

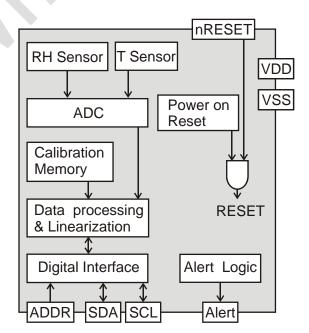
Preliminary Data Sheet SHT3x-DIS

Humidity and Temperature Sensor

- Fully calibrated, linearized, and temperature compensated digital output
- Wide supply voltage range, from 2.4 to 5.5 V
- I2C Interface with communication speeds up to 1
 MHz and two user selectable addresses
- Typical accuracy of ± 2%RH and ± 0.3°C
- Very fast start-up and measurement time
- Tiny 8-Pin DFN package

Product Summary

SHT3x-DIS is the next generation of Sensirion's temperature and humidity sensors. It builds on a new CMOSens® sensor chip that is at the heart of Sensirion's new humidity and temperature platform. The SHT3x-DIS has increased intelligence, reliability and improved accuracy specifications compared to its predecessor. Its functionality includes enhanced signal processing, two distinctive and user selectable I2C addresses and


communication speeds of up to 1 MHz. The DFN package has a footprint of 2.5×2.5 mm while keeping a height of 0.9 mm. This allows for integration of the SHT3x-DIS into a great variety of applications. Additionally, the wide supply voltage range of 2.4 to 5.5 V guarantees compatibility with diverse assembly situations. All in all, the SHT3x-DIS incorporates 15 years of knowledge of Sensirion, the leader in the humidity sensor industry.

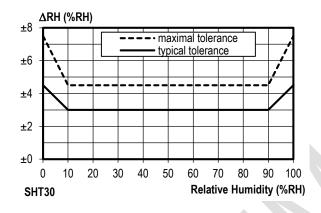
Benefits of Sensirion's CMOSens® Technology

- High reliability and long-term stability
- Industry-proven technology with a track record of more than 15 years
- Designed for mass production
- High process capability
- Low signal noise

Content

1	Sensor Performance	2
2	Specifications	4
3	Pin Assignment	6
4	Operation and Communication	7
5	Packaging	13
6	Shipping Package	15
7	Quality	16
8	Ordering Information	16
9	Further Information	16

Figure 1 Functional block diagram of the SHT3x-DIS. The sensor signals for humidity and temperature are factory calibrated, linearized and compensated for temperature and supply voltage dependencies.



1 Sensor Performance

1.1 Humidity Sensor Performance

Parameter	Conditions	Value	Units
SHT30 Accuracy tolerance ¹	Тур.	±3	%RH
	Max.	Figure 2	%RH
SHT31 Accuracy tolerance ¹	Тур.	±2	%RH
	Max.	Figure 4	%RH
Repeatability ²		0.13	%RH
Resolution	Тур.	0.05	%RH
Hysteresis	at 25°C	±0.8	%RH
Specified range ³	extended ⁴	0 to 100	%RH
Response time ⁵	τ63%	86	S
Long-term drift	Typ. ⁷	<0.25	%RH/yr

Table 1 Humidity sensor specification

100 ±4.5 90 Relative Humidity (%RH) 80 70 60 50 ±3 40 30 20 10 ±4.5 10 20 30 40 50 60 80 70 SHT30 Temperature (°C)

Figure 2 Tolerance of RH at 25°C for SHT30

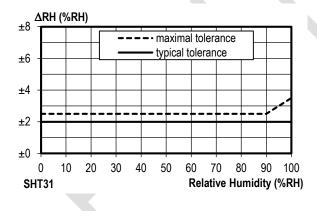


Figure 3 Typical tolerance of RH over T for SHT30

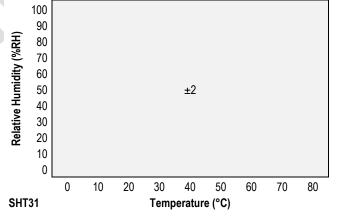


Figure 4 Tolerance of RH at 25°C for SHT31

Figure 5 Typical tolerance of RH over T for SHT31

¹ For definition of typical and maximum accuracy tolerance, please refer to the document "Sensirion Humidity Sensor Specification Statement".

 $^{^2}$ The stated repeatability is 3 times the standard deviation (3 σ) of multiple consecutive measurements at highest repeatability and at constant ambient conditions. It is a measure for the noise on the physical sensor output.

