

IWR1443 SWRS211 – MAY 2017

IWR1443 Single Chip 76- to 81-GHz mmWave Sensor

1 Device Overview

1.1 Features

- FMCW Transceiver
 - Integrated PLL, Transmitter, Receiver, Baseband, and A2D
 - 76- to 81-GHz Coverage With 4-GHz Continuous Bandwidth
 - Four Receive Channels
 - Three Transmit Channels (Two Can be Used Simultaneously)
 - Ultra-Accurate Chirp Engine Based on Fractional-N PLL
 - TX Power: 12 dBm
 - RX Noise Figure:
 - 15 dB (76 to 77 GHz)
 - 16 dB (77 to 81 GHz)
 - Phase Noise at 1 MHz:
 - 94 dBc/Hz (76 to 77 GHz)
 - 91 dBc/Hz (77 to 81 GHz)
- · Built-in Calibration and Self-Test
 - ARM® Cortex®-R4F-Based Radio Control System
 - Built-in Firmware (ROM)
 - Self-calibrating System Across Frequency and Temperature
- On-Chip Programmable Core for Embedded User Application
 - Integrated Cortex®-R4F Microcontroller Clocked at 200 MHz
 - On-Chip Bootloader Supports Autonomous Mode (Loading User Application From QSPI Flash Memory)
 - Integrated Peripherals
 - Internal Memories With ECC
 - Radar Hardware Accelerator (FFT, Logmagnitude Computations, and others)
 - Integrated Timers (Watch Dog and up to Four 32-Bit or Two 64-Bit Timers)

Up to Six General-Purpose ADC Ports

I2C (Master and Slave Modes Supported)

- High-Speed Data Interface to Support Distributed Applications (Namely, Intermediate Data)
- · Host Interface
 - Control Interface With External Processor Over SPI
 - Data Interface With External Processor Over MIPI D-PHY and CSI2 V1.1
 - Interrupts for Fault Reporting
- IWR1443 Advanced Features

- Two SPI Ports

CAN Port

- Embedded Self-monitoring With No Host Processor Involvement
- Complex Baseband Architecture
- Embedded Interference Detection Capability
- Power Management
 - Built-in LDO Network for Enhanced PSRR
 - I/Os Support Dual Voltage 3.3 V/1.8 V
- Clock Source
 - 40.0-MHz Crystal With Internal Oscillator
 - Supports External Oscillator at 40 and 50 MHz
 - Supports Externally Driven Clock (Square/Sine) at 40 and 50 MHz
- Easy Hardware Design
 - 0.65-mm Pitch, 161-Pin 10.4 mm x 10.4 mm
 Flip Chip BGA Package for Easy Assembly and Low-Cost PCB Design
 - Small Solution Size
- · Operating Conditions
 - Junction Temp Range: –40°C to 105°C

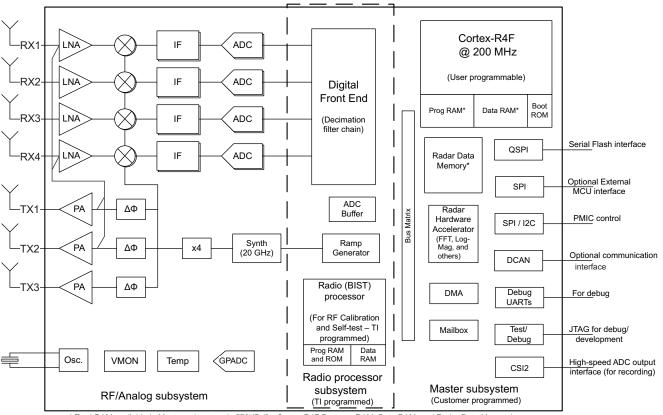
1.2 Applications

- Industrial Sensor for Measuring Range, Velocity, and Angle
- Tank Level Probing Radar
- Displacement Sensing
- · Field Transmitters

- Traffic Monitoring
- Proximity Sensing
- · Security and Surveillance
- · Factory Automation Safety Guards

1.3 Description

The IWR1443 device is an integrated single-chip mmWave sensor based on FMCW radar technology capable of operation in the 76- to 81-GHz band with up to 4 GHz continuous chirp. The device is built with TI's low-power 45-nm RFCMOS process, and this solution enables unprecedented levels of integration in an extremely small form factor. The IWR1443 is an ideal solution for low-power, self-monitored, ultra-accurate radar systems in the industrial applications such as building automation, factory automation, drones, material handling, traffic monitoring, and surveillance.


The IWR1443 device is a self-contained, single-chip solution that simplifies the implementation of mmWave sensors in the band of 76 to 81 GHz. The IWR1443 includes a monolithic implementation of a 3TX, 4RX system with built-in PLL and A2D converters. The device includes fully configurable hardware accelerator that supports complex FFT and CFAR detection. Additionally, the devices includes two ARM R4F-based processor subsystems: one processor subsystem is for master control, and additional algorithms; a second processor subsystem is responsible for front-end configuration, control, and calibration. Simple programming model changes can enable a wide variety of sensor implementation with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform solution including reference hardware design, software drivers, sample configurations, API guide, training, and user documentation.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE
XI1443QGABL (Reel)	FCDCA (464)	10.4 mm 10.4 mm
XI1443QGABLT (Tape)	FCBGA (161)	10.4 mm × 10.4 mm

(1) For more information, see Section 9, Mechanical Packaging and Orderable Information.

1.4 Functional Block Diagram

* Total RAM available in Master subsystem is 576KB (for Cortex-R4F Program RAM, Data RAM, and Radar Data Memory)

Copyright © 2017, Texas Instruments Incorporated

Table of Contents

1	Dev	ice Overview	. 1		6.1	Overview	47
	1.1	Features	. 1		6.2	Functional Block Diagram	47
	1.2	Applications	. <u>1</u>		6.3	External Interfaces	48
	1.3	Description	. 2		6.4	Subsystems	<u>48</u>
	1.4	Functional Block Diagram	. 2		6.5	Accelerators and Coprocessors	<u>54</u>
2	Rev	ision History	. <u>3</u>		6.6	Other Subsystems	<u>55</u>
3	Dev	ice Comparison	. <u>4</u>		6.7	Identification	<u>59</u>
	3.1	Related Products	. <u>5</u>		6.8	Boot Modes	<u>59</u>
4	Terr	minal Configuration and Functions	. <u>6</u>	7	App	lications, Implementation, and Layout	<u>62</u>
	4.1	Pin Diagram	. <u>6</u>		7.1	Application Information	62
	4.2	Signal Descriptions	<u>10</u>		7.2	Reference Schematic	62
	4.3	Pin Multiplexing	<u>13</u>		7.3	Layout	<u>63</u>
5	Spe	cifications	<u>22</u>	8	Dev	ice and Documentation Support	64
	5.1	Absolute Maximum Ratings	<u>22</u>		8.1	Device Nomenclature	64
	5.2	ESD Ratings	<u>22</u>		8.2	Tools and Software	<u>65</u>
	5.3	Power-On Hours (POH)	<u>22</u>		8.3	Documentation Support	<u>65</u>
	5.4	Recommended Operating Conditions	<u>23</u>		8.4	Community Resources	<u>66</u>
	5.5	Power Supply Specifications	<u>23</u>		8.5	Trademarks	<u>66</u>
	5.6	Power Consumption Summary	<u>24</u>		8.6	Electrostatic Discharge Caution	<u>66</u>
	5.7	RF Specification	<u>25</u>		8.7	Export Control Notice	<u>66</u>
	5.8	Thermal Resistance Characteristics for FCBGA			8.8	Glossary	<u>66</u>
		Package [ABL0161]		9		hanical, Packaging, and Orderable	
	5.9	Timing and Switching Characteristics			Info	rmation	67
6	Deta	ailed Description	<u>47</u>		9.1	Packaging Information	67

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
May 2017	*	Initial Release

3 Device Comparison

Table 3-1. Device Features Comparison

FUNCTION		IWR1443	IWR1642	
Number of receivers	-	4	4	
Number of transmitte	ers	3	2	
On-chip memory		576KB	1.5MB	
Max interface (MHz)		15	5	
Max real sampling ra	ate (Msps)	37.5	12.5	
Processor				
MCU (R4F)		Yes	Yes	
DSP (C674x)		_	Yes	
Peripherals				
Serial Peripheral Inte	erface (SPI) ports	1	2	
Quad Serial Periphe	ral Interface (QSPI)	Yes	Yes	
Inter-Integrated Circ	uit (I ² C) interface	1	1	
Controller Area Netv	vork (DCAN) interface	Yes	Yes	
Trace		_	Yes	
PWM		_	Yes	
Hardware In Loop (H	HIL/DMM)	_	Yes	
GPADC		Yes	Yes	
LVDS/Debug		Yes	Yes	
CSI2		Yes	_	
Hardware accelerate	or	Yes	_	
1-V bypass mode		Yes	Yes	
JTAG		Yes	Yes	
Product status ⁽¹⁾	Product Preview (PP), Advance Information (AI), or Production Data (PD)	Al	AI	

⁽¹⁾ ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

3.1 Related Products

For information about other devices in this family of products or related products see the links that follow.

- mmWave Sensors TI's mmWave sensors rapidly and accurately sense range, angle and velocity with less power using the smallest footprint mmWave sensor portfolio for industrial applications.
- TBD Need Link to Family Page The Texas Instruments IWR1xxx family of mmWave Sensors are highly integrated and built on RFCMOS technology operating in 76- to 81-GHz frequency band. The devices have a closed-loop PLL for precise and linear chirp synthesis, includes a built-in radio processor (BIST) for RF calibration and safety monitoring. The devices have a very small-form factor, low power consumption, and are highly accurate. Industrial applications from long range to ultra short range can be realized using these devices.
- Companion Products for IWR1443 Review products that are frequently purchased or used in conjunction with this product.
- IWR1443 Reference Designs The IWR1443 TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor and connectivity. Created by TI experts to help you jump-start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at ti.com/tidesigns.

Terminal Configuration and Functions

Pin Diagram 4.1

Figure 4-1 shows the pin locations for the 161-pin FCBGA package. Figure 4-2, Figure 4-3, Figure 4-4, and Figure 4-5 show the same pins, but split into four quadrants.

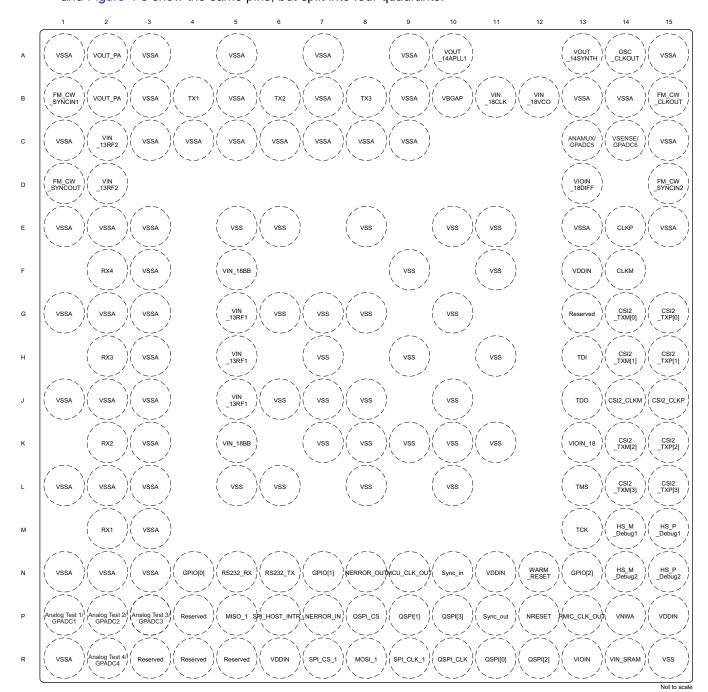


Figure 4-1. Pin Diagram

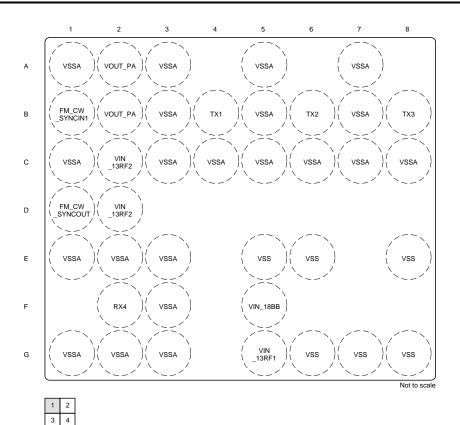


Figure 4-2. Top Left Quadrant

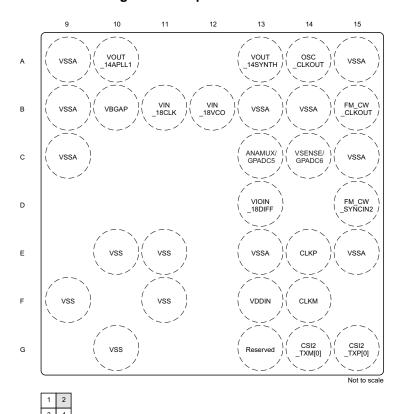


Figure 4-3. Top Right Quadrant

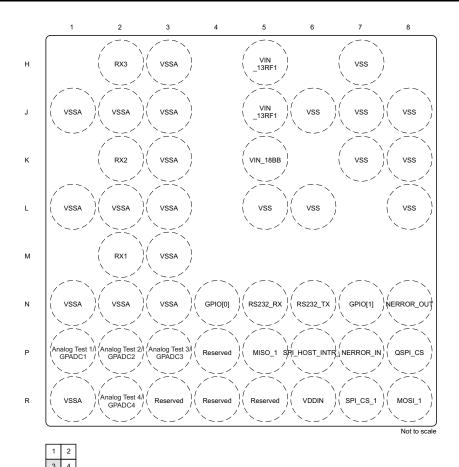


Figure 4-4. Bottom Left Quadrant

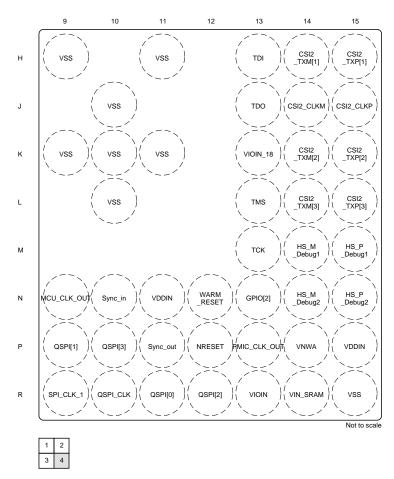


Figure 4-5. Bottom Right Quadrant

4.2 Signal Descriptions

Table 4-1. Signal Descriptions

Г		1 able 4-1.	escriptions				
FUNCTION	SIGNAL NAME	PIN NUMBER	PIN TYPE	DESCRIPTION			
	TX1	B4	0	Single-ended transmitter1 o/p			
Transmitters	TX2	B6	0	Single-ended transmitter2 o/p			
	TX3	B8	0	Single-ended transmitter3 o/p			
	RX1	M2	I	Single-ended receiver1 i/p			
Receivers	RX2	K2	I	Single-ended receiver2 i/p			
Receivers	RX3	H2	I	Single-ended receiver3 i/p			
	RX4	F2	I	Single-ended receiver4 i/p			
	CSI2_TXP[0]	G15	0	Differential data Out I and O			
	CSI2_TXM[0]	G14	0	Differential data Out – Lane 0			
	CSI2_CLKP	J15	0	Differential alask Out			
	CSI2_CLKM	J14	0	Differential clock Out			
	CSI2_TXP[1]	H15	0	Differential data Out Lanc 1			
	CSI2_TXM[1]	H14	0	Differential data Out – Lane 1			
CSI2 TX/LVDS TX	CSI2_TXP[2]	K15	0	Differential data Out I ama 0			
CSIZ TA/LVDS TA	CSI2_TXM[2]	K14	0	Differential data Out – Lane 2			
	CSI2_TXP[3]	L15	0	Differential data Out I ama 2			
	CSI2_TXM[3]	L14	0	Differential data Out – Lane 3			
	HS_DEBUG1_P	M15	0	Differential debug part 4			
	HS_DEBUG1_M	M14	0	Differential debug port 1			
-	HS_DEBUG2_P	N15	0	Differential debug ment 0			
	HS_DEBUG2_M	N14	0	Differential debug port 2			
	RESERVED	B15, B1, D15, D1					
System	SYNC_OUT	P11	0	Low-frequency synchronization signal output			
synchronization	SYNC_IN	N10	I	Low-frequency synchronization signal input			
0.51	SPI_CS_1	R7	I	SPI chip select			
SPI control interface from	SPI_CLK_1	R9	I	SPI clock			
external MCU	MOSI_1	R8	I	SPI data input			
(default slave mode)	MISO_1	P5	0	SPI data output			
modely	SPI_HOST_INTR_1	P6	0	SPI interrupt to host			
	RESERVED	R3, R4, R5, P4					
	NRESET	P12	1	Power on reset for chip. Active low			
Reset	WARM_RESET	N12	Ю	Open-drain fail-safe warm reset signal. Can be driven from PMIC for diagnostic or can be used as status signal that the device is going through reset.			
	NERROR_OUT	N8	0	Open-drain fail-safe output signal. Connected to PMIC/Processor/MCU to indicate that some severe criticality fault has happened. Recovery would be through reset.			
Safety	NERROR_IN	P7	I	Fail-safe input to the device. Error output from any other device can be concentrated in the error signaling monitor module inside the device and appropriate action can be taken by firmware			
	TMS	L13	ı				
ITAO	TCK	M13	I	TAO a set (see stee deed become to			
JTAG	TDI	H13	ı	JTAG port for standard boundary scan			
	TDO	J13	0	1			

