Test	$2.7V \le Vcc \le 5.5V$	-	-	250	ns
			$1.8V \le Vcc \le 5.5V$			1000	
			$4.5V \leq Vcc \leq 5.5V$			250	
t _{PD0}	Output Delay to "0"	AC Test	$2.7V \leq Vcc \leq 5.5V$	-	-	250	ns
			$1.8V \leq Vcc \leq 5.5V$			1000	
			$4.5V \leq Vcc \leq 5.5V$			250	
tsv	CS to Status Valid	AC Test	$2.7V \leq Vcc \leq 5.5V$	-	-	250	ns
			$1.8V \leq Vcc \leq 5.5V$			1000	
	CS to DO in High	AC Test	$4.5V \leq Vcc \leq 5.5V$			100	
tor	Impedance	CS = VIL	$2.7V \leq Vcc \leq 5.5V$	-	-	100	ns
			$1.8V \leq Vcc \leq 5.5V$			400	
twp (4)	Write Cycle Time	-	-	-	1.5	5	ms
Endurance ⁽¹⁾	5.0V, 25°C		-	1M	-	-	Write Cycle

Note: 1. This parameter is characterized and is not 100% tested.

8-lead PDIP package diagram

Top View

End View

Side View

With Plating

Section B-B

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	MAX	
A	3.60	4.00	
		4.00	
A1	0.51	-	
A2	3.10	3.50	
A3	1.50	1.70	
b	0.44	0.53	
b1	0.43	0.48	
В	1.52 BSC		
С	0.25	0.31	
c1	0.24	0.26	
D	9.05	9.45	
E1	6.15	6.55	
е	2.54 BSC		
eA	7.62 BSC		
eB	7.62	9.50	
eC	0	0.94	
L	3.00	-	

8-lead SOP package diagram

End View

Top View

Side View

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	МАХ	
А	1.35	1.75	
A1	0.10	0.25	
b	0.31	0.51	
С	0.17	0.25	
D	4.70	5.10	
E1	3.80	4.00	
E	5.79	6.20	
е	1.27 BSC		
L	0.40	1.27	
θ	0°	8°	

8-lead TSSOP package diagram

Top View

Side View

COMMON DIMENSIONS

End View

(Unit of Measure = mm)

SYMBOL	MIN	МАХ	
D	2.80	3.20	
E	6.20	6.60	
E1	4.20	4.60	
A	_	1.20	
A2	0.80	1.15	
b	0.19	0.30	
е	0.65	BSC	
L	0.45	0.75	
L1	1.00 BSC		
θ	0°	8°	

Spring 2011

8-lead MSOP package diagram

Top View

Side View

Section B-B

End View

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	MAX		
А	-	1.10		
A1	0.05	0.15		
A2	0.75	0.95		
A3	0.30	0.40		
b	0.29	0.38		
b1	0.28	0.33		
с	0.15	0.20		
c1	0.14	0.16		
D	2.90	3.10		
E	4.70	5.10		
E1	2.90	3.10		
е	0.65 BSC			
L	0.40	0.70		
L1	0.95 BSC			
θ	0°	8°		

8-pad DFN package diagram

Top View

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	MAX		
А	0.70	0.80		
A1	-	0.05		
b	0.18	0.30		
с	0.18	0.25		
D	1.90	2.10		
D2	1.50 REF			
е	0.50 BSC			
Nd	1.50 BSC			
E	2.90	3.10		
E2	1.60 BSC			
L	0.30	0.50		
h	0.20	0.30		

Bottom View

.013.

K93C46 Three-wire Serial EEPROM 1K bits (128 X 8 or 64 X 16)

Part Number	к	93	XXX	х		х	Y	х	v	Х
i ar namber	1	2	3	4	-	5	6		8	9
1.Prefix		4.Design	6.Temperature Range				nge	8.Plating Technology		
2.Series Name	Version code Interface 5.Package Type D = PDIP		I = Industry (-40 \degree C to 85 \degree C)					Blank = Standard SnPb plating		
93: Three-wire (SPI) Interfa			7.Pack Type T = Tube					G = RoHS compliant S = Green, level 1		
3.EEPROM Density C46 = 1K bits		S = SOP		-		& Re	el			X = Green, level 3
		T = TSS M = MSC								9.Operating Voltage A = 1.8 to 5.5 V
		N = DFN								

Available package types

Model	PDIP	SOP	TSSOP	MSOP	DFN
K93C46	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Product Datasheet Change Notice

Datasheet Revision History						
Version	Date					
1.1	Initial version	Jul., 2008				
1.2	Package information update	Jan., 2011				

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. HUAJIE assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

HUAJIE reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of HUAJIE or others.

HUAJIE makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does HUAJIE assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

" Typ. " parameters can and do vary in different applications. All operating parameters, including " Typ. " must be validated for each customer application by the customer's technical experts.

HUAJIE products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, for other applications intended to support or sustain life, or for any other application in which the failure of the HUAJIE product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use a HUAJIE product for any such unintended or unauthorized application, the Buyer shall indemnify and hold HUAJIE and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that HUAJIE was negligent regarding the design or manufacture of said product.

K93C Series (SPI Bus) Serial EEPROM Data Sheet, Revision 1.2

2011 HUAJIE

Disclaimers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of HUAJIE.

V1 9