³ Specified range refers to the range for which the humidity or temperature sensor specification is guaranteed.

⁴ For details about recommended humidity and temperature operating range, please refer to section 1.3.

⁵ Time for achieving 63% of a humidity step function, valid at 25°C and 1m/s airflow. Humidity response time in the application depends on the design-in of the sensor.

⁶ With activated ART function (see section 4.7) the response time can be improved by a factor of 2.

⁷ Typical value for operation in normal RH/T operating range, see section 1.2. Maximum value is < 0.5 %RH/yr. Value may be higher in environments with vaporized solvents, out-gassing tapes, adhesives, packaging materials, etc. For more details please refer to Handling Instructions.

1.2 Temperature Sensor Performance

Parameter	Condition	Value	Units
Accuracy tolerance ¹	Typ. 10 to +55	±0.3	°C
Repeatability ²		0.06	°C
Resolution	Тур.	0.05	°C
Specified Range	-	-40 to 125	°C
Response time 8	τ63%	>2	S
Long Term Drift	-	<0.03	°C/yr

Table 2 Temperature sensor specification

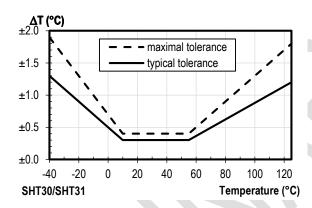


Figure 6 Tolerance of the temperature sensor in °C for SHT30 and SHT31

1.3 Recommended Operating Condition

The sensor shows best performance when operated within recommended normal temperature and humidity range of 5 – 60 °C and 20 – 80 %RH, respectively. Long term exposure to conditions outside normal range, especially at high humidity, may temporarily offset the RH signal (e.g.+3%RH after 60h at >80%RH). After returning into the normal temperature and humidity range the sensor will slowly come back to calibration state by itself. Prolonged exposure to extreme conditions may accelerate ageing. To ensure stable operation of the humidity sensor, the conditions described in the document "SHTxx Assembly of SMD Packages", section "Storage and Handling Instructions" regarding exposure to volatile organic compounds have to be met. Please note as well that this does apply not only to transportation and manufacturing, but also to operation of the SHT3x-DIS.

www.sensirion.com November 2014 - 0.9 3/17

⁸ Temperature response times strongly depends on the design-in of the sensor in the final application. Minimal response time can be achieved when the thermalized sensor at T1 is placed on a well conducting surface with temperature T2.

2 Specifications

2.1 Electrical Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Units	Comments
Supply voltage	V_{DD}		2.4	3.3	5.5	V	
Power-up/down level	V_{POR}		2.22	2.35	2.4	V	
		Not measuring		0.2		μА	Average current when sensor is not performing a measurement.
Supply current	I _{DD}	Measuring		800		μА	Average current consumption while sensor is measuring at lowest repeatability,
		Average		2		μА	Average current consumption (operation with one measurement per second at lowest repeatability)
Heater power	P _{Heater}	Heater running	5		25	mW	Depending on the supply voltage

Table 3 Electrical specifications, Specification are at 25°C and typical VDD

2.2 Timing Specification for the Sensor System

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units	Comments
Power-up time	t _{PU}	After hard reset, V _{DD} ≥ V _{POR}		0.3	0.5	ms	Time between V _{DD} reaching V _{POR} and sensor entering idle state
Soft reset time	tsr	After soft reset.		0.3	0.5	ms	Time between ACK of soft reset command and sensor entering idle state
Duration of reset pulse			350			ns	See section 3.6
	t _{MEAS,I}			2.5	3	ms	Duration for a humidity and temperature measurement when the repeatability is set to low
Measurement duration	tmeas,m			4.5	5	1	Duration for a humidity and temperature measurement when the repeatability is set to medium
	t _{MEAS,h}			12.5	13.5	1	Duration for a humidity and temperature measurement when the repeatability is set to high

Table 4 System Timing Specification, Specification are at 25°C and typical VDD

2.3 Absolut Minimum and Maximum Ratings

Stress levels beyond those listed in Table 5 may cause permanent damage to the device or affect the reliability of the sensor. These are stress ratings only and functional operation of the device at these conditions cannot be guaranteed.