Table 4-1. Signal Descriptions (continued)

FUNCTION	SIGNAL NAME	PIN NUMBER	PIN TYPE	DESCRIPTION		
Reference	CLKP	E14	ı	OLKD is the least and OLKM in the Outset to drive small		
oscillator	CLKM	F14	0	CLKP is the Input and CLKM is the Output to drive crystal		
Reference clock	OSC_CLKOUT	A14	0	Reference clock output from clocking subsystem after clear PLL. Can be used by slave chip in multichip cascading		
Band-gap voltage	VBGAP	B10	0			
	VDDIN	F13,N11,P15, R6	POW	1.2-V digital power supply		
	VIN_SRAM	R14	POW	1.2-V power rail for internal SRAM		
	VNWA	P14	POW	1.2-V power rail for SRAM array back bias		
	VIOIN	R13	POW	I/O supply (3.3-V or 1.8-V): All CMOS I/Os would operate on this supply.		
	VIOIN_18	K13	POW	1.8-V supply for CMOS IO		
	VIN_18CLK	B11	POW	1.8-V supply for clock module		
	VIOIN_18DIFF	D13	POW	1.8-V supply for CSI2 port		
	Reserved	G13	POW	No connect		
	VIN_13RF1	G5,J5,H5	POW	1.3-V Analog and RF supply,VIN_13RF1 and VIN_13RF2		
	VIN_13RF2	C2,D2	POW	could be shorted on the board		
	VIN_18BB	K5,F5	POW	1.8-V Analog baseband power supply		
	VIN_18VCO	B12	POW	1.8-V RF VCO supply		
Power supply	vss	E5,E6,E8,E10, E11,F9,F11,G 6,G7,G8,G10, H7,H9,H11,J6, J7,J8,J10,K7,K 8,K9,K10,K11, L5,L6,L8,L10, R15	GND	Digital ground		
	VSSA	A1,A3,A5,A7,A 9,A15,B3,B5,B 7,B9,B13,B14, C1,C3,C4,C5, C6,C7,C8,C9, C15,E1,E2,E3, E13,E15,F3,G 1,G2,G3,H3,J1, J2,J3,K3,L1,L 2,L3, M3,N1,N2,N3, R1	GND	Analog ground		
	VOUT_14APLL1	A10	0			
Internal LDO output/inputs	VOUT_14SYNTH	A13	0			
	VOUT_PA	A2,B2	0			
	PMIC_CLK_OUT	P13	0	Dithered clock input to PMIC		
External clock out	MCU_CLK_OUT	N9	0	Programmable clock given out to external MCU or the processor		
	GPIO[0]	N4	Ю	General-purpose IO		
General-purpose I/Os	GPIO[1]	N7	Ю	General-purpose IO		
,, 55	GPIO[2]	N13	Ю	General-purpose IO		

Table 4-1. Signal Descriptions (continued)

FUNCTION	SIGNAL NAME	PIN NUMBER	PIN TYPE	DESCRIPTION	
	QSPI_CS	P8	0	Chip-select output from the device. Device is a master connected to serial flash slave.	
QSPI for Serial	QSPI_CLK	R10	0	Clock output from the device. Device is a master connected to serial flash slave.	
Flash	QSPI[0]	R11	Ю	Data IN/OUT	
	QSPI[1]	P9	Ю	Data IN/OUT	
	QSPI[2]	R12	Ю	Data IN/OUT	
	QSPI[3]	P10	Ю	Data IN/OUT	
Flash programming	RS232_TX	N6	0	UART pins for programming external flash in	
and RS232 UART ⁽¹⁾	RS232_RX	N5	ı	preproduction/debug hardware.	
Test and Debug	Analog Test1 / GPADC1	P1	Ю	GP ADC channel 1	
output for preproduction	Analog Test2 / GPADC2	P2	Ю	GP ADC channel 2	
phase. Can be	Analog Test3 / GPADC3	P3	Ю	GP ADC channel 3	
pinned out on	Analog Test4 / GPADC4	R2	Ю	GP ADC channel 4	
production hardware for field	ANAMUX / GPADC5	C13	Ю	GP ADC channel 5	
debug	VSENSE / GPADC6	C14	Ю	GP ADC channel 6	

⁽¹⁾ This option is for development/debug in preproduction phase. Can be disabled by firmware pin mux setting.

Pin Multiplexing 4.3

Instruments

Table 4-2. Pin Multiplexing (ABL0161 Package)

REGISTER	PIN NAME	PIN	DIGITAL PIN MUX CONFIG		FUNCTION		nRese	PAD STATE et = 0 [ASSERTED]		
ADDRESS ⁽¹⁾	PIN NAME	PIN	VALUE [Bits3:0]	SIGNAL NAME	SIGNAL DESCRIPTION	SIGNAL TYPE	STATE	INTERNAL WEAK PULL STATE		
EA00h	CDIO 12	P6	0	GPIO_12	General Purpose IO	Ю	Hi-Z	Weak Pull Down		
EAUUN	GPIO_12	Po	1	SPI_HOST1_INTR	General Purpose IO [AR14XX]	0				
			0	GPIO_13	General Purpose IO	Ю	Hi-Z	Weak Pull Down		
EA04h	GPIO_0 N4	GPIO_0	N4	0 N4	1	GPIO_0	General Purpose IO	Ю		
			2	PMIC_CLKOUT	Dithered Clock Output for PMIC	0				
			0	GPIO_16	General Purpose IO	Ю	Hi-Z	Weak Pull Down		
EA08h	GPIO 1	N7	1	GPIO_1	General Purpose IO	Ю				
EAGOII	3.10_1	GPIO_1 N7	N7	2	SYNC_OUT	Low Frequency Synchronization Signal output	0			
	EA0Ch MOSI_1 R8			0	GPIO_19	General Purpose IO	IO	Hi-Z	Weak Pull Up	
EA0Ch		1	MOSI_1	SPI Channel#1 Data Input	IO					
			2	CAN_RX	CAN Interface	I				
)_1 P5	0	GPIO_20	General Purpose IO	IO	Hi-Z	Weak Pull Up		
EA10h	MISO_1 P5		P5	1	MISO_1	SPI Channel#1 Data Output	Ю			
			2	CAN_TX	CAN Interface	0				
			0	GPIO_3	General Purpose IO	Ю	Hi-Z	Weak Pull Up		
EA14h	SPI_CLK_1	R9	1	SPI_CLK_1	SPI Channel#1 Clock	Ю				
				RCOSC_CLK		0				
			0	GPIO_30	General Purpose IO	Ю	Hi-Z	Weak Pull Up		
EA18h	SPI_CS_1	R7	1	SPI_CS_1	SPI Channel#1 Chip Select	Ю				
				RCOSC_CLK		0				
			0	GPIO_21	General Purpose IO	Ю	Hi-Z			
EA1Ch	MOSI_2	MOSI_2 R3	1	MOSI_2	SPI Channel#2 Data Input	Ю				
	_		2	I2C_SDA	I2C Data	Ю				
			0	GPIO_22	General Purpose IO	IO	Hi-Z			
EA20h	EA20h MISO_2 P4	O_2 P4	1	MISO_2	SPI Channel#2 Data Output	IO				
				2	I2C_SCL	I2C Clock	Ю			

⁽¹⁾ Register addresses are of the form FFFF XXXXh, where XXXX is listed here.

REGISTER	PIN NAME	PIN	DIGITAL PIN MUX CONFIG		FUNCTION		nRese	PAD STATE et = 0 [ASSERTED]	
ADDRESS ⁽¹⁾	PIN NAME	FIN	VALUE [Bits3:0]	SIGNAL NAME	SIGNAL DESCRIPTION	SIGNAL TYPE	STATE	INTERNAL WEAK PULL STATE	
			0	GPIO_5	General Purpose IO	Ю	Hi-Z		
		SPI_CLK_2 R5	1	SPI_CLK_2	SPI Channel#2 Clock	Ю			
EA24h	SPI_CLK_2		R5		MSS_UARTA_RX		Ю		
			6	MSS_UARTB_TX	Debug: Firmware Trace	0			
			7	BSS_UART_TX	Debug: Firmware Trace	0			
	EA28h SPI_CS_2 R4		0	GPIO_4	General Purpose IO	Ю	Hi-Z		
			1	SPI_CS_2	SPI Channel#2 Chip Select	Ю			
EA28h		SPI_CS_2	R4		MSS_UARTA_TX		Ю		
			6	MSS_UARTB_TX	Debug: Firmware Trace	0			
		7	BSS_UART_TX	Debug: Firmware Trace	0				
			0	GPIO_8	General Purpose IO	Ю	Hi-Z	Weak Pull Down	
EA2Ch	QSPI[0]	QSPI[0] R11	1	QSPI[0]	QSPI Data IN/OUT	Ю			
			2	MISO_2	SPI Channel#1 Data Output	Ю			
		P9	P9	0	GPIO_9	General Purpose IO	Ю	Hi-Z	Weak Pull Down
EA30h	QSPI[1]			P9	1	QSPI[1]	QSPI Data IN/OUT	Ю	
			2	MOSI_2	SPI Channel#2 Data Input	Ю			
E A O 4 h	OCDIO	D40	0	GPIO_10	General Purpose IO	Ю	Hi-Z	Weak Pull Down	
EA34h	QSPI[2]	R12	1	QSPI[2]	QSPI Data IN/OUT	Ю			
EA38h	OCDIGI	P10	0	GPIO_11	General Purpose IO	Ю	Hi-Z	Weak Pull Down	
EASON	QSPI[3]	P10	1	QSPI[3]	QSPI Data IN/OUT	I			
			0	GPIO_7	General Purpose IO	Ю	Hi-Z	Weak Pull Down	
EA3Ch	QSPI_CLK	R10	1	QSPI_CLK	QSPI Clock output from the device. Device operates as a master with the serial flash being a slave	0			
			2	SPI_CLK_2	SPI Channel#2 Clock	Ю			
			0	GPIO_6	General Purpose IO	Ю	Hi-Z	Weak Pull Up	
EA40h (QSPI_CS	QSPI_CS P8	1	QSPI_CS	QSPI Chip Select output from the device. Device operates as a master with the serial flash being a slave	0			
			2	SPI_CS_2	SPI Channel#2 Chip Select	Ю			

Texas Instruments

REGISTER	PIN NAME	PIN	DIGITAL PIN MUX CONFIG		FUNCTION		nRese	PAD STATE et = 0 [ASSERTED]	
ADDRESS ⁽¹⁾	FIN NAME	FIIN	VALUE [Bits3:0]	SIGNAL NAME	SIGNAL DESCRIPTION	SIGNAL TYPE	STATE	INTERNAL WEAK PULL STATE	
	NERROR_IN	P7		NERROR_IN	Failsafe input to the device. Nerror output from any other device can be concentrated in the error signaling monitor module inside the device and appropriate action can be taken by Firmware	I	Hi-Z		
	WARM_RESET	N12		WARM_RESET	Open drain fail safe warm reset signal. Can be driven from PMIC for diagnostic or can be used as status signal that the device is going through reset.	Ю	Hi-Z Input	Open Drain	
	NERROR_OUT	N8		NERROR_OUT	Open drain fail safe output signal. Connected to PMIC/Processor/MCU to indicate that some severe criticality fault has happened. Recovery would be through reset.	0	Hi-Z	Open Drain	
		CK M13	0	GPIO_17	General Purpose IO	Ю	Hi-Z	Weak Pull Down	
EA50h	TCK		1	TCK	JTAG Clock	I			
LASOII	TOR	IVITS	2	MSS_UARTB_TX	Debug: Firmware Trace	0			
			6	BSS_UART_RX	Debug: Firmware Trace	I			
			0	GPIO_18	General Purpose IO	Ю	Hi-Z	Weak Pull Up	
EA54h	TMS	L13	1	TMS	JTAG Test Mode Select	Ю			
			2	BSS_UART_TX	Debug: Firmware Trace	0			
			0	GPIO_23	General Purpose IO	Ю	Hi-Z	Weak Pull Up	
EA58h	TDI	H13	1	TDI	JTAG Test Data In	1			
				MSS_UARTA_RX		Ю			
			0	GPIO_24	General Purpose IO	Ю	Hi-Z		
			1	TDO	JTAG Test Data Out	0			
				MSS_UARTA_TX		Ю			
EA5Ch	TDO	J13	J13	6	MSS_UARTB_TX	Debug: Firmware Trace	0		
				BSS_UART_TX	Debug: Firmware Trace	0			
				7	SOP0	Sense On Power [Reset] Line Impacts boot mode	ı		

REGISTER PIN NAME		PIN	DIGITAL PIN MUX CONFIG		FUNCTION		nRes	PAD STATE et = 0 [ASSERTED]
ADDRESS ⁽¹⁾	FIN NAME	FIIN	VALUE [Bits3:0]	SIGNAL NAME	SIGNAL DESCRIPTION	SIGNAL TYPE	STATE	INTERNAL WEAK PULL STATE
			0	GPIO_25	General Purpose IO	Ю	Hi-Z	Weak Pull Down
EA60h	MCU_CLKOUT	N9	1	MCU_CLKOUT	Programmable clock given out to external MCU or the processor	0		
			10	BSS_UART_RX	Debug: Firmware Trace	I		
			0	GPIO_26	General Purpose IO	Ю	Hi-Z	Weak Pull Down
			1	GPIO_2	General Purpose IO	Ю		
	EA64h GPIO_2		7	MSS_UARTB_TX	Debug: Firmware Trace	0		
EA64h		N13	8	BSS_UART_TX	Debug: Firmware Trace	0		
			9	SYNC_OUT	Low frequency Synchronization signal output	0		
			10	PMIC_CLKOUT	Dithered clock input to PMIC	0		
	PMIC CLKOUT	UT P13	0	GPIO_27	General Purpose IO	Ю	Hi-Z	Weak Pull Down
EA68h			1	PMIC_CLKOUT	Dithered Clock Output for PMIC	0		
27.0011	T WIIO_OLINOOT	1 10		SOP2	Sense On Power [Reset] Line Impacts boot mode	I		
		NC_IN N10	0	GPIO_28	General Purpose IO	Ю	Hi-Z	Weak Pull Down
EA6Ch	SYNC_IN		C_IN N10	1	SYNC_IN	Low frequency Synchronization signal input	1	
			6	MSS_UARTB_RX	Debug: Firmware Trace	I		
			0	GPIO_29	General Purpose IO	Ю	Hi-Z	Weak Pull Down
E 4.70k	CVAIC OUT	P11	1	SYNC_OUT	Low frequency Synchronization signal output	0		
EA70h	SYNC_OUT	PTT		RCOSC_CLK		0		
				SOP1	Sense On Power [Reset] Line Impacts boot mode	1		
			0	GPIO_15	General Purpose IO	Ю	Hi-Z	Weak Pull Up
			1	RS232_RX	Debug: Firmware load to RAM	Ю		
EA74h	RS232_RX	2_RX N5	2	MSS_UARTA_RX	FLASH Programming Bootloader Controlled	I		
			6	BSS_UART_TX	Debug: Firmware Trace	0		
			7	MSS_UARTB_RX	Debug: Firmware Trace	I		

Texas Instruments

REGISTER	PIN NAME	PIN	DIGITAL PIN MUX CONFIG		FUNCTION			PAD STATE t = 0 [ASSERTED]
ADDRESS ⁽¹⁾	PIN NAME	FIIN	VALUE [Bits3:0]	SIGNAL NAME	SIGNAL DESCRIPTION	SIGNAL TYPE	STATE	INTERNAL WEAK PULL STATE
			0	GPIO_14	General Purpose IO	Ю		
			1	RS232_TX	Debug: Firmware load to RAM	Ю		
EA78h	RS232_TX	N6	5	MSS_UARTA_TX	FLASH Programming Bootloader Controlled	0		
			6	MSS_UARTB_TX	Debug: Firmware Trace	0		
			7	BSS_UART_TX	Debug: Firmware Trace	0		
	NRESET	P12		NRESET	Power on reset for chip (Active low)	1		
	TX1	B4		TX1	Single ended transmitter1 o/p	0		
	TX2	B6		TX2	Single ended transmitter2 o/p	0		
	TX3	B8		TX3	Single ended transmitter3 o/p	0		
	RX1	M2		RX1	Single ended receiver1 i/p	1		
	RX2	K2		RX2	Single ended receiver2 i/p	1		
	RX3	H2		RX3	Single ended receiver3 i/p	1		
	RX4	F2		RX4	Single ended receiver4 i/p	I		
	CSI2_TXP[0]	G15		CSI2_TXP[0]	Differential data Out. Lanc 0	0		
	CSI2_TXM[0]	G14		CSI2_TXM[0]	Differential data Out – Lane 0	0		
	CSI2_CLKP	J15		CSI2_CLKP	Differential alead Out	0		
	CSI2_CLKM	J14		CSI2_CLKM	Differential clock Out	0		
	CSI2_TXP[1]	H15		CSI2_TXP[1]	Differential data Out. Lane 4	0		
	CSI2_TXM[1]	H14		CSI2_TXM[1]	Differential data Out – Lane 1	0		
	CSI2_TXP[2]	K15		CSI2_TXP[2]	Differential data Out. Lanc 0	0		
	CSI2_TXM[2]	K14		CSI2_TXM[2]	Differential data Out – Lane 2	0		
	CSI2_TXP[3]	L15		CSI2_TXP[3]	Differential data Out I ama 2	0		
	CSI2_TXM[3]	L14		CSI2_TXM[3]	Differential data Out – Lane 3	0		
	HS_Debug1_P	M15		HS_DEBUG1_P	Differential debug ports	0		
	HS_Debug1_M	M14		HS_DEBUG1_M	Differential debug port1	0		
	HS_Debug2_P	N15		HS_DEBUG2_P	Differential debug next?	0		
	HS_Debug2_M	N14		HS_DEBUG2_M	Differential debug port2	0		
	CLKP	E14		CLKP	Differential input ports for reference crystal	I		
	CLKM	F14		CLKM				

REGISTER	DIN NAME	PIN NAME PIN	DIGITAL PIN MUX CONFIG		FUNCTION		PAD STATE nReset = 0 [ASSERTED]	
ADDRESS ⁽¹⁾	FIN NAME	FIIN	VALUE [Bits3:0]	SIGNAL NAME	SIGNAL DESCRIPTION	SIGNAL TYPE	STATE	INTERNAL WEAK PULL STATE
	OSC_CLKOUT	A14		OSC_CLKOUT	Reference clock output from clocking sub system after cleanup PLL. Can be used by slave chip in multi-chip cascading	0		
	VBGAP	B10		VBGAP	Bandgap voltage	0		
		F13						
	VDDIN	N11		VDDIN	4 OV divital passas assasts	Power		
	VDDIN	P15		VDDIN	1.2V digital power supply	Power		
		R6						
	VIN_SRAM	R14			1.2V power rail for internal SRAM	Power		
	VNWA	P14			1.2V power rail for SRAM array back bias	Power		
	VIOIN	R13			I/O Supply (3.3V or 1.8V): All CMOS I/Os would operate on this supply	Power		
	VIOIN_18	K13			1.8V supply for CMOS IO	Power		
	VIN_18CLK	B11			1.8V supply for clock module	Power		
	VIOIN_18DIFF	D13			1.8V supply for CSI2 port	Power		
	Reserved	G13				Power		
	VIN_13RF1	G5,J5,H5			1.3V Analog and RF supply,VIN_13RF1 and VIN_13RF2 could be shorted on the board	Power		
	VIN_13RF2	C2,D2				Power		
	VIN_18BB	K5,F5			1.8V Analog baseband power supply	Power		
	VIN_18VCO	B12			1.8V RF VCO supply	Power		

ADVANCE INFORMATION

REGISTER ADDRESS ⁽¹⁾	PIN NAME	PIN	DIGITAL PIN MUX CONFIG		FUNCTION		nRese	PAD STATE = 0 [ASSERTED]
ADDRESS ⁽¹⁾	PIN NAME	PIN	VALUE [Bits3:0]	SIGNAL NAME	SIGNAL DESCRIPTION	SIGNAL TYPE	STATE	INTERNAL WEAK PULL STATE
		E5						
		E6						
		E8						
		E10						
		E11						
		F9						
		F11						
		G6						
		G7			Digital ground			
		G8						
		G10						
		H7						
		H9		vss				
		H11				Ground		
	VSS	J6						
		J7						
		J8						
		J10						
		K7						
		K8						
		K9						
		K10						
		K11						
		L5						
		L6						
		L8						
		L10						
		R15						

REGISTER	PIN NAME	PIN	DIGITAL PIN MUX CONFIG		FUNCTION		nReset	PAD STATE t = 0 [ASSERTED]
ADDRESS ⁽¹⁾	FIN NAME	FIN	VALUE [Bits3:0]	SIGNAL NAME	SIGNAL DESCRIPTION	SIGNAL TYPE	STATE	INTERNAL WEAK PULL STATE
		A1						
		A3						
		A5						
		A7						
		A9						
		A15						
		B3						
		B5						
		B7				Ground		
		B9			Analog Ground			
		B13						
		B14						
		C1						
	VSSA	C3		VSSA				
		C4						
		C5						
		C6						
		C7						
		C8						
		C9						
		C15						
		E1						
		E2						
		E3						
		E13						
		E15						
		F3						

Texas Instruments

REGISTER	PIN NAME	PIN	DIGITAL PIN MUX CONFIG		FUNCTION			PAD STATE nReset = 0 [ASSERTED]		
ADDRESS ⁽¹⁾	PIN NAIVIE	PIN	VALUE [Bits3:0]	SIGNAL NAME	SIGNAL DESCRIPTION	SIGNAL TYPE	STATE	INTERNAL WEAK PULL STATE		
		G1								
		G2								
		G3								
		H3 J1								
		J2								
		J3								
	VSSA	K3		VSSA	Analog Ground	Ground				
	VOOA	L1		VOOA	Arialog Ground	Ground				
		L2								
		L3								
		M3								
		N1								
		N2								
		N3								
		R1								
	VOUT_14APLL1	A10		VOUT_14APLL1	Internal LDO output	0				
	VOUT_14SYNT H	A13		VOUT_14SYNTH	Internal LDO output	0				
	VOUT_PA	A2, B2		VOUT_PA	Internal LDO output	0				
	Analog Test1 / GPADC1	P1		Analog Test1 / GPADC1	Analog Test and Debug	0				
	Analog Test2 / GPADC2	P2		Analog Test2 / GPADC2	Analog Test and Debug	0				
	Analog Test3 / GPADC3	P3		Analog Test3 / GPADC3	Analog Test and Debug	0				
	Analog Test4 / GPADC4	R2		Analog Test4 / GPADC4	Analog Test and Debug	0				
	ANAMUX / GPADC5	C13		ANAMUX / GPADC5	Analog Test and Debug	Ю				
	VSENSE / GPADC6	C14		VSENSE / GPADC6	Analog Test and Debug	0				

Specifications

Absolute Maximum Ratings(1)(2)

over operating free-air temperature range (unless otherwise noted)

-		MIN	MAX	UNIT
VDDIN	1.2 V digital power supply	-0.5	1.4	V
VIN_SRAM	1.2 V power rail for internal SRAM	-0.5	1.4	V
VNWA	1.2 V power rail for SRAM array back bias	-0.5	1.4	V
VIOIN	I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this supply.	-0.5	3.8	V
VIOIN_18	1.8 V supply for CMOS IO	-0.5	2	V
VIN_18CLK	1.8 V supply for clock module	-0.5	2	V
VIOIN_18DIFF	1.8 V supply for CSI2 port	-0.5	2	V
VIN_13RF1	1.3 V Analog and RF supply,VIN_13RF1 and VIN_13RF2 could be shorted on the board.	-0.5	1.45	V
VIN_13RF2		-0.5	1.45	V
VIN_13RF1 (1-V LDO bypass mode)	Device supports mode where external Power Management block can supply 1 V on VIN_13RF1 and VIN_13RF2 rails. In this configuration, the internal LDO of the device would be kept bypassed.	-0.5	1.4	V
VIN_13RF2 (1-V Internal LDO bypass mode)		-0.5	1.4	V
VIN_18BB	1.8-V Analog baseband power supply	-0.5	2	V
VIN_18VCO supply	1.8-V RF VCO supply	-0.5	2	V
land to an el accident	Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)	-0.3V	VIOIN + 0.3	
Input and output voltage range	Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V (Transient Overshoot/Undershoot)		OIN + 20% up to of signal period	V
CLKP, CLKM	Input ports for reference crystal	-0.5	2	V
Clamp current	Input or Output Voltages 0.3 V above or below their respective power rails. Limit clamp current that flows through the internal diode protection cells of the I/O.	-20	20	mA
T _J	Operating junction temperature range	-40	105	°C
T _{STG}	Storage temperature range after soldered onto PC board	-55	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 **ESD Ratings**

			VALUE	UNIT
\/	Clastrostatia diasharas	Human-body model (HBM)	±1000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM)	±250	V

5.3 Power-On Hours (POH)(1)

OPERATING CONDITION	NOMINAL CVDD VOLTAGE (V)	JUNCTION TEMPERATURE (T _j)	POWER-ON HOURS [POH] (HOURS)
100% duty cycle	1.2	-40°C	TBD
		75°C	TBD
		95°C	TBD
		105°C	TBD

This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products.

All voltage values are with respect to V_{SS}, unless otherwise noted.

STRUMENTS

5.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
VDDIN	1.2 V digital power supply	1.14	1.2	1.32	V
VIN_SRAM	1.2 V power rail for internal SRAM	1.14	1.2	1.32	V
VNWA	1.2 V power rail for SRAM array back bias	1.14	1.2	1.32	V
VIOIN	I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this supply.	3.15	3.3	3.45	V
VIOIN_18	1.8 V supply for CMOS IO	1.71	1.8	1.9	V
VIN_18CLK	1.8 V supply for clock module	1.71	1.8	1.9	V
VIOIN_18DIFF	1.8 V supply for CSI2 port	1.71	1.8	1.9	V
VIN_13RF1	1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2 could be shorted on the board	1.23	1.3	1.36	V
VIN_13RF2		1.23	1.3	1.36	V
VIN_13RF1 (1-V Internal LDO bypass mode)	Device supports mode where external Power Management block can supply 1 V on VIN_13RF1 and VIN_13RF2 rails. In this configuration, the internal LDO of the device would be kept bypassed.	0.95	1	1.05	V
VIN_13RF2 (1-V Internal LDO bypass mode)	Device supports mode where external Power Management block can supply 1 V on VIN_13RF1 and VIN_13RF2 rails. In this configuration, the internal LDO of the device would be kept bypassed.	0.95	1	1.05	V
VIN18BB	1.8-V Analog baseband power supply	1.71	1.8	1.9	V
VIN_18VCO	1.8V RF VCO supply	1.71	1.8	1.9	V
W	Voltage Input High (1.8 V mode)	1.17			V
V _{IH}	Voltage Input High (3.3 V mode)	2.25			V
W	Voltage Input Low (1.8 V mode)			0.63	V
V_{IL}	Voltage Input Low (3.3 V mode)			0.8	
V _{OH}	High-level output threshold (I _{OH} = 6 mA)	85%*VIOIN			mV
V _{OL}	Low-level output threshold (I _{OL} = 6 mA)			350	mV
CLKB CLKM	Voltage Input High	0.96			V
CLKP,CLKM	Voltage Input Low			0.24	V

5.5 Power Supply Specifications

Table 5-1 describes the four rails from an external power supply block of the IWR1443 device.

Table 5-1. Power Supply Rails Characteristics

SUPPLY	DEVICE BLOCKS POWERED FROM THE SUPPLY	RELEVANT IOS IN THE DEVICE
1.8 V	Synthesizer and APLL VCOs, crystal oscillator, IF Amplifier stages, ADC, LVDS	Input: VIN_18VCO, VIN18CLK, VIN_18BB, VIOIN_18DIFF, VIOIN_18IO LDO Output: VOUT_14SYNTH, VOUT_14APLL
1.3 V (or 1 V in internal LDO bypass mode)	Power Amplifier, Low Noise Amplifier, Mixers and LO Distribution	Input: VIN_13RF2, VIN_13RF1 LDO Output: VOUT_PA
3.3 V (or 1.8 V for 1.8 V I/O mode)	Digital I/Os	Input VIOIN
1.2 V	Core Digital and SRAMs	Input: VDDIN, VIN_SRAM

Table 5-2 lists tolerable ripple specifications for 1.3-V (1.0-V) and 1.8-V supply rails.

Table 5-2. Ripple Specifications

	RF RAIL	RF RAIL		
FREQUENCY (kHz)	1.0 V (INTERNAL LDO BYPASS) (µV _{RMS})	1.3 V (μV _{RMS})	1.8 V (μV _{RMS})	
137.5	7.76	648.73	83.41	
275	5.83	76.48	21.27	
550	3.44	22.74	11.43	
1100	2.53	4.05	6.73	
2200	11.29	82.44	13.39	
4200	13.65	93.35	19.70	
6600	22.91	117.78	29.63	

5.6 Power Consumption Summary

Table 5-3 and Table 5-4 summarize the power consumption at the power terminals.

Table 5-3. Maximum Current Ratings at Power Terminals

PARAMETER	SUPPLY NAME	DESCRIPTION	MIN	TYP	MAX	UNIT
VDDIN, VIN_SRAM, VNWA Total current drawn by all nodes driven by 1.2V rail Total current drawn by all nodes driven by all nodes driven by all nodes driven by	500					
Current consumption	VIN_13RF1, VIN_13RF2 all nodes driven by 1.3V rail			2000	mA	
Current consumption	VIOIN_18, VIN_18CLK, VIOIN_18DIFF, VIN_18BB, VIN_18VCO	Total current drawn by all nodes driven by 1.8V rail			850	MA
	VIOIN	Total current drawn by all nodes driven by 3.3V rail			50	

Table 5-4. Average Power Consumption at Power Terminals

PARAMETER	CON	DITION	DESCRIPTION	MIN	TYP	MAX	UNIT
LDO	1.0-V internal	1TX, 4RX	Sampling: 16.66 MSps complex		1.73		
	LDO bypass mode 1.3-V internal	2TX, 4RX	Transceiver, 40-ms frame time, 512 chirps, 512 samples/chirp, 8.5-µs interchirp time (50% duty cycle)		1.88		W
consumption		1TX, 4RX			1.92		VV
			Data Port: MIPI-CSI-2		2.1		

5.7 RF Specification

over recommended operating conditions (unless otherwise noted)

	PARAMETER		MIN	TYP	MAX	UNIT
	Naise Course	76 to 77 GHz		15		-10
	Noise figure	77 to 81 GHz		16		dB
	1-dB compression point			- 5		dBm
	Maximum gain step			48		dB
	Gain range			24		dB
Receiver	Gain step size			2		dB
Receiver	IQ gain mismatch			1		dB
	IQ phase mismatch			2		degree
	IF bandwidth ⁽¹⁾			5	MHz	
	A2D sampling rate (real)			12.5	Msps	
	A2D sampling rate (complex)			6.25	Msps	
	A2D resolution		12		Bits	
Transmitter	Output power		12		dBm	
rransmiller	Amplitude noise		-145		dBc/Hz	
	Frequency range		76		81	GHz
Clock	Ramp rate				100	MHz/µs
subsystem	Phase noise at 1-MHz offset	76 to 77 GHz		-94		dBc/Hz
	Filase fluise at 1-WIPZ Offset	77 to 81 GHz		-91		UDC/FIZ

⁽¹⁾ The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set of available HPF corners is summarized as follows:

Available HPF Corner Frequencies (kHz)

IPF1 HPF2

175, 235, 350, 700 350, 700, 1400, 2800

The filtering performed by the baseband chain is targeted to provide:

- Less than ±0.5 dB pass-band ripple/droop, and
- · Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.