Parameter	Rating	Units
Supply voltage V _{DD}	-0.5 to 6	V
Max Voltage on pins (pin 1 (SDA); pin 2 (ADDR); pin 3 (ALERT); pin 4(SCL); pin 6(nRESET))	-0.5 to VDD+0.5	V
Input current on any pin	±100	mA
Operating temperature range	-40 to 125	°C
Storage temperature range	-40 to 150	°C
ESD HBM (human body model)	4	kV
ESD MM (machine model)	200	V
ESD CDM (charge device model)	750	V

Table 5 Absolut minimum and maximum ratings; values are target specs and not confirmed by measurements yet

3 Pin Assignment

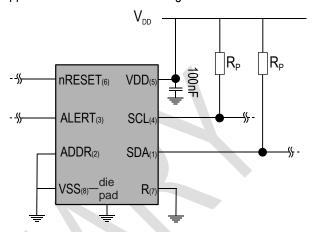
The SHT3x-DIS comes in a tiny 8-pin DFN package – see Table 6.

Pin	Name	Comments	
1	SDA	Serial data; input / output	
2	ADDR	Address pin; input; connect to either VDD or VSS, do not leave floating	
3	ALERT	Indicates alarm condition; output; must be left floating if unused	
4	SCL	Serial clock; input / output	
5	VDD	Supply voltage; input	
6	nRESET	Reset pin active low; Input; if not used it is recommended to connect to VDD	
7	R	No electrical function; recommended to connected to VSS	
8	VSS	Ground	
	1) 2) 3)	(8) (7) (6)	

Table 6 SHT3x-DIS pin assignment (Transparent top view). Dashed lines are only visible if viewed from below. The die pad is internally connected to VSS.

3.1 Power Pins (VDD, VSS)

The electrical specifications of the SHT3x-DIS are shown in Table 3. The power supply pins must be decoupled with a 100 nF capacitor that shall be placed as close to the sensor as possible – see Figure 7 for a typical application circuit.


3.2 Serial Clock and Serial Data (SCL, SDA)

SCL is used to synchronize the communication between microcontroller and the sensor. The clock frequency can be freely chosen between 0 to 1000 kHz. Commands with clock stretching according to I2C Standard⁹ are supported.

The SDA pin is used to transfer data to and from the sensor. For safe communication, the timing specifications defined in the I2C manual⁹ must be met.

Both SCL and SDA lines are open-drain I/Os with diodes to VDD and VSS. They should be connected to external pull-up resistors (please refer to Figure 7). A device on the I2C bus must only drive a line to ground. The external pull-up resistors (e.g. R_p =10 k Ω) are required to pull the

signal high. For dimensioning resistor sizes please take bus capacity and communication frequency into account (see for example Section 7.1 of NXPs I2C Manual for more details⁹). It should be noted that pull-up resistors may be included in I/O circuits of microcontrollers. It is recommended to wire the sensor according to the application circuit as shown in Figure 7.

Figure 7 Typical application circuit. Please note that the positioning of the pins does not reflect the position on the real sensor. This is shown in Table 6.

3.3 Die Pad (center pad)

The die pad or center pad is visible from below and located in the center of the package. It is electrically connected to VSS. Hence electrical considerations do not impose constraints on the wiring of the die pad. However, due to mechanical reasons it is recommended to solder the center pad to the PCB. For more information on design-in, please refer to the document "SHTxx Design Guide".

3.4 ADDR Pin

Through the appropriate wiring of the ADDR pin the I2C address can be selected. Please note that the I2C address is represented through the 7 MSBs of the I2C read or write header. The LSB switches between read or write header. The wiring for the default address is shown in Table 7 and Figure 7. The ADDR pin must not be left floating. Please note that only the 7 MSBs of the I2C Read/Write Header constitute the I2C Address.

SHT3x-DIS	I2C Address in Hex. representation	Condition
I2C address A	0x44 (default)	ADDR (pin 2) connected to VSS
I2C address B	0x45	ADDR (pin 2) connected to VDD

Table 7 I2C device address

3.5 ALERT Pin

The alert pin may be used to connect to the interrupt pin of a microcontroller. The output of the pin depends on the value of the RH/T reading relative to programmable limits. Its function is explained in a separate application note. If not used, this pin must be left floating.

3.6 nRESET Pin

The nReset pin may be used to generate a reset of the sensor. A minimum pulse duration of 350 ns is required to reliably trigger a reset of the sensor. Its function is explained in more detail in section 4. If not used it is recommended to connect to VDD.

4 Operation and Communication

The SHT3x-DIS supports I2C fast mode (and frequencies up to 1000 kHz). Clock stretching can be enabled and disabled through the appropriate user command. For detailed information on the I2C protocol, refer to NXP I2C-bus specification⁹.

All SHT3x-DIS commands and data are mapped to a 16-bit address space. Additionally, data and commands are protected with a CRC checksum. This increases communication reliability. The 16 bits commands to the sensor already include a 3 bit CRC checksum. Data send from and received by the sensor is always succeeded by an 8 bit CRC.

In write direction it is mandatory to transmit the checksum, since the SHT3x-DIS only accepts data if it is followed by the correct checksum. In read direction it is up to the master to decide if it wants to read and process the checksum.

4.1 Power-Up and Communication Start

The sensor starts powering-up after reaching the power-up threshold voltage V_{POR} specified in Table 3. After reaching this threshold voltage the sensor needs the time t_{PU} to enter idle state. Once the idle state is entered it is ready to receive commands from the master (microcontroller).

Each transmission sequence begins with a START condition (S) and ends with a STOP condition (P) as described in the I2C-bus specification. The stop condition is optional. Whenever the sensor is powered up, but not performing a measurement or communicating, it automatically enters sleep state for energy saving. This sleep state cannot be controlled by the user.

4.2 Starting a Measurement

A measurement communication sequence consists of a START condition, the I2C write header (7-bit I2C device

address plus 0 as the write bit) and a 16-bit measurement command. The proper reception of each byte is indicated by the sensor. It pulls the SDA pin low (ACK bit) after the falling edge of the 8th SCL clock to indicate the reception. A complete measurement cycle is depicted in Table 8.

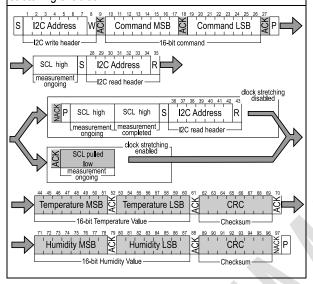
With the acknowledgement of the measurement command, the SHT3x-DIS starts measuring humidity and temperature.

4.3 Measurement Commands for Single Shot Data Acquisition Mode

In this mode one issued measurement command triggers the acquisition of *one data pair*. Each data pair consists of one 16 bit temperature and one 16 bit humidity value (in this order). During transmission the data pair is always followed by a CRC checksum, see section 4.4.

In single shot mode different measurement commands can be selected. The 16 bit commands are shown in Table 8. They differ with respect to repeatability (low, medium and high) and clock stretching (enabled or disabled).

The repeatability setting influences the measurement duration and the current consumption of the sensor. This is explained in section 2.2.


During measurement the sensor generally does not respond to any I2C activity, i.e. I2C read and write headers are not acknowledged (NACK). However, when a command with clock stretching has been issued, the sensor responds to a read header with an ACK and subsequently pulls down the SCL line. The SCL line is pulled down until the measurement is complete. As soon as the measurement is complete, the sensor releases the SCL line and sends the measurement results.

⁹ http://www.nxp.com/documents/user manual/UM10204.pdf

Condi	Hex. code		
Repeatability	Clock stretching	MSB	LSB
High		0x2C	06
Medium	enabled		0D
Low			10
High			00
Medium	disabled	0x24	0B
Low			16

e.g. 0x2C06: high repeatability measurement with clock stretching enabled

Table 8 Measurement commands in single shot mode (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.)

4.4 Readout of Measurement Results for Single Shot Mode

After the sensor has completed the measurement, the master can read the measurement results (pair of RH&T) by sending a START condition followed by an I2C read header. The sensor will acknowledge the reception of the read header and send two bytes of data (temperature) followed by one byte CRC checksum and another two bytes of data (relative humidity) followed by one byte CRC checksum. Each byte must be acknowledged by the microcontroller with an ACK condition for the sensor to continue sending data. If the sensor does not receive an ACK from the master after any byte of data, it will not continue sending data.

The sensor will send the temperature value first and then the relative humidity value. After receiving the checksum for the humidity value a NACK and stop condition should be send (see Table 10).

The I2C master can abort the read transfer with a NACK condition after any data byte if it is not interested in subsequent data, e.g. the CRC byte or the second measurement result, in order to save time.

In case the user needs humidity and temperature data but does not want to process CRC data, it is recommended to read the first two bytes of data with the CRC byte (without processing the CRC data) and abort the read transfer after reading the second two data bytes with a NACK.

4.5 Measurement Commands for Periodic Data Acquisition Mode

In this mode one issued measurement command yields a stream of data pairs. Each data pair consists of one 16 bit temperature and one 16 bit humidity value (in this order).