Figure 5-1 shows variations of noise figure and in-band P1dB parameters with respect to receiver gain programmed.

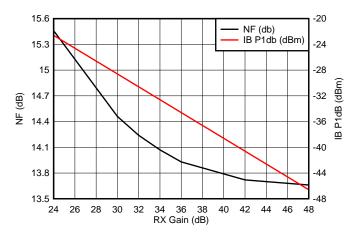


Figure 5-1. Noise Figure, In-band P1dB vs Receiver Gain

Table 5-5 describes the CSI-2 DPHY electrical specifications.

SWRS211 - MAY 2017 www.ti.com

Table 5-5. CSI-2 DPHY Electrical Specification

over operating free-air temperature range (unless otherwise noted)

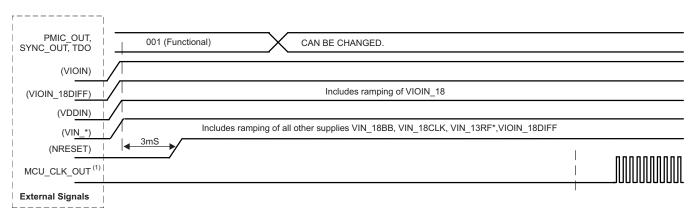
PARAMETER			TYP	MAX	UNIT		
HSTX Driver	HSTX Driver						
V _{OD}	HS transmit differential voltage ⁽¹⁾	140	200	270	mV		
V_{CMTX}	HS transmit static common-mode voltage ⁽¹⁾	150	200	250	mV		
$ \Delta V_{OD} $	VOD mismatch when output is Differential-1 or Differential-0			10	mV		
$ \Delta V_{CMTX(1,0)} $	VCMTX mismatch when output is Differential-1 or Differential-0			5	mV		
V _{OHHS}	HS output high voltage ⁽¹⁾			360	mV		
Z _{OS}	Single-ended output impedance	40	50	62.5	Ω		
ΔZ_{OS}	Single-ended output impedance mismatch			10%			
LPTX Driver							
V_{OL}	Thevenin output low level	-50		50	mV		
V_{OH}	Thevenin output high level	1.1	1.2	1.3	V		
Z _{OLP}	Output impedance of LP transmitter	110			Ω		

⁽¹⁾ Value when driving into differential load impedance anywhere in the range from 80 to 125 Ω .

Thermal Resistance Characteristics for FCBGA Package [ABL0161]⁽¹⁾ 5.8

THERMAL MET	°C/W ⁽³⁾ (4)	
$R\Theta_{JC}$	Junction-to-case	4.92
$R\Theta_{JB}$	Junction-to-board	6.57
$R\Theta_{JA}$	Junction-to-free air	22.3
$R\Theta_{JMA}$	Junction-to-moving air	N/A ⁽¹⁾
Psi _{JT}	Junction-to-package top	4.92
Psi _{JB}	Junction-to-board	6.4

- N/A = not applicable
- For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. (2)
- °C/W = degrees Celsius per watt.
- These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC $[R\Theta_{JC}]$ value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:
 - JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air)
 - JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
 - JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
 - JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements


A junction temperature of 105°C is assumed.

Timing and Switching Characteristics 5.9

Power Supply Sequencing and Reset Timing

The IWR1443 device expects all external voltage rails to be stable before reset is deasserted. Figure 5-2 describes the device wake-up sequence.

(1) MCU_CLK_OUT in autonomous mode, where IWR1443 application is booted from the serial flash, MCU_CLK_OUT is not enabled by default by the device bootloader.

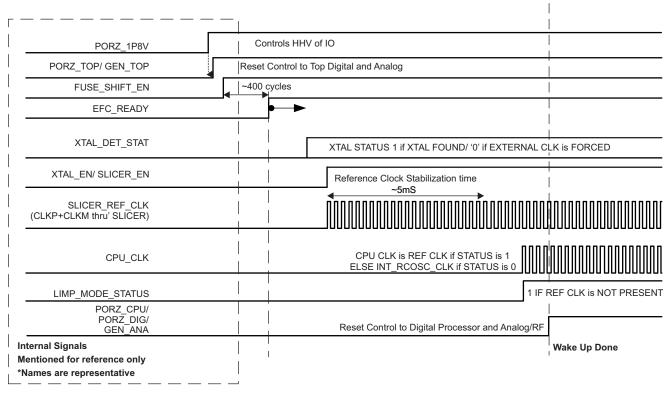


Figure 5-2. Device Wake-up Sequence

Input Clocks and Oscillators

5.9.2.1 **Clock Specifications**

An external crystal is connected to the device pins. Figure 5-3 shows the crystal implementation.

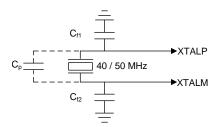


Figure 5-3. Crystal Implementation

NOTE

The load capacitors, C_{f1} and C_{f2} in Figure 5-3, should be chosen such that Equation 1 is satisfied. C_L in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator CLKP and CLKM pins.

$$C_{L} = C_{f1} \times \frac{C_{f2}}{C_{f1} + C_{f2}} + C_{P}$$
(1)

Table 5-6 lists the electrical characteristics of the clock crystal.

Table 5-6. Crystal Electrical Characteristics

NAME	DESCRIPTION	MIN	TYP	MAX	UNIT
f _P	Parallel resonance crystal frequency		40, 50		MHz
C _L	Crystal load capacitance	5	8	12	pF
ESR	Crystal ESR			50	Ω
Temperature range	Expected temperature range of operation	-40		85	°С
Frequency tolerance	Crystal frequency tolerance (1)(2)(3)	-50		50	ppm
Drive level			50	200	μW

- The crystal manufacturer's specification must satisfy this requirement.
- Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.
- Crystal tolerance affects radar sensor accuracy.

28

5.9.3 Multibuffered / Standard Serial Peripheral Interface (MibSPI)

5.9.3.1 Peripheral Description

The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of programmed length (2 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The MibSPI/SPI is normally used for communication between the microcontroller and external peripherals or another microcontroller.

Standard and MibSPI modules have the following features:

- 16-bit shift register
- · Receive buffer register
- 8-bit baud clock generator
- SPICLK can be internally-generated (master mode) or received from an external clock source (slave mode)
- Each word transferred can have a unique format.
- SPI I/Os not used in the communication can be used as digital input/output signals

5.9.3.2 MibSPI Transmit and Receive RAM Organization

The Multibuffer RAM is comprised of 256 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a 16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer RAM can be partitioned into multiple transfer group with variable number of buffers each.

Table 5-8 to Table 5-11 assume the operating conditions stated in Table 5-7.

Table 5-7. SPI Timing Conditions

		MIN	TYP MAX	UNIT		
Input Conditions						
t_R	Input rise time	1	3	ns		
t _F	Input fall time	1	3	ns		
Output Cor	Output Conditions					
C _{LOAD}	Output load capacitance	2	15	pF		

SWRS211 - MAY 2017 www.ti.com

Table 5-8. SPI Master Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input) $^{(1)(2)(3)}$

NO.	PARAMETER		MIN	TYP MAX	UNIT		
1	t _{c(SPC)M}	Cycle time, SPICLK (4)		25	256 _{tc(VCLK)}	ns	
2 ⁽⁴⁾	t _{w(SPCH)M}	Pulse duration, SPICLK high (clock polarity =	lse duration, SPICLK high (clock polarity = 0)		$0.5t_{c(SPC)M} + 4$	ns	
2(/	t _{w(SPCL)M}	Pulse duration, SPICLK low (clock polarity = 1)	$0.5t_{c(SPC)M} - 4$	$0.5t_{c(SPC)M} + 4$	115	
3 ⁽⁴⁾	t _{w(SPCL)M}	Pulse duration, SPICLK low (clock polarity = 0)	$0.5t_{c(SPC)M} - 4$	$0.5t_{c(SPC)M} + 4$	no	
3\'/	t _{w(SPCH)M}	Pulse duration, SPICLK high (clock polarity =	1)	$0.5t_{c(SPC)M} - 4$	$0.5t_{c(SPC)M} + 4$	ns	
4(4)	t _{d(SPCH-SIMO)M}	Delay time, SPISIMO valid before SPICLK low	v, (clock polarity = 0)	$0.5t_{c(SPC)M} - 3$		ns	
4\'/	t _{d(SPCL-SIMO)M}	Delay time, SPISIMO valid before SPICLK hig	h, (clock polarity = 1)	$0.5t_{c(SPC)M} - 3$		115	
5 ⁽⁴⁾	t _{v(SPCL-SIMO)M}	PCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low, (clock pola		$0.5t_{c(SPC)M} - 10.5$		ns	
3.7	t _{v(SPCH-SIMO)M}	Valid time, SPISIMO data valid after SPICLK h	nigh, (clock polarity = 1)	$0.5t_{c(SPC)M} - 10.5$		115	
	Setup time CS active until SPICLK high (clock polarity = 0) tc2TDELAY Setup time CS active until SPICLK low		Setup time CS active until SPICLK high	CSHOLD = 0	$(C2TDELAY+2)*t_{c(VCLK)} - 7.5$	$(C2TDELAY+2) * t_{c(VCLK)} + 7$	
6 ⁽⁵⁾			CSHOLD = 1	(C2TDELAY +3) * t _{c(VCLK)} - 7.5	$(C2TDELAY+3) * t_{c(VCLK)} + 7$	20	
0,47		CSHOLD = 0	(C2TDELAY+2)*t _{c(VCLK}		ns		
		(clock polarity = 1) CSHOLD = 1		(C2TDELAY +3) * t _{c(VCLK)} - 7.5	$(C2TDELAY+3) * t_{c(VCLK)} + 7$		
7 ⁽⁵⁾		Hold time, SPICLK low until CS inactive (clock polarity = 0)		$\begin{array}{c} 0.5^*t_{\text{c(SPC)M}} + \\ (\text{T2CDELAY} + 1) \\ {}^*t_{\text{c(VCLK)}} - 7 \end{array}$	$0.5^* t_{c(SPC)M} + (T2CDELAY + 1)^* t_{c(VCLK)} + 7.5$	20	
7(-)	t _{TZCDELAY} Hold time, SPICLK high until CS inacti		k polarity = 1)	$\begin{array}{c} 0.5^*t_{\text{c(SPC)M}} + \\ (\text{T2CDELAY} + 1) \\ {}^*t_{\text{c(VCLK)}} - 7 \end{array}$	$0.5^* t_{c(SPC)M} + (T2CDELAY + 1)^* t_{c(VCLK)} + 7.5$	ns	

- (1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1).
- t_{c(MSS VCLK)} = master subsystem clock time = 1 / f_(MSS VCLK). For more details, please refer to the Technical Reference Manual.
- When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: t_{c(SPC)M} ≥ (PS +1)t_{c(MSS VCLK)} ≥ 25ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: t_{c(SPC)M} = 2t_{c(MSS_VCLK)} ≥ 25ns.

 (4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
- C2TDELAY and T2CDELAY is programmed in the SPIDELAY register

Instruments

Table 5-9. SPI Master Mode Input Timing Requirements (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input) $^{(1)}$

NO.			MIN	TYP MAX	UNIT
8 ⁽²⁾	t _{su(SOMI-SPCL)M}	Setup time, SPISOMI before SPICLK low (clock polarity = 0)	5		
	t _{su(SOMI-SPCH)M}	Setup time, SPISOMI before SPICLK high (clock polarity = 1)	5		ns
9(2)	t _{h(SPCL-SOMI)M}	Hold time, SPISOMI data valid after SPICLK low (clock polarity = 0)	3		
9(2)	t _h (SPCH-SOMI)M	Hold time, SPISOMI data valid after SPICLK high (clock polarity = 1)	3		ns

- (1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared.
- (2) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).

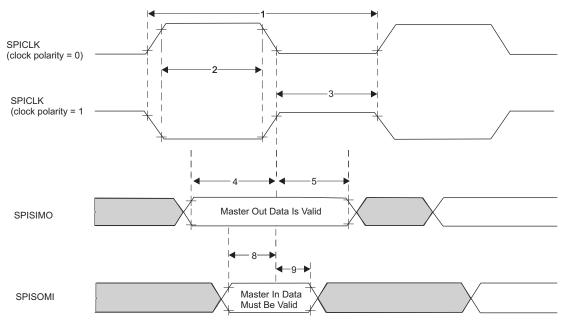


Figure 5-4. SPI Master Mode External Timing (CLOCK PHASE = 0)

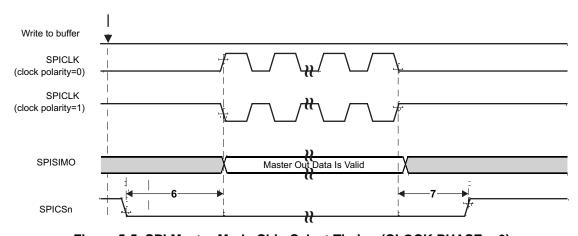


Figure 5-5. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)

Table 5-10. SPI Master Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO = output, and SPISOMI = input) $^{(1)(2)(3)}$

NO.		PARAMETER		MIN	TYP MAX	UNIT		
1	t _{c(SPC)M}	Cycle time, SPICLK ⁽⁴⁾		25	256t _{c(VCLK)}	ns		
2 ⁽⁴⁾	t _{w(SPCH)M}	Pulse duration, SPICLK high (clock polarity = 0)		0.5t _{c(SPC)M} - 4	$0.5t_{c(SPC)M} + 4$	ns		
2(/	t _{w(SPCL)M}	Pulse duration, SPICLK low (clock polarity = 1)	lse duration, SPICLK low (clock polarity = 1)		$0.5t_{c(SPC)M} + 4$	115		
3 ⁽⁴⁾	t _{w(SPCL)M}	Pulse duration, SPICLK low (clock polarity = 0)		$0.5t_{c(SPC)M} - 4$	$0.5t_{c(SPC)M} + 4$	ns		
3\'/	t _{w(SPCH)M}	Pulse duration, SPICLK high (clock polarity = 1)		$0.5t_{c(SPC)M} - 4$	$0.5t_{c(SPC)M} + 4$	115		
4 ⁽⁴⁾	t _{d(SPCH-SIMO)M}	Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0)	$0.5t_{c(SPC)M} - 3$		ns		
4.7	t _{d(SPCL-SIMO)M}	Delay time, SPISIMO valid before SPICLK high,	(clock polarity = 1)	$0.5t_{c(SPC)M} - 3$		115		
5(4)	$t_{v(SPCL-SIMO)M}$	Valid time, SPISIMO data valid after SPICLK low	v, (clock polarity = 0)	$0.5t_{c(SPC)M} - 10.5$		ns		
3.7	t _{v(SPCH-SIMO)M}	Valid time, SPISIMO data valid after SPICLK hig	Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1)			113		
			Setup time CS active until SPICLK high		CSHOLD = 0	$0.5^*t_{c(SPC)M} + (C2TDELAY + 2)^*t_{c(VCLK)} - 7$	$0.5^*t_{c(SPC)M} + (C2TDELAY+2)^* \\ t_{c(VCLK)} + 7.5$	
6 ⁽⁵⁾		(clock polarity = 0)	CSHOLD = 1	0.5*t _{c(SPC)M} + (C2TDELAY + 2)*t _{c(VCLK)} - 7	$0.5^*t_{c(SPC)M} + (C2TDELAY+2)^* \\ t_{c(VCLK)} + 7.5$	ns		
0.7	CZIDELAI	Setup time CS active until SPICLK low	CSHOLD = 0	$0.5*t_{c(SPC)M} + (C2TDELAY+2)*t_{c(VCLK)} - 7$	$\begin{array}{c} 0.5^*t_{\text{c(SPC)M}} +\\ (\text{C2TDELAY+2}) *\\ t_{\text{c(VCLK)}} + 7.5 \end{array}$	115		
		(clock polarity = 1) CSHOLD = 1	0.5*t _{c(SPC)M} + (C2TDELAY+3)*t _{c(VCLK)} - 7	$\begin{array}{c} 0.5^*t_{\text{c(SPC)M}} +\\ (\text{C2TDELAY+3}) *\\ t_{\text{c(VCLK)}} + 7.5 \end{array}$				
7 ⁽⁵⁾	t	Hold time, SPICLK low until CS inactive (clock p	olarity = 0)	(T2CDELAY + 1) *t _{c(VCLK)} - 7.5	$ (T2CDELAY + 1) *t_{c(VCLK)} + 7 $	ns		
7.7	^T T2CDELAY	12CDELAY	Hold time, SPICLK high until CS inactive (clock polarity = 1)	(T2CDELAY + 1) *t _{c(VCLK)} - 7.5	(T2CDELAY + 1) *t _{c(VCLK)} + 7	115		

⁽¹⁾ The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set (where x = 0 or 1).

t_{c(MSS VCLK)} = master subsystem clock time = 1 / f_(MSS VCLK). For more details, please refer to the Technical Reference Manual.