In periodic mode different measurement commands can be selected. The corresponding 16 bit commands are shown in Table 9. They differ with respect to repeatability (low, medium and high) and data acquisition frequency (0.5, 1, 2, 4 & 10 measurements per second, mps). Clock stretching cannot be selected in this mode.

The data acquisition frequency and the repeatability setting influences the measurement duration and the current consumption of the sensor. This is explained in section 2.2 of this datasheet.

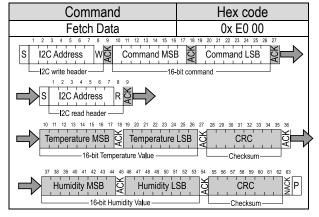

Condition	Hex. c	ode		
Repeatability	mps	MSB	LSB	
High			32	
Medium	0.5	0x20	24	
Low			2F	
High			30	
Medium	1	0x21	26	
Low			2D	
High			36	
Medium	2	0x22	20	
Low			2B	
High			34	
Medium	4	0x23	22	
Low			29	
High			37	
Medium	10	0x27	21	
Low			2A	
e.g. 0x2F31: 10 high repeatability mps - measurement per				
second				
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 S 12C Address W Command MSB Command LSB				

Table 9 Measurement commands for periodic data acquisition mode (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.)

4.6 Readout of Measurement Results for Periodic Mode

Transmission of the measurement data can be initiated through the command shown in Table 10. If no measurement data is present the I2C read header is responded with a NACK instead of an ACK (Bit 9 in Table 10) and the communication stops.

Table 10 Data fetch command (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.)

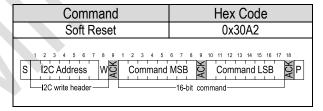
4.7 ART Command

The unique ART (accelerated response time) feature can be activated by issuing the command in Table 12. The art command is structurally similar to any other command in Table 9. Hence section 4.5 & 4.6 apply for starting a measurement and reading out data. The ART feature can also be evaluated using the Evaluation Kit EK-H5 from Sensirion.

Command	Hex Code
Periodic Measurement with ART	0x30A2
1 2 3 4 5 6 7 8 9 1 2 3 4 5 S I2C Address W	d MSB Command LSB Command LSB Command

Table 11 Command for a periodic data acquisition with the ART feature (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.)

4.8 Reset


A system reset of the SHT3x-DIS can be generated externally by issuing a command (soft reset) or by sending a pulse to the dedicated reset pin (nReset pin). Additionally, a system reset is generated internally during power-up or when brownout conditions are met. During the reset procedure the sensor will not process commands.

In order to achieve a full reset of the sensor without removing the power supply, it is recommended to use the nRESET pin of the SHT3x-DIS.

Soft Reset

The SHT3x-DIS provides a soft reset mechanism that forces the system into a well-defined state without removing the power supply. When the system is in idle state the soft reset command can be sent to the SHT3x-DIS. This triggers the sensor to reset its system controller and reloads calibration data from the memory. In order to start the soft reset procedure the command as shown in Table 12 should be sent.

It is worth noting that the sensor reloads calibration data prior to every measurement by default.

Table 12 Soft reset command (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.)

Reset through the nReset Pin

Pulling the nReset pin low (see Table 6) generates a reset similar to a hard reset (switching the power supply to the V_{DD} Pin off and then on again. The pins 1 (SDA), 4(SCL) and 2(ADDR) have a lower voltage than V_{DD} . Otherwise the sensor will be powered over the ESD diodes. The reset pin is internally connected to VDD through a pull-up and hence active low. The nReset pin has to be pulled low for at least 350 ns to generate a reset.

General Call

Additionally a reset of the sensor can also be generated using the "general call" mode according to I2C-bus specification. This generates a reset which is functionally identical to using the nReset pin. It is important to understand that a reset generated in this way is not device specific. All devices on the same I2C bus that support the general call mode will perform a reset. Additionally, for this command to work it is required

Preliminary Data Sheet SHT3x-DIS

that the sensor is able to process I2C commands. The appropriate command consists of two bytes and is shown in Table 13.

Command	Code
Address byte	0x00
Second byte	0x06
Reset command using the general call address	0x0006
S General Call Address General Call 1st byte	9 1 2 3 4 5 6 7 8 9 Reset Command General Call 2 nd byte

Table 13 Reset through the general call address (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.).

4.9 Heater

The heater can be switched on and off by command, see table below. The status is listed in the status register. After a reset the heater is disabled (default condition).

Command	Hex Code			
Command	MSB	LSB		
Heater Enable	0x306	D		
Heater Disabled	0x300	6		
S I2C Address W Comm		2 13 14 15 16 17 18 nmand LSB		

Table 14 Heater command (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.)

4.10 Status Register

The status register contains information on the operational status of the heater, the alert mode and on the execution status of the last command and the last write sequence. The command to read out the status register is shown in Table 15 whereas a description of the content can be found in Table 17.

Command	Hex code
Read Out of status register	0xF32D
S I2C Address R R Register M	oit command 15 16 17 18 19 20 21 22 23 24 25 26 27

Table 15 Command to read out the status register (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.)

Clear Status Register

All flags (Bit 15, 11, 10, 4) in the status register can be cleared (reinitialized to their default value) by sending the command shown in Table 16.

Command	Hex Code
Clear status register	0x 30 41
	7 8 9 10 11 12 13 14 15 16 17 18 ASB Command LSB P 16-bit command

Table 16 Command to clear the status register (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.)

Bit	Field description	Reset
DIL	i iela description	value
15	Alert pending status	'O'
13	'0': no pending alerts	U
	'1': at least one pending alert	
	Write '1' to clear all alert flags	
14	Reserved	'0'
13	Heater status	'0'
	'0' : Heater OFF	
	'1': Heater ON	
12	Reserved	'0'
11	RH tracking alert	'0
	'0' : no alert	
	'1'. alert	
10	T tracking alert	'0'
	'0' : no alert	
	'1' . alert	
9:5	Reserved	'00000'
4	System reset detected	'0'
	'0': no reset detected since last 'clear all	
	alert flags write'	
	'1': reset detected (hard reset, soft reset	
3:2	command or supply fail) Reserved	'00'
1	Command status	'0'
'	'0': last command executed successfully	
	'1': last command not processed. It was	
	either invalid, failed the integrated	
	command checksum	
0	Write data checksum status	'0'
	'0': checksum of last write transfer was	
	correct	
	'1': checksum of last write transfer failed	

Table 17 Description of the status register

4.11 Checksum Calculation

The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm. Its properties are displayed in Table 18. The CRC covers the contents of the two previously transmitted data bytes. To calculate the checksum only these two previously transmitted data bytes are used.

Property	Value
Name	CRC-8
Width	8 bit
Protected data	read and/or write data
Polynomial	0x31 (x8 + x5 + x4 + 1)
Initialization	0xFF
Reflect input	False
Reflect output	False
Final XOR	0x00
Examples	CRC (0xBEEF) = 0x92

Table 18 I2C CRC properties.

4.12 Conversion of Signal Output

Measurement data is always transferred as 16-bit values (unsigned integer). These values are already linearized and compensated for temperature and supply voltage effects. Converting those raw values into a physical scale can be achieved using the following formulas.

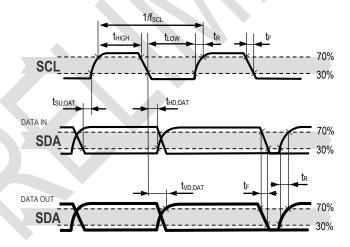
Relative humidity conversion formula (result in %RH):

$$RH = 100 \cdot \frac{S_{RH}}{2^{16} - 1}$$

Temperature conversion formula (result in °C & °F):

$$T [^{\circ}C] = -45 + 175 \cdot \frac{S_T}{2^{16} - 1}$$

$$T [°F] = -49 + 347 \cdot \frac{S_T}{2^{16} - 1}$$


 S_{RH} and S_{T} denote the raw sensor output for humidity and temperature, respectively. The formulas only work correct when S_{RH} and S_{T} are used in decimal representation.

4.13 Communication Timing

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units	Comments
SCL clock frequency	fscL		0		1000	kHz	
Hold time (repeated) START condition	thd;sta	After this period, the first clock pulse is generated	0.24			μs	
LOW period of the SCL clock	tLOW		0.65			μs	
HIGH period of the SCL clock	t _{HIGH}		0.26			μs	
SDA hold time	thd;dat		250			ns	
SDA set-up time	tsu;dat		100			ns	
SCL/SDA rise time	t_R				300	ns	
SCL/SDA fall time	t _F				300	ns	
SDA valid time	t _{VD;DAT}				0.9	μs	
Set-up time for a repeated START condition	tsu;sta		0.6			μs	
Set-up time for STOP condition	t su;sто		0.6			μs	
Capacitive load on bus line	СВ				400	pF	
Low level input voltage	VIL		-0.5		0.3xV _{DD}	V	
High level input voltage	V _{IH}		$0.7xV_{DD}$		$1xV_{DD}$	V	
Low level output voltage	Vol	3 mA sink current			0.66	V	