When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: $t_{c(SPC)M} \ge (PS + 1)t_{c(MSS_VCLK)} \ge 25$ ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: $t_{\text{C(SPC)M}} = 2t_{\text{c(MSS_VCLK)}} \ge 25 \text{ ns.}$ The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).

C2TDELAY and T2CDELAY is programmed in the SPIDELAY register

Table 5-11. SPI Master Mode Input Requirements (CLOCK PHASE = 1, SPICLK = output, SPISIMO = output, and SPISOMI = input)⁽¹⁾

NO.			MIN	TYP	MAX	UNIT
8 ⁽²⁾	t _{su(SOMI-SPCL)M}	Setup time, SPISOMI before SPICLK low (clock polarity = 0)	5			
	t _{su(SOMI-SPCH)M}	Setup time, SPISOMI before SPICLK high (clock polarity = 1)	5			ns
g(2)	t _{h(SPCL-SOMI)M}	Hold time, SPISOMI data valid after SPICLK low (clock polarity = 0)	3			
9(2)	t _h (SPCH-SOMI)M	Hold time, SPISOMI data valid after SPICLK high (clock polarity = 1)	3			ns

- (1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
- (2) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).

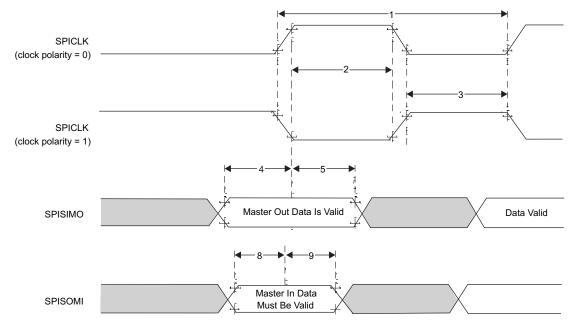


Figure 5-6. SPI Master Mode External Timing (CLOCK PHASE = 1)

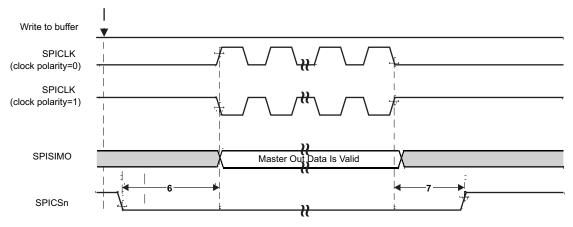


Figure 5-7. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)

SPI Slave Mode I/O Timings

Table 5-12. SPI Slave Mode Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output) $^{(1)(2)(3)}$

NO.		PARAMETER	MIN	TYP	MAX	UNIT
1	t _{c(SPC)S}	Cycle time, SPICLK ⁽⁴⁾	25			ns
2 ⁽⁵⁾	t _{w(SPCH)S}	Pulse duration, SPICLK high (clock polarity = 0)	10			no
2`'	t _{w(SPCL)S}	Pulse duration, SPICLK low (clock polarity = 1)	10			ns
3 ⁽⁵⁾	t _{w(SPCL)S}	Pulse duration, SPICLK low (clock polarity = 0)	10			
3` ′	t _{w(SPCH)S}	Pulse duration, SPICLK high (clock polarity = 1)	10			ns
4 ⁽⁵⁾	t _d (SPCH-SOMI)S	Delay time, SPISOMI valid after SPICLK high (clock polarity = 0)			10	
4(0)	t _{d(SPCL-SOMI)S}	Delay time, SPISOMI valid after SPICLK low (clock polarity = 1)			10	ns
5 ⁽⁵⁾	t _h (SPCH-SOMI)S	Hold time, SPISOMI data valid after SPICLK high (clock polarity = 0)	2			
ع ^{ر-,}	t _{h(SPCL-SOMI)S}	Hold time, SPISOMI data valid after SPICLK low (clock polarity = 1)	2			ns

- The MASTER bit (SPIGCRx.0) is cleared (where x = 0 or 1).
- The CLOCK PHASE bit (SPIFMTx.16) is either cleared or set for CLOCK PHASE = 0 or CLOCK PHASE = 1 respectively. (2)
- (3)
- $t_{c(MSS_VCLK)}$ = master subsystem clock time = 1 / $f_{(MSS_VCLK)}$. For more details, please refer to the Technical Reference Manual. When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: $t_{c(SPC)S} \ge (PS+1)t_{c(MSS_VCLK)} \ge 25$ ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: $t_{c(SPC)S} = 2t_{c(MSS_VCLK)} \ge 25$ ns. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).

Table 5-13. SPI Slave Mode Timing Requirements (SPICLK = input, SPISIMO = input, and SPISOMI = output)

NO.			MIN	TYP	MAX	UNIT
6 ⁽¹⁾	t _{su(SIMO-SPCL)S}	Setup time, SPISIMO before SPICLK low (clock polarity = 0)	3			
6(.)	t _{su(SIMO-SPCH)S}	Setup time, SPISIMO before SPICLK high (clock polarity = 1)	3			ns
7(1)	t _{h(SPCL-SIMO)S}	Hold time, SPISIMO data valid after SPICLK low (clock polarity = 0)	0			20
7(1)	t _{h(SPCL-SIMO)S}	Hold time, SPISIMO data valid after SPICLK low (clock polarity = 0)	0			ns

(1) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).

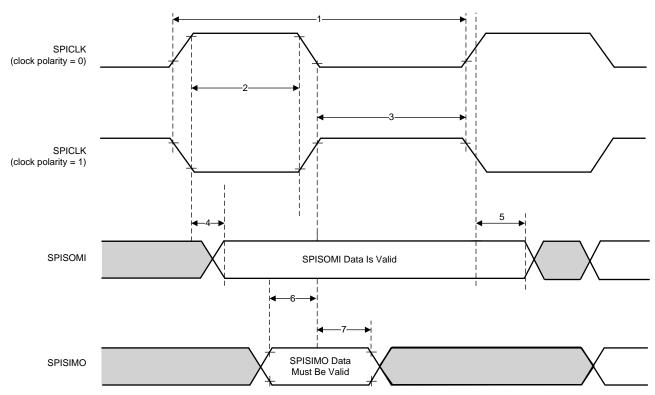


Figure 5-8. SPI Slave Mode External Timing (CLOCK PHASE = 0)

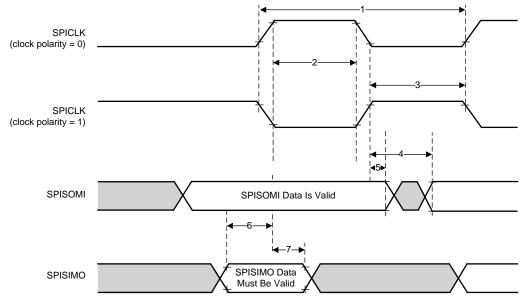


Figure 5-9. SPI Slave Mode External Timing (CLOCK PHASE = 1)

Typical Interface Protocol Diagram (Slave Mode)

1. Host should ensure that there is a delay of two SPI clocks between CS going low and start of SPI clock.

2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.

Figure 5-10 shows the SPI communication timing of the typical interface protocol.

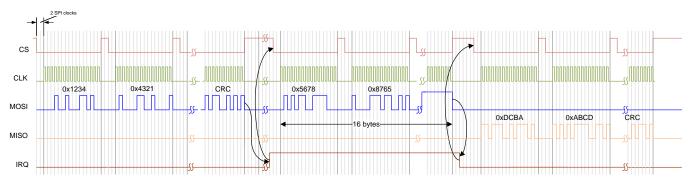


Figure 5-10. SPI Communication

36

www.ti.com

5.9.4 General-Purpose Input/Output

Table 5-14 lists the switching characteristics of output timing relative to load capacitance.

Table 5-14. Switching Characteristics for Output Timing versus Load Capacitance $(C_L)^{(1)(2)}$

	PARAMETER	TEST CO	ONDITIONS	VIOIN = 1.8V	VIOIN = 3.3V	UNIT
			C _L = 20 pF	2.878	3.013	
t _r	Max rise time		$C_L = 50 pF$	6.446	6.947	ns
		Slew control = 0	$C_L = 75 pF$	9.43	10.249	
		Siew control = 0	$C_L = 20 pF$	2.827	2.883	
t _f	Max fall time		$C_L = 50 pF$	6.442	6.687	ns
			$C_L = 75 pF$	9.439	9.873	
			C _L = 20 pF	3.307	3.389	
t _r	Max rise time		$C_L = 50 pF$	6.77	7.277	ns
		Slew control = 1	$C_L = 75 pF$	9.695	10.57	
		Siew Control = 1	C _L = 20 pF	3.128	3.128	
t _f	Max fall time		$C_L = 50 pF$	6.656	6.656	ns
			$C_L = 75 pF$	9.605	9.605	

⁽¹⁾ Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).

⁽²⁾ The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.

5.9.5 Controller Area Network Interface (DCAN)

The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 Mbps. The DCAN is ideal for applications operating in noisy and harsh environments that require reliable serial communication or multiplexed wiring.

The DCAN has the following features:

- Supports CAN protocol version 2.0 part A, B
- Bit rates up to 1 Mbps
- · Configurable Message objects
- Individual identifier masks for each message object
- · Programmable FIFO mode for message objects
- Suspend mode for debug support
- Programmable loop-back modes for self-test operation
- Direct access to Message RAM in test mode
- · Supports two interrupt lines Level 0 and Level 1
- Automatic Message RAM initialization

Table 5-15. Dynamic Characteristics for the DCANx TX and RX Pins

PARAMETER		MIN	TYP	MAX	UNIT
t _{d(CAN_tx)}	Delay time, transmit shift register to CAN_tx pin ⁽¹⁾			15	ns
t _{d(CAN_rx)}	Delay time, CAN_rx pin to receive shift register ⁽¹⁾			10	ns

(1) These values do not include rise/fall times of the output buffer.

5.9.6 Serial Communication Interface (SCI)

The SCI has the following features:

- Standard universal asynchronous receiver-transmitter (UART) communication
- · Standard non-return to zero (NRZ) format
- Double-buffered receive and transmit functions
- Asynchronous or iso-synchronous communication modes with no CLK pin
- · Capability to use Direct Memory Access (DMA) for transmit and receive data
- Two external pins: RS232 RX and RS232 TX

Table 5-16. SCI Timing Requirements

		MIN	TYP	MAX	UNIT
f(baud)	Supported baud rate at 20 pF		921.6		kHz

SWRS211 - MAY 2017

5.9.7 Inter-Integrated Circuit Interface (I2C)

The inter-integrated circuit (I2C) module is a multimaster communication module providing an interface between devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an I²C-bus[™]. This module will support any slave or master I2C compatible device.

The I2C has the following features:

- Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398 393 40011)
 - Bit/Byte format transfer
 - 7-bit and 10-bit device addressing modes
 - General call
 - START byte
 - Multi-master transmitter/ slave receiver mode
 - Multi-master receiver/ slave transmitter mode
 - Combined master transmit/receive and receive/transmit mode
 - Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)
- Free data format
- Two DMA events (transmit and receive)
- DMA event enable/disable capability
- Module enable/disable capability
- The SDA and SCL are optionally configurable as general purpose I/O
- Slew rate control of the outputs
- Open drain control of the outputs
- Programmable pullup/pulldown capability on the inputs
- Supports Ignore NACK mode

NOTE

This I2C module does not support:

- High-speed (HS) mode
- C-bus compatibility mode
- The combined format in 10-bit address mode (the I2C sends the slave address second byte every time it sends the slave address first byte)

Table 5-17. I2C Timing Requirements (1)

		STANDARD	MODE	FAST MC	DDE	LINUT
		MIN	MAX	MIN	MAX	UNIT
t _{c(SCL)}	Cycle time, SCL	10		2.5		μS
t _{su(SCLH-SDAL)}	Setup time, SCL high before SDA low (for a repeated START condition)	4.7		0.6		μS
t _{h(SCLL-SDAL)}	Hold time, SCL low after SDA low (for a START and a repeated START condition)	4		0.6		μS
t _{w(SCLL)}	Pulse duration, SCL low	4.7		1.3		μS
t _{w(SCLH)}	Pulse duration, SCL high	4		0.6		μS
t _{su(SDA-SCLH)}	Setup time, SDA valid before SCL high	250		100		μS
t _{h(SCLL-SDA)}	Hold time, SDA valid after SCL low	0	3.45 ⁽¹⁾	0	0.9	μS
t _{w(SDAH)}	Pulse duration, SDA high between STOP and START conditions	4.7		1.3		μS
t _{su(SCLH-SDAH)}	Setup time, SCL high before SDA high (for STOP condition)	4		0.6		μS
t _{w(SP)}	Pulse duration, spike (must be suppressed)			0	50	ns
C _b (2) (3)	Capacitive load for each bus line		400		400	pF

- (1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down.
- (2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL signal.
- (3) $C_b =$ total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.

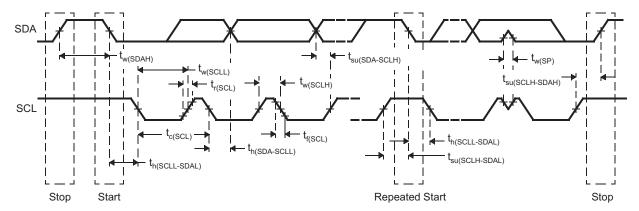


Figure 5-11. I2C Timing Diagram

NOTE

- A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement t_{su(SDA-SCLH)} ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + t_{su(SDA-SCLH)}.

www.ti.com SWRS211 – MAY 2017

5.9.8 Quad Serial Peripheral Interface (QSPI)

The quad serial peripheral interface (QSPITM) module is a kind of SPI module that allows single, dual, or quad read access to external SPI devices. This module has a memory mapped register interface, which provides a direct interface for accessing data from external SPI devices and thus simplifying software requirements. The QSPI works as a master only. The QSPI in the device is primarily intended for fast booting from quad-SPI flash memories.

The QSPI supports the following features:

- Programmable clock divider
- Six-pin interface
- Programmable length (from 1 to 128 bits) of the words transferred
- Programmable number (from 1 to 4096) of the words transferred
- Support for 3-, 4-, or 6-pin SPI interface
- Optional interrupt generation on word or frame (number of words) completion
- Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles

Table 5-19 and Table 5-20 assume the operating conditions stated in Table 5-18.

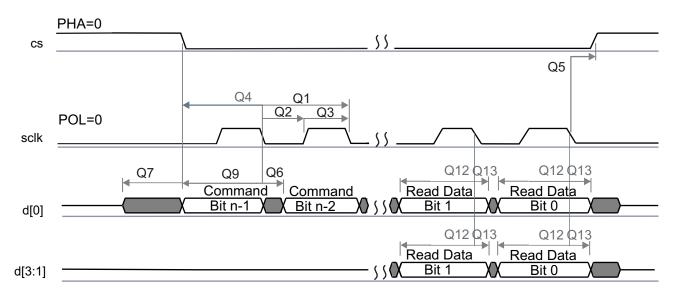
Table 5-18. QSPI Timing Conditions

	_			
		MIN	TYP MAX	UNIT
Input Conditions				
t _R	Input rise time	1	3	ns
t _F	Input fall time	1	3	ns
Output Conditions				
C _{LOAD}	Output load capacitance	2	15	pF

Table 5-19. Timing Requirements for QSPI Input (Read) Timings (1)(2)

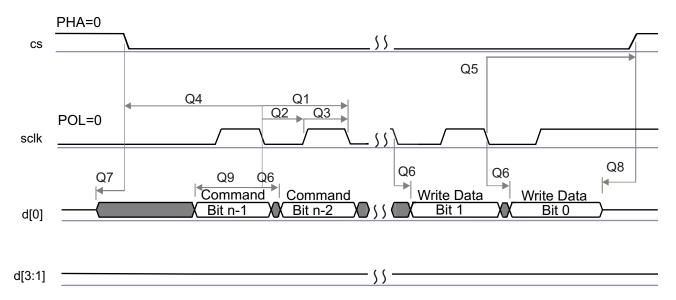
		MIN	TYP MAX	UNIT
t _{su(D-SCLK)}	Setup time, d[3:0] valid before falling sclk edge	6.2		ns
t _{h(SCLK-D)}	Hold time, d[3:0] valid after falling sclk edge	1		ns
t _{su(D-SCLK)}	Setup time, final d[3:0] bit valid before final falling sclk edge	$6.2 - P^{(3)}$		ns
t _{h(SCLK-D)}	Hold time, final d[3:0] bit valid after final falling sclk edge	1 + P ⁽³⁾		ns

- (1) Clock Mode 0 (clk polarity = 0; clk phase = 0) is the mode of operation.
- (2) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although non-standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI sevices that launch data on the falling edge in Clock Mode 0.
- (3) P = SCLK period in ns.


Table 5-20. QSPI Switching Characteristics

NO.		PARAMETER	MIN	TYP MAX	UNIT
Q1	t _{c(SCLK)}	Cycle time, sclk			ns
Q2	t _{w(SCLKL)}	Pulse duration, sclk low	Y*P - 3 ⁽¹⁾⁽²⁾		ns
Q3	t _{w(SCLKH)}	Pulse duration, sclk high	$Y*P - 3^{(1)(1)}$		ns
Q4	t _{d(CS-SCLK)}	Delay time, sclk falling edge to cs active edge	$-M*P - 1^{(1)(3)}$	-M*P + 2.5 ⁽¹⁾⁽³⁾	ns
Q5	t _{d(SCLK-CS)}	Delay time, sclk falling edge to cs inactive edge	N*P - 1 ⁽¹⁾⁽³⁾	N*P + 2.5 ⁽¹⁾⁽³⁾	ns
Q6	t _{d(SCLK-D1)}	Delay time, sclk falling edge to d[1] transition	-3.5	7	ns

- (1) The Y parameter is defined as follows: If DCLK_DIV is 0 or ODD then, Y equals 0.5. If DCLK_DIV is EVEN then, Y equals (DCLK_DIV/2) / (DCLK_DIV+1). For best performance, it is recommended to use a DCLK_DIV of 0 or ODD to minimize the duty cycle distortion. The HSDIVIDER on CLKOUTX2_H13 output of DPLL_PER can be used to achieve the desired clock divider ratio. All required details about clock division factor DCLK_DIV can be found in the device-specific Technical Reference Manual.
- (2) P = SCLK period in ns.
- (3) $M = QSPI_SPI_DC_REG.DDx + 1, N = 2$


Table 5-20. QSPI Switching Characteristics (continued)

NO.		PARAMETER		TYP	MAX	UNIT
Q7	t _{ena(CS-D1LZ)}	Enable time, cs active edge to d[1] driven (lo-z)	$-P - 4^{(3)}$		–P +1 ⁽³⁾	ns
Q8	t _{dis(CS-D1Z)}	Disable time, cs active edge to d[1] tri-stated (hi-z)	$-P - 4^{(3)}$		–P +1 ⁽³⁾	ns
Q9	t _{d(SCLK-D1)}	Delay time, sclk first falling edge to first d[1] transition (for PHA = 0 only)	-3.5 - P ⁽³⁾		7 – P ⁽³⁾	ns

SPRS85v_TIMING_OSPI1_02

Figure 5-12. QSPI Read (Clock Mode 0)

SPRS85v_TIMING_OSPI1_04

Figure 5-13. QSPI Write (Clock Mode 0)

5.9.9 JTAG Interface

Table 5-22 and Table 5-23 assume the operating conditions stated in Table 5-21.

Table 5-21. JTAG Timing Conditions

		MIN	TYP MAX	UNIT
Input Conditions		•		
t _R	Input rise time	1	3	ns
t _F	Input fall time	1	3	ns
Output Conditions				
C _{LOAD}	Output load capacitance	2	15	pF

Table 5-22. Timing Requirements for IEEE 1149.1 JTAG

NO.			MIN	TYP	MAX	UNIT
1	t _{c(TCK)}	Cycle time TCK	66.66			ns
1a	t _{w(TCKH)}	Pulse duration TCK high (40% of tc)	26.67			ns
1b	t _{w(TCKL)}	Pulse duration TCK low(40% of tc)	26.67			ns
2	t _{su(TDI-TCK)}	Input setup time TDI valid to TCK high	2.5			ns
3	t _{su(TMS-TCK)}	Input setup time TMS valid to TCK high	2.5			ns
4	t _{h(TCK-TDI)}	Input hold time TDI valid from TCK high	18			ns
4	t _{h(TCK-TMS)}	Input hold time TMS valid from TCK high	18			ns

Table 5-23. Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG

NO.	PARAMETER		MIN	TYP	MAX	UNIT
2	t _d (TCKL-TDOV)	Delay time, TCK low to TDO valid	0		25	ns

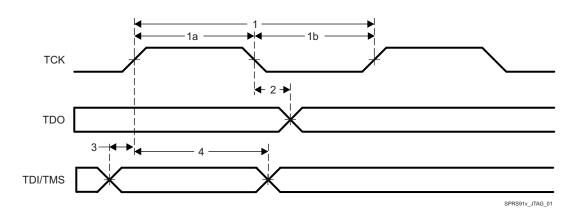


Figure 5-14. JTAG Timing

5.9.10 Camera Serial Interface (CSI)

The CSI is a MIPI D-PHY compliant interface for connecting this device to a camera receiver module. This interface is made of four differential lanes; each lane is configurable for carrying data or clock. The polarity of each wire of a lane is also configurable. Table 5-24, Figure 5-15, Figure 5-16, and Figure 5-17 describe the clock and data timing of the CSI.

Table 5-24. CSI Switching Characteristics

over operating tree-a	air temperature range (unless otherw	ise noted)				
	PARAMETER		MIN	TYP	MAX	UNIT
HPTX						
⊔ ст ∨	Data bit rate	(1 or 2 data lane PHY)	150		900	Mbps
HSTX _{DBR}	Data bit fate	(4 data lane PHY)	150		600	IVIDPS
£	DDD alock fraguency	(1 or 2 data lane PHY)	75		450	MII-
f _{CLK}	DDR clock frequency	(4 data lane PHY)	75		300	MHz
$\Delta_{\text{VCMTX(LF)}}$	Common-level variation from 75 t frequency	o 450 MHz of CSI2 clock	-50		50	mVpeak
t _R and t _F	20% to 80% rise time and fall time	Δ .	150			ns
iR and if	2070 to 0070 fise time and fair time	•			0.3	UI
LPTX DRIVER						
t _{RLP} and t _{FLP}	15% to 85% rise time and fall time	е			25	ns
t _{EOT} ⁽¹⁾	Time from start of THS-TRAIL pe	riod to start of LP-11 state			105 + 12*UI	ns
	Slew rate. $C_{LOAD} = 0$ to 5 pF				500	
$\delta V/\delta t_{SR}^{(2)(3)(4)}$	Slew rate. $C_{LOAD} = 5$ to 20 pF	Slew rate. C _{LOAD} = 5 to 20 pF			200	mV/ns
	Slew rate. $C_{LOAD} = 20$ to 70 pF				100	
C _{LOAD} (2) Load capacitance			0		70	pF
DATA-CLOCK Timing	Specification					
LUNOM	Nominal unit interval (1, 2, or 3 data lane PHY)		1.11		13.33	
UINOM	Nominal unit interval (4 data lane PHY)		1.67		13.33	ns
UIINST,MIN	Minimum instantaneous Unit Inter	rval (1, 2, or 3 data lane PHY)	1.033	0.975*U INOM – 0.05		ns
	Minimum instantaneous Unit Inter	Minimum instantaneous Unit Interval (4 data lane PHY)				
TSKEW[TX]	Data to clock skew measured at t	ransmitter	-0.15		0.15	UIINST, MIN
CSI2 TIMING SPECIF	FICATION	-				
T _{CLK-MISS}	Time-out for receiver to detect ab disable the clock lane HS-RX.	sence of clock transitions and			60	ns
T _{CLK-POST}	last associated data lane has tran	Time that the transmitter continues to send HS clock after the last associated data lane has transitioned to Ip mode. Interval is defined as the period from the end of T _{HS-TRAIL} to the beginning				ns
T _{CLK-PRE}		Time that the HS clock shall be driven by the transmitter before any associated data lane beginning the transition from LP to HS mode.				ns
T _{CLK-PREPARE}		Time that the transmitter drives the clock lane LP-00 line state immediately before the HS-0 line state starting the HS transmission.			95	ns
T _{CLK-SETTLE}		Time interval during which the HS receiver should ignore any clock lane HS transitions, starting from the beginning of T _{CLK} .			300	ns

- With an additional load capacitance CCM of 0 to 60 pF on the termination center tap at RX side of the lane
- While driving C_{LOAD} . Load capacitance includes 50 pF of transmission line capacitance, and 10 pF each for TX and RX. (2)
- When the output voltage is from 15% to 85% of the fully settled LP signal levels
- (4) Measured as average across any 50 mV segment of the output signal transition

www.ti.com SWRS211 – MAY 2017

Table 5-24. CSI Switching Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	MIN	TYP MAX	UNIT
T _{CLK-TERM-EN}	Time for the clock lane receiver to enable the HS line termination, starting from the time point when Dn crosses VIL,MAX.	Time for Dn to reach VTERM-EN	38	ns ns
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.	60		ns
T _{CLK-PREPARE} + T _{CLK-ZERO}	T _{CLK-PREPARE} + time that the transmitter drives the HS-0 state before starting the clock.	300		ns
T _{D-TERM-EN}	Time for the data lane receiver to enable the HS line termination, starting from the time point when Dn crosses VIL,MAX.	Time for Dn to reach VTERM-EN	35 ns - 4*U	ne
T _{EOT}	Transmitted time interval from the start of $T_{HS-TRAIL}$ or $T_{CLKTRAIL}$, to the start of the LP-11 state following a HS burst.		105 ns - n*12*U	- ns
T _{HS-PREPARE}	Time that the transmitter drives the data lane LP-00 line state immediately before the HS-0 line state starting the HS transmission	40 + 4*UI	85 - 6*U	nc
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	145 ns + 10*UI		ns
T _{HS-SETTLE}	Time interval during which the HS receiver shall ignore any data lane HS transitions, starting from the beginning of T _{HSPREPARE} . The HS receiver shall ignore any data lane transitions before the minimum value, and he HS receiver shall respond to any data lane transitions after the maximum value.	85 ns + 6*Ul	145 ns + 10*U	l nc
T _{HS-SKIP}	Time interval during which the HS-RX should ignore any transitions on the data lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst.	40	55 ns - 4*U	
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	100		ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	max(n*8*UI, 60 ns + n*4*UI) ⁽⁵⁾⁽⁶⁾		ns
T_{LPX}	Transmitted length of any low-power state period	50 ⁽⁷⁾		ns

- (5) If a > b then max(a, b) = a, otherwise max(a, b) = b.
- (6) Where n = 1 for Forward-direction HS mode and n = 4 for Reverse-direction HS mode
- (7) T_{LPX} is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

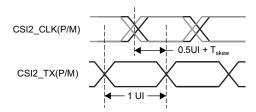


Figure 5-15. Clock and Data Timing in HS Transmission

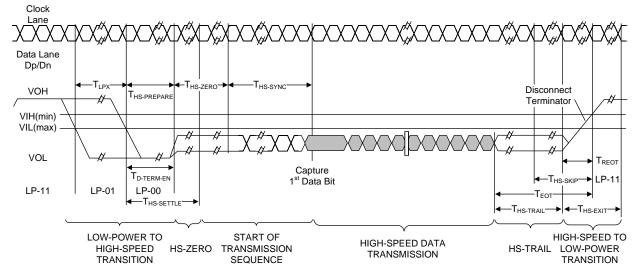


Figure 5-16. High-Speed Data Transmission Burst

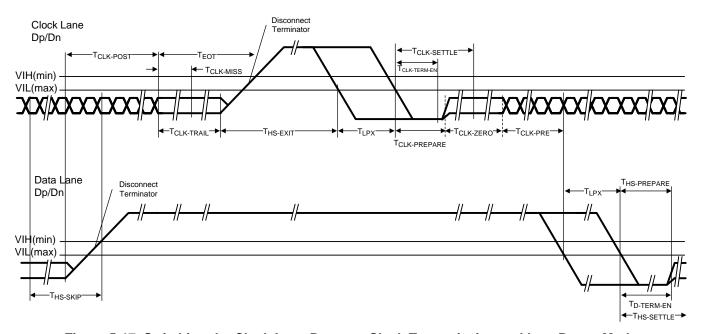
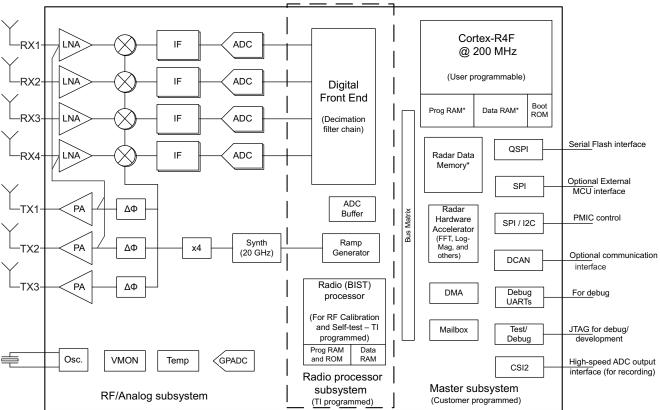


Figure 5-17. Switching the Clock Lane Between Clock Transmission and Low-Power Mode

6 Detailed Description

6.1 Overview


www.ti.com

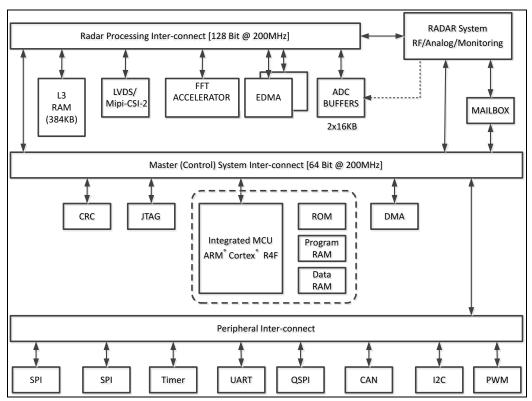
The IWR1443 device includes the entire Millimeter Wave blocks and analog baseband signal chain for three transmitters (two usable at the same instance) and four receivers, as well as a customer-programmable MCU with a hardware accelerator for radar signal processing. This device is applicable as a radar-on-a-chip in use-cases with modest requirements for memory, processing capacity and application code size. These could be cost-sensitive industrial radar sensing applications. Examples are:

- Industrial level sensing
- Industrial automation sensor fusion with radar
- · traffic intersection monitoring with radar
- Industrial radar-proximity monitoring.

In terms of scalability, the IWR1443 device could be paired with a low-end external MCU, to address more complex applications that might require additional memory for larger application software footprint and faster interfaces. Because the IWR1443 device also provides high speed data interfaces like MIPI-CSI2, it is suitable for interfacing with more capable external processing blocks. Here system designers can choose the IWR1443 to provide raw ADC data or use the on-chip Hardware Accelerator for partial processing viz. first stage Fast Fourier Transform.

6.2 Functional Block Diagram

* Total RAM available in Master subsystem is 576KB (for Cortex-R4F Program RAM, Data RAM, and Radar Data Memory)


Copyright © 2017, Texas Instruments Incorporated

6.3 External Interfaces

The IWR1443 device provides the following external interfaces:

- Reference Clock Reference clock available for Host Processor after device wakeup.
- · Low speed control information
 - Up to two 4-line standard SPI interface
 - One I²C interface (Pin multiplexed with one of the SPI ports)
- One Controller Area Network (CAN) Port for Industrial Interfacing
- Data High-Speed serial port following the MIPI CSI2 format. 4 data and 1 clock lane (all differential). Data from different receive channels can be multiplexed on a single data lane in order to optimize board routing. This is a unidirectional interface used for data transfer only.
- Reset Active Low reset for device wakeup from host General Purpose IOs
- Error Signaling Used for notifying the host in case the Radio Controller detects a fault

The IWR1443 device comprises of three main blocks – Radar (or the Millimeter Wave) System, Master (or the Control) System and Processing System.