Table 19 Communication timing specifications for I2C fm (fast mode), Specification are at 25°C and typical VDD. The numbers above are values according to the I2C Specification (UM10204, Rev. 5, October 9 13, 2012)

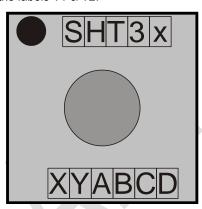
Figure 8 Timing diagram for digital input/output pads. SDA directions are seen from the sensor. Bold SDA lines are controlled by the sensor, plain SDA lines are controlled by the micro-controller. Note that SDA valid read time is triggered by falling edge of preceding toggle.

5 Packaging

SHT3x-DIS sensors are provided in a DFN package. DFN stands for dual flat no leads. The humidity sensor opening is centered on the top side of the package.

The sensor chip is made of silicon and is mounted to a lead frame. The latter is made of Cu plated with Ni/Pd/Au. Chip and lead frame are overmolded by an epoxy-based mold compound leaving the central die pad and I/O pins exposed for mechanical and electrical connection. Please note that the side walls of the sensor are diced and therefore these diced lead frame surfaces are not covered with the respective plating.

5.1 Traceability


All SHT3x-DIS sensors are laser marked for easy identification and traceability. The marking on the sensor top side consists of a pin-1 indicator and two lines of text.

The top line consist of the pin-1 indicator which is located in the top left corner and the product name. The small letter x stands for the accuracy class.

The bottom line consists of 6 letters. The first two digits XY (=DI) describe the output mode. The third letter (A) represents the manufacturing year (4 = 2014, 5 = 2015,

etc). The last three digits (BCD) represent an alphanumeric tracking code. That code can be decoded by Sensirion only and allows for tracking on batch level through production, calibration and testing – and will be provided upon justified request.

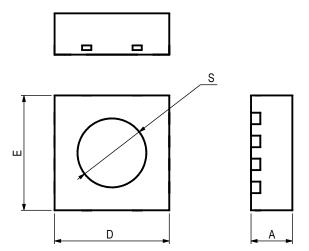

If viewed from below pin 1 is indicated by triangular shaped cut in the otherwise rectangular die pad. The dimension of the triangular cut are shown in Figure 10 through the labels T1 & T2.

Figure 9 Top View of the SHT3x-DIS illustrating the laser marking.

5.2 Package Outline

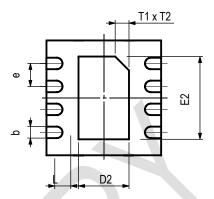
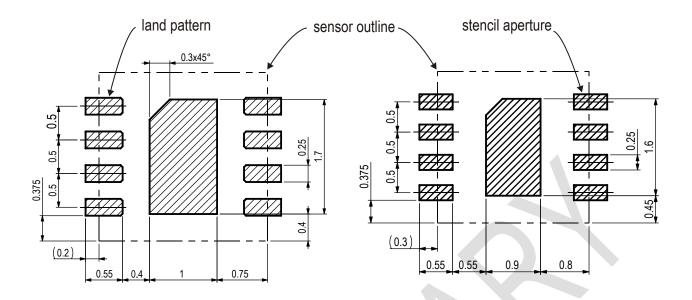


Figure 10 Dimensional drawing of SHT3x-DIS sensor package

Parameter	Symbol	Min	Nom.	Max	Units	Comments
Package height	А	0.8	0.9	1	mm	
Leadframe height	A3		0.2		mm	Not shown in the drawing
Pad width	b	0.2	0.25	0.3	mm	
Package width	D	2.4	2.5	2.6	mm	
Center pad length	D2	1	1.1	1.2	mm	
Package length	Е	2.4	2.5	2.6	mm	
Center pad width	E2	1.7	1.8	1.9	mm	
Pad pitch	е	•	0.5		mm)
Pad length	L	0.3	0.35	0.4	mm	
Max cavity	S			1.5	mm	Only as guidance. This value includes all tolerances, including displacement tolerances. Typically the opening will be smaller.
Center pad marking	T1xT2		0.3x45°		mm	indicates the position of pin 1

Table 20 Package outline

5.3 Land Pattern


Figure 11 shows the land pattern. The land pattern is understood to be the metal layer on the PCB, onto which the DFN pads are soldered.