Copyright © 2017, Texas Instruments Incorporated

Figure 6-1. System Interconnect

6.4 Subsystems

6.4.1 RF and Analog Subsystem

The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA, mixer, IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The three transmit channels can be operated up to a maximum of two at a time (simultaneously) for transmit beamforming purpose as required; whereas the four receive channels can all be operated simultaneously.

ADVANCE INFORMATION

www.ti.com

6.4.1.1 Clock Subsystem

The IWR1443 clock subsystem generates 76 to 81 GHz from an input reference of 40-MHz crystal. It has a built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF synthesizer is then processed by an X4 multiplier to create the required frequency in the 76- to 81-GHz spectrum. The RF synthesizer output is modulated by the timing engine block to create the required waveforms for effective sensor operation.

The clean-up PLL also provides a reference clock for the host processor after system wakeup.

The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the quality of the generated clock.

Figure 6-2 describes the clock subsystem.

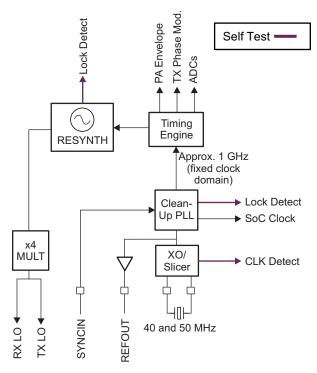


Figure 6-2. Clock Subsystem

6.4.1.2 Transmit Subsystem

The IWR1443 transmit subsystem consists of three parallel transmit chains, each with independent phase and amplitude control. A maximum of 2 transmit chains can be operational at the same time. However all 3 chains can be operated together in a time multiplexed fashion. Transmit beamforming can be achieved by programming the phase shifter of the individual chains. The device supports binary phase modulation for MIMO radar and interference mitigation.

Each transmit chain can deliver a maximum of 12 dBm at the antenna port on the PCB. The transmit chains also support programmable backoff for system optimization.

Figure 6-3 describes the transmit subsystem.

Figure 6-3. Transmit Subsystem (Per Channel)

6.4.1.3 Receive Subsystem

The IWR1443 receive subsystem consists of four parallel channels. A single receive channel consists of an LNA, mixer, IF filtering, A2D conversion, and decimation. All four receive channels can be operational at the same time an individual power-down option is also available for system optimization.

Unlike conventional real-only receivers, the IWR1443 device supports a complex baseband architecture, which uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each receiver channel. The IWR1443 is targeted for fast chirp systems. The band-pass IF chain has configurable lower cutoff frequencies above 350 kHz and can support bandwidths up to 15 MHz.

Figure 6-4 describes the receive subsystem.

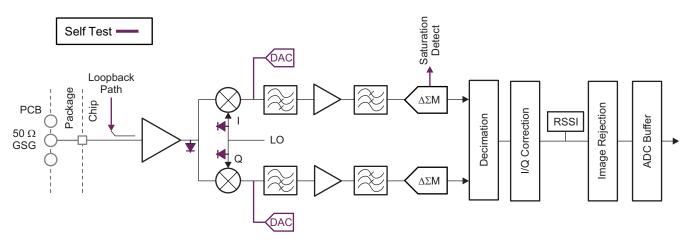


Figure 6-4. Receive Subsystem (Per Channel)

Detailed Description

6.4.1.4 Radio Processor Subsystem

The Radio Processor subsystem (also referred to as BIST Subsystem in this document) includes the digital front-end, the ramp generator and an internal processor for control / configuration of the low-level RF/analog and ramp generator registers. The Radar Processor also schedules periodic monitoring tasks. User applications, running on Master (Control) System, do not have direct access to Radar System; access is based on well-defined API messages (over a hardware channel) from the master subsystem.

NOTE

This radio processor is programmed by TI and takes care of RF calibration and self-test/monitoring functions (BIST). This processor is not available directly for customer use/application.

The digital front-end takes care of filtering and decimating the raw sigma-delta ADC output and provides the final ADC data samples at a programmable sampling rate.

6.4.2 Master (Control) System

The Master (Control) System includes ARM's Cortex-R4F processor clocked at 200 MHz, which is user programmable. User applications executing on this processor control the overall operation of the device, including Radar Control via well-defined API messages, radar signal processing (assisted by the radar hardware accelerator) and peripherals for external interface.

The Master (Control) System plays a big role in enabling autonomous operation of IWR1443 as a radar-on-a-chip sensor. The device includes a quad serial peripheral interface (QSPI) which can be used to download customer code directly from a serial flash. A (classic) CAN interface is included that can be used to communicate directly from the device to a CAN bus. An SPI/I2C interface is available for power management IC (PMIC) control when the IWR1443 is used as an autonomous sensor.

For more complex applications, the device can operate under the control of an external MCU, which can communicate with IWR1443 device over an SPI interface. In this case, it is possible to use the IWR14xx as a radar sensor, providing raw detected objects to the external MCU. External MCU could reduce the application code complexity residing in the device and makes more memory available for radar data cube inside the IWR1443. This configuration also eliminates the need for a separate serial flash to be connected to the IWR1443.

The IWR1443 provides for several digital communications outputs; CSI-2 Clk, 4 data formats – can be connected to a remote processor for additional processing. Note: CSI-2 data is from the digital front end or accelerator. When the MSS is used for preprocessing / or another MCU is used in industrial settings the Serial Tx/Rx or CAN bus can provide lower speed communication than CSI-2. The IWR1443 has additional serial Tx/Rx for HART protocol for industrial sensors, or Modbus serial protocol. The SPI port can also provide additional communications or IO control. Additional industrial IO can be Industrial Ethernet or Wifi.

Note that although four interfaces – one CAN, one I2C and two SPI interfaces – are present in the IWR1443 device for external communication and PMIC control, only two of these interfaces are usable at any point in time.

The total memory (RAM) available in the master subsystem is 576 KB. This is partitioned between the R4F program RAM, R4F data RAM and radar data memory. The maximum usable size for R4F is 448 KB and this is partitioned between the R4F's tightly coupled interfaces TCMA (320 KB) and TCMB (128 KB). Although the complete 448 KB is unified memory and can be used for program or data, typical applications use TCMA as program and TCMB as data memory.

The remaining memory, starting at a minimum of 128 KB, is available to be used as radar data memory for storing the 'radar data cube'. It is possible to increase the radar data memory size in 64 KB increments, at the cost of corresponding reduction in R4F program or data RAM size. The maximum size of radar data memory possible is 384 KB. A few example configurations supported are listed in Table 6-1.

Table 6-1. R4F RAM⁽¹⁾

OPTION	R4F PROGRAM RAM	R4F DATA RAM	RADAR DATA MEMORY
1	320KB	128KB	128KB
2	256KB	128KB	192KB
3	256KB	64KB	256KB
4	128KB	64KB	384KB

⁽¹⁾ For IWR1443 ES version 1.0, available RAM is 448 KB instead of 576KB

The Master Subsystem, Cortex-R4F memory map is shown in Table 6-2.

Table 6-2. Master System Memory Map

	Frame Add	dress (Hex)	<u> </u>	2
Name	Start	End	Size	Description
		CPU Tightly Couple	d Memories	·
TCMA ROM	0x0000_0000	0x0001_FFFF	96KiB	Program ROM
TCM RAM-A	0x0020_0000	0x0023_FFFF	128KiB	256/512KB based on Variant
TCM RAM-B	0x0800_0000	0x0802_FFFF	64KiB	Data RAM
		System Perip	herals	
	0xF060_1000	0xF060_17FF	2KiB	RADARSS to MSS mailbox memory space
	0xF060_2000	0xF060_27FF	2KiB	MSS to RADARSS mailbox memory space
Mail Box MSS<->RADARSS	0xF060_8000	0xF060_80FF	188B	MSS to RADARSS mailbox Configuration Registers
	0xF060_8060	0xF060_86FF	188B	RADARSS to MSS mailbox Configuration Registers
	0xFFFF_E100	0xFFFF_E2FF	756B	TOP Level Reset, Clock management registers
	0xFFFF_FF00	0xFFFF_FFFF	256B	MSS Reset, Clock management registers
PRCM & Control Module	0xFFFF_EA00	0xFFFF_EBFF	512KiB	IO Mux module registers
	0xFFFF_F800	0xFFFF_FBFF	352B	General-purpose control registers
	0x5000_0400		584B	TPCC,TPTC,ADC buffer configuration, status registers
GIO	0xFFF7_BC00	0xFFF7_BDFF	180B	GIO module configuration registers
DMA	0xFFFF_F000	0xFFFF_F3FF	1KiB	DMA-1 module configuration registers
VIM	0xFFFF_FD00	0xFFFF_FEFF	512B	VIM module configuration registers
RTI-A	0xFFFF_FC00	0xFFFF_FCFF	192B	RTI-A module
RTI-B	0xFFFF_EE00	0xFFFF_EEFF	192B	RTI-B module register space
		Serial Interfaces and	Connectivity	
QSPI	0xC000_0000	0xC07F_FFFF	8MB	QSPI –Flash Memory space
	0xC080_0000	0xC0FF_FFFF	116B	QSPI module configuration registers
MIBSPI	0xFFF7_F400	0xFFF7_F5FF	512B	MIBSPI-A module configuration registers
SPI	0xFFF7_F600	0xFFF7_F7FF	512B	SPI module configuration registers
SCI-A/UART	0xFFF7_E500	0xFFF7_E5FF	148B	SCI-A module configuration registers
SCI-B/UART	0xFFF7_E700	0xFFF7_E7FF	148B	SCI-B module configuration registers
CAN	0xFFF7_DC00	0xFFF7_DDFF	512B	CAN module configuration registers
I2C	0xFFF7_D400	0xFFF7_D4FF	112B	I2C module configuration registers
CSI2	0x5006_0000	0x5006_03FF	512B	CSI2 Configuration register space
COIZ	0x5006_0200		64B	CSI2-DHY space
CSI CBUF	0x5007_0000		564B	CBUF configuration registers
ADC Buffer	0x5200_0000		16KiB	ADC ping pong buffer memory space
CBUF_FIFO	0x5202_0000		16KiB	Common buffer memory space

	Frame Ad	dress (Hex)		
Name	Start	End	Size	Description
	0x5008_0000	0x5008_07FF	512B	FFT Accelerator PARAM memory
	0x5008_0800	0x5008_0FFF	264B	FFT accelerator Configuration registors
Hardware FFT accelerator	0x5008_1000		4KiB	FFT accelerator Window registers
	0x5203_0000	0x5203_7FFF	32KiB	FFT accelerator Memory -1 space
	0x5203_8000		32KiB	FFT accelerator Memory -2 space
		L3 Memo	ory	
L3 Shared Memory	0x5100_0000		384KiB	L3 Shared memory space
		Interconne	ects	
PCR	0xFFF7_8000	0xFFF7_87FF	1KiB	PCR-1 interconnect configuration port
PCR-2	0xFCFF_1000	0xFCFF_17FF	1KiB	PCR-2 interconnect configuration port
128 bit SCR	0x5207_0000		128B	128 bit SCR configuration port
		Safety Mod	dules	
CRC	0xFE00_0000	0xFEFF_FFFF	16KiB	CRC module configuration registers
PBIST	0xFFFF_E400	0xFFFF_E5FF	464B	PBIST module configuration registers
STC	0xFFFF_E600	0xFFFF_E7FF	284B	STC module configuration registers
DCC-A	0xFFFF_EC00	0xFFFF_ECFF	44B	DCC-A module configuration registers
DCC-B	0xFFFF_F400	0xFFFF_F4FF	44B	DCC-B module configuration registers
ESM	0xFFFF_F500	0xFFFF_F5FF	156B	ESM module configuration registers
CCMR4	0xFFFF_F600	0xFFFF_F6FF	136B	CCMR4 module configuration registers
	Pe	ripheral Memories (Sys	tem & Non System)	
CAN RAM	0xFF1E_0000	0xFF1F_FFFF	128KB	CAN RAM memory space
DMA RAM	0xFFF8_0000	0xFFF8_0FFF	4KB	DMA RAM memory space
VIM RAM	0xFFF8_2000	0xFFF8_2FFF	2KB	VIM RAM memory space
MIBSPIA-TX RAM	0xFF0E_0000	0xFF0E_01FF	0.5KB	MIBSPIA-TX RAM memory space
MIBSPIA- RX RAM	0xFF0E_0200	0xFF0E_03FF	0.5KB	MIBSPIA- RX RAM memory space
		Debug mod	dules	
Debug Sub System	0xFFA0_0000	0xFFAF_FFFF	244KiB	Debug subsystem memory space and registers

INSTRUMENTS

SWRS211 - MAY 2017 www.ti.com

6.4.3 Host Interface

The IWR1443 device communicates with the host radar processor over the following main interfaces:

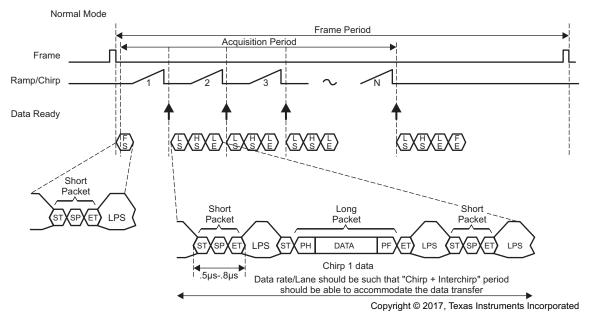
- Reference Clock Reference clock available for host processor after device wakeup
- Control 4-port standard SPI (slave) for host control. All radio control commands (and response) flow through this interface.
- Data High-speed serial port following the MIPI CSI2 format. Four data and one clock lane (all differential). Data from different receive channels can be multiplexed on a single data lane to optimize board routing. This is a unidirectional interface used for data transfer only.
- Reset Active-low reset for device wakeup from host
- Out-of-band interrupt
- Error Used for notifying the host in case the radio controller detects a fault

6.5 **Accelerators and Coprocessors**

The Processing System in the IWR1443 device is an accelerator for FFT operations. The Radar Hardware Accelerator is an IP that enables off-loading the burden of certain frequently used computations in FMCW radar signal processing from the main processor. It is well-known that FMCW radar signal processing involves the use of FFT and Log-Magnitude computations in order to obtain a radar image across the range, velocity and angle dimensions. Some of the frequently used functions in FMCW radar signal processing can be done within the Radar Hardware Accelerator, while still retaining the flexibility of implementing other proprietary algorithms in the Master System processor.

Key features of the Radar Processing Accelerator are:

- FFT computation, with programmable FFT sizes (powers of 2) up to 1024-pt complex FFT
- Internal FFT bit-width of 24 bits (each for I and Q) for good SQNR performance, with fully programmable butterfly scaling at every radix-2 stage for user flexibility
- Built-in capabilities for simple pre-FFT processing specifically, programmable windowing, basic interference zeroing-out and basic BPM removal
- Magnitude (absolute value) and Log-Magnitude computation capability
- Flexible data flow and data sample arrangement to support efficient multi-dimensional FFT operations and transpose accesses as required
- Chaining and Looping mechanism to sequence a set of accelerator operations one-after-another with minimal intervention from the main processor
- CFAR-CA detector support (linear and logarithmic)
- Miscellaneous other capabilities of the accelerator
 - Stitching two or four 1024-point FFTs to get the equivalent of 2048-point or 4096-point FFT for industrial level sensing applications where large FFT sizes are required
 - Slow DFT mode, with resolution equivalent to 16K size FFT, for FFT peak interpolation (eg. range) interpolation) purpose
 - Complex Vector Multiplication and Dot product capability for vectors of size up to 512



6.6 Other Subsystems

6.6.1 A2D Data Format Over CSI2 Interface

The IWR1443 device uses MIPI D-PHY / CSI2-based format to transfer the raw A2D samples to the external MCU. This is shown in Figure 6-5.

- Supports four data lanes
- CSI-2 data rate scalable from 150 Mbps to 900 Mbps per lane (If four lanes are used simultaneously then the maximum data rate supported is 600 Mbps per lane)
- · Virtual channel based
- CRC generation

Frame Start – CSi2 VSYNC Start Short Packet Line Start – CSI2 HSYNC Start Short Packet Line End – CSI2 HSYNC End Short Packet Frame End – CSi2 VSYNC End Short Packet

Figure 6-5. CSI-2 Transmission Format

SWRS211 - MAY 2017 www.ti.com

The data payload is constructed with the following three types of information:

- Chirp profile information
- The actual chirp number
- A2D data corresponding to chirps of all four channels
 - Interleaved fashion
- Chirp quality data (configurable)

The payload is then split across the four physical data lanes and transmitted to the receiving D-PHY. The data packet packing format is shown in Figure 6-6

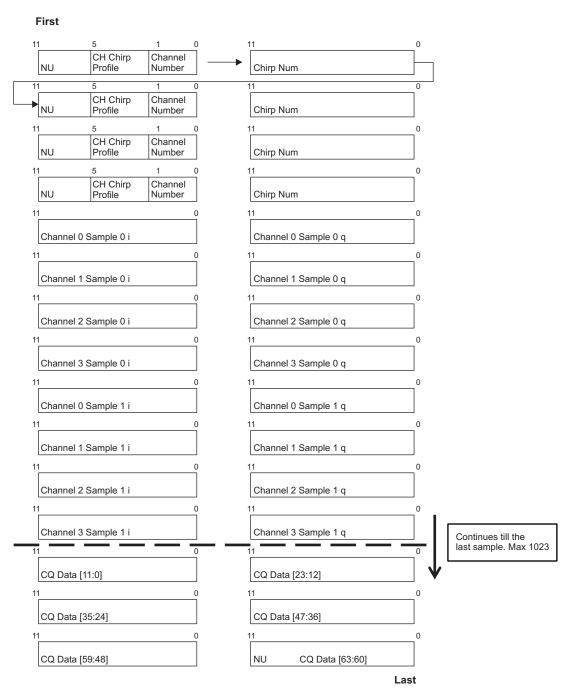


Figure 6-6. Data Packet Packing Format for 12-Bit Complex Configuration

www.ti.com

6.6.2 ADC Channels (Service) for User Application

The IWR1443 device includes provision for an ADC service for user application, where the

GPADC engine present inside the device can be used to measure up to six external voltages. The ADC1, ADC2, ADC3, ADC4, ADC5, and ADC6 pins are used for this purpose.

- ADC itself is controlled by TI firmware running inside the BIST subsystem and access to it for customer's external voltage monitoring purpose is via 'monitoring API' calls routed to the BIST subsystem. This API could be linked with the user application running on the Master R4.
- BIST subsystem firmware will internally schedule these measurements along with other RF and Analog
 monitoring operations. The API allows configuring the settling time (number of ADC samples to skip)
 and number of consecutive samples to take. At the end of a frame, the minimum, maximum and
 average of the readings will be reported for each of the monitored voltages.

GPADC Specifications:

- 625 Ksps SAR ADC
- 0 to 1.8V input range
- 10-bit resolution and ENOB of ~9 bits.
- For 5 out of the 6 inputs, an optional internal buffer (0.4-1.4V input range) is available. Without the buffer, the ADC has a switched capacitor input load modeled with 5pF of sampling capacitance and 12pF parasitic capacitance. [for ADC channel mapped to B12, the internal buffer is not available]

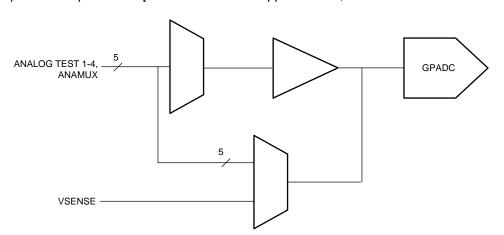


Figure 6-7. ADC Path

Table 6-3. GP-ADC Parameter

over operating free-air temperature range (unless otherwise noted)

PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
ADC supply/reference voltage			1.8 ± 1%		V
ADC input voltage range		0		1.8	V
ADC resolution			10		bit
ADC STND	100 kHz input frequency	47			dB
ADC offset error		-5		5	LSB
ADC gain error		- 5		5	LSB
ADC DNL		-1		3.5	LSB
ADC INL		-2.5		2.5	LSB
ADC sample rate			625		Ksps
ADC sampling time			400		ns

Table 6-3. GP-ADC Parameter (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	CONDITION	MIN	TYP	MAX	UNIT	
ADC internal conceitance	sampling		7		pF	
ADC internal capacitance	parasitic		12			
ADC leakage current			3		μΑ	
Input buffer input range ⁽¹⁾		0.4		1.4	V	
Input buffer input capacitance			0.5		pF	

⁽¹⁾ Outside of given range, the buffer output will become nonlinear.

6.7 Identification

The JTAG identification code for this device is the same as the device ICEPick Identification code. Table 6-4 captures the JTAG ID code per silicon revision.

Table 6-4. Device Identification

Silicon Revision	ID
ES1.0	0x0BB1F02F

Table 6-5. JTAG Interface

Signal	SoC Pin	Name	Туре	Function
TCK	M13	Test Clock	Input	Free Running clock when used with emulators viz. Spectrum Digital's XDS200 or Tl's XDS110
TMS	L13	Test Mode Select	Input	Directs the next state of the JTAG state machine
TDI	H13	Test Data Input	Input	Scan Data Input to the device
TDO	J13	Test Data Output	Output	Scan Data Output of the device

6.8 Boot Modes

As soon as device reset is de-asserted, the R4F processor of the Master (Control) system starts executing its bootloader from an on-chip ROM memory.

The bootloader of the Master system operates in two basic modes and these are specified on the user hardware (Printed Circuit Board) by configuring what are termed as "Sense on Power" (SOP) pins. These pins on the device boundary are scanned by the bootloader firmware and choice of mode for bootloader operation is made.

Table 6-6 enumerates the relevant SOP combinations and how these map to bootloader operation.

Table 6-6. SOP Combinations

SOP2 (P13)	SOP1 (P11)	SOP0 (J13)	BOOTLOADER MODE AND OPERATION
0	0	1	Functional Mode Device Bootloader loads user application from QSPI Serial Flash to internal RAM and switches the control to it
1	0	1	Flashing Mode Device Bootloader spins in loop to allow flashing of user application (or device firmware patch – Supplied by TI) to the serial flash
0	1	1	Debug Mode Bootloader is bypassed and R4F processor is halted. This allows user to connect emulator at a known point

6.8.1 Flashing Mode

In Flashing Mode, the Master System's bootloader enables the UART driver and expects a data stream comprising of User Application (Binary Image) and Device Firmware (referred to as Device Firmware Patch or Service Pack) from an external flashing utility. Figure 6-8 shows the flashing utility executing on a PC platform, but the protocol can be accomplished on an embedded platform as well.

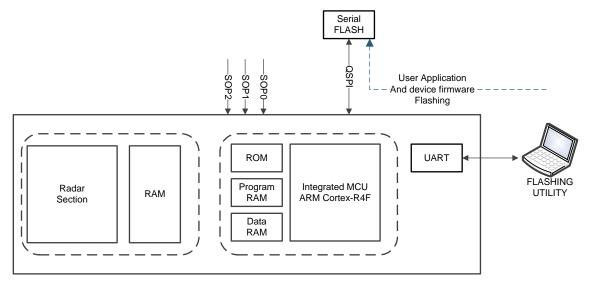


Figure 6-8. Figure 5. Bootloader Flashing Mode

www.ti.com

6.8.2 Functional Mode

In Functional Mode, the Master System's bootloader looks for a valid image in the serial flash memory, interfaced over the QSPI port. If a valid image is found, the bootloader transfers the same to Master System's memory subsystem. If the device firmware image is found, it gets transferred to the Radar section's memory subsystem.

If a valid image (or the QSPI Serial Flash is not found), the bootloader initializes the SPI port and awaits for the image transfer. This operation comes handy for configurations where the IWR1443 is interfaced to an external processor which has its own nonvolatile storage hence can store the user application and the IWR1443 device's firmware image.

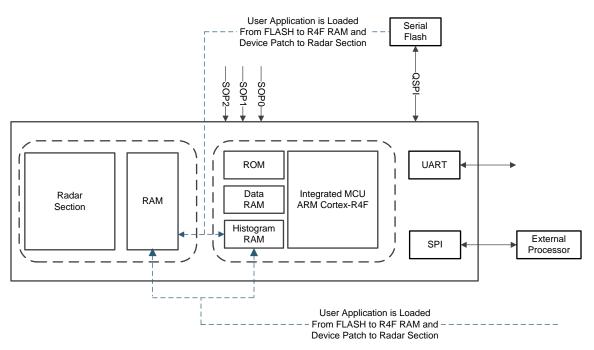


Figure 6-9. Bootloader's Functional Mode

SWRS211 - MAY 2017 www.ti.com

Applications, Implementation, and Layout

NOTE

Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

7.1 **Application Information**

Key device features driving the following applications are:

- Integration of Radar Front End and Programmable MCU
- On-chip Hardware Accelerator for Radar Data Processing
- MIPI [CSI2] interface for Raw data / partially processed data transfer
- Flexible boot modes: Autonomous Application boot using a serial flash or external boot over SPI.

The IWR1443 can be a radar sensor, or can be combined with a host processor, some applications are:

- Liquid and solid level sensing for process sensors or industrial automation
- Industrial proximity sensing, non contact sensing for security, traffic monitoring, and industrial transportation
- Sensor fusion of camera and radar instruments for security, factory automation, robotics
- Sensor fusion with multiple camera and radar instruments for object identification, manipulation, and flight avoidance for security, robotics, material handling or drone devices

7.2 Reference Schematic

The reference schematic can be found in the IWR1443 EVM Documentation.

The IWR1443 power supply is discussed both in the IWR1443 EVM Documentation, and in IWR1xxx DC Power Supply.

ADVANCE INFORMATION

7.3 Layout

7.3.1 Layout Guidelines

General layout guidelines can be found in the IWR1443 EVM Documentation, IWR1443BOOST Layout and Design Files, and IWR1443BOOST Schematics, Assembly Files, and BOM (SPRR254).

7.3.2 Layout Example

The IWR1443 EVM, RF layout can be found in the IWR1443BOOST Layout and Design Files and IWR1443BOOST Schematics, Assembly Files, and BOM.

7.3.3 Stackup Details

Layout Stackup details can be found in the IWR1443BOOST Layout and Design Files and IWR1443BOOST Schematics, Assembly Files, and BOM.

There are specific RF guidelines for the RF Tx and Rx. There are additional layout guidelines for other sections in the IWR1443 Checklist for Schematic Review, Layout Review, Bringup/Wakeup.

8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions follow.

8.1 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, *IWR1443*). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).

Device development evolutionary flow:

X Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.

Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.

null Production version of the silicon die that is fully qualified.

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal

qualification testing.

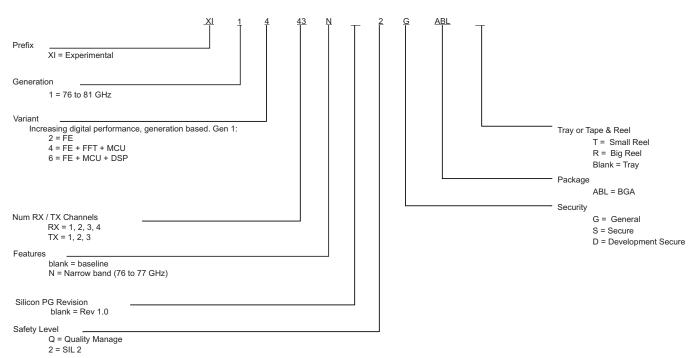
TMDS Fully-qualified development-support product.

X and P devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. Tl's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.


TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ABL0161), the temperature range (for example, blank is the default commercial temperature range). Figure 8-1 provides a legend for reading the complete device name for any *IWR1443* device.

For orderable part numbers of *IWR1443* devices in the ABL0161 package types, see the Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.

For additional description of the device nomenclature markings on the die, see the *IWR1443 Device Errata*.

Copyright © 2017, Texas Instruments Incorporated

Figure 8-1. Device Nomenclature

8.2 Tools and Software

Models

IWR1443 BSDL Model Boundary scan database of testable input and output pins for IEEE 1149.1 of the specific device.

IWR1443 IBIS Model IO buffer information model for the IO buffers of the device. For simulation on a circuit board, see IBIS Open Forum.

IVR1443 Checklist for Schematic Review, Layout Review, Bringup/Wakeup A set of steps in spreadsheet form to select system functions and pinmux options. Specific EVM schematic and layout notes to apply to customer engineering. A bringup checklist is suggested for customers.

8.3 Documentation Support

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (IWR1443). In the upper right-hand corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

The current documentation that describes the DSP, related peripherals, and other technical collateral follows.

Errata

IWR1443 Device Errata Describes known advisories, limitations, and cautions on silicon and provides workarounds.

www.ti.com

8.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

TI Embedded Processors Wiki Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

8.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.7 Export Control Notice

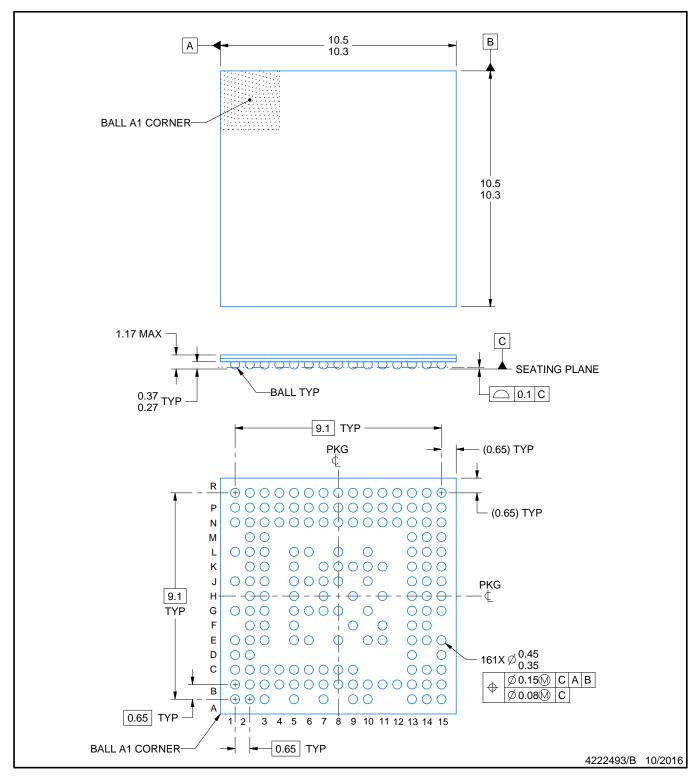
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

8.8 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

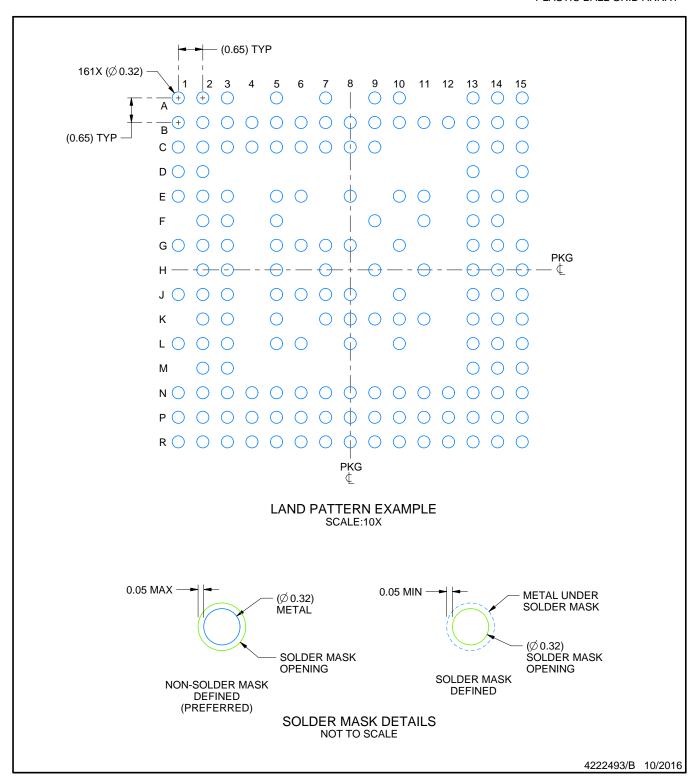
9.1 Packaging Information


The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

CAUTION

The following package information is subject to change without notice.

PLASTIC BALL GRID ARRAY



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

PLASTIC BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

PACKAGE OPTION ADDENDUM

15-May-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
XI1443QGABL	ACTIVE	FC/CSP	ABL	161	1	TBD	Call TI	Call TI	-40 to 105		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.