The solder mask is understood to be the insulating layer on top of the PCB covering the copper traces. It is recommended to design the solder mask as a Non-Solder Mask Defined (NSMD) type. For NSMD pads, the solder mask opening should provide a 60 μm to 75 μm design clearance between any copper pad and solder mask. As the pad pitch is only 0.5 mm we recommend to have one solder mask opening for all 4 I/O pads on one side.

For solder paste printing it is recommended to use a laser-cut, stainless steel stencil with electro-polished trapezoidal walls and with 0.1 or 0.125 mm stencil thickness. The length of the stencil apertures for the I/O pads should be the same as the PCB pads. However, the position of the stencil apertures should have an offset of 0.1 mm away from the center of the package. The die pad aperture should cover about 70-90% of the die pad area —thus it should have a size of about 0.9 mm x 1.6 mm.

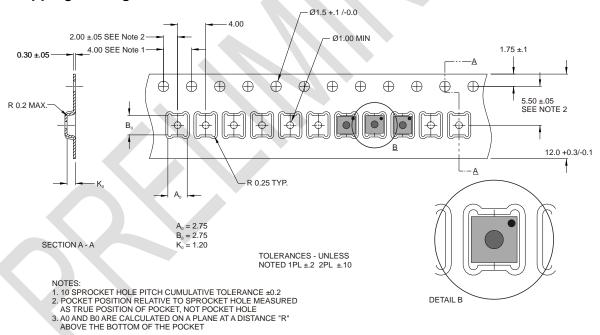

For information on the soldering process and further recommendation on the assembly process please consult the Application Note HT_AN_SHTxx_Assembly_of_SMD_Packages , which can be found on the Sensirion webpage.

Figure 11 Recommended metal land pattern and stencil apertures for the SHT3x-DIS. The dashed lines represent the outer dimension of the DFN package. The PCB pads and stencil apertures are indicated through the shaded areas.

6 Shipping Package

Figure 12 Technical drawing of the packaging tape with sensor orientation in tape. Header tape is to the right and trailer tape to the left on this drawing. Dimensions are given in millimeters.

7 Quality

Qualification of the SHT3x-DIS is performed based on the AEC Q 100 qualification test method.

7.1 Material Contents

The device is fully RoHS and WEEE compliant, e.g. free of Pb, Cd, and Hg.

8 Ordering Information

This sensor cannot be ordered so far. Samples are available upon request. Please contact Sensirion.

9 Further Information

For more in-depth information on the SHT3x-DIS and its application please consult the following documents:

Document Name	Description	Source
SHT3x Shipping Package	Information on Tape, Reel and shipping bags (technical drawing and dimensions)	Available upon request
SHTxx Assembly of SMD Packages	Assembly Guide (Soldering Instruction,)	Available for download at the Sensirion humidity sensors download center: www.sensirion.com/humidity-download
SHTxx Design Guide	Design guidelines for designing SHTxx humidity sensors into applications	Available for download at the Sensirion humidity sensors download center: www.sensirion.com/humidity-download
SHTxx Handling Instructions	Guidelines for proper handling of SHTxx humidity sensors (Reconditioning Procedure)	Available for download at the Sensirion humidity sensors download center: www.sensirion.com/humidity-download
Sensirion Humidity Sensor Specification Statement	Definition of sensor specifications.	Available for download at the Sensirion humidity sensors download center: www.sensirion.com/humidity-download

Table 21 Documents containing further information relevant for the SHT3x-DIS.

Revision History

Date	Version	Page(s)	Changes
	0.9		Initial release

Headquarters and Subsidiaries

SENSIRION AG Laubisruetistr. 50 CH-8712 Staefa ZH Switzerland

phone: +41 44 306 40 00 fax: +41 44 306 40 30 info@sensirion.com http://www.sensirion.com

Sensirion AG (Germany) phone: +41 44 927 11 66 info@sensirion.com www.sensirion.com Sensirion Inc., USA phone: +1 805 409 4900 info_us@sensirion.com www.sensirion.com

Sensirion Japan Co. Ltd. phone: +81 3 3444 4940 info@sensirion.co.jp www.sensirion.co.jp

Sensirion Korea Co. Ltd. phone: +82 31 337 7700 3 info@sensirion.co.kr www.sensirion.co.kr

Sensirion China Co. Ltd. phone: +86 755 8252 1501 info@sensirion.com.cn www.sensirion.com.cn

To find your local representative, please visit http://www.sensirion.com/contact