

11W防破音单声道D类音频功放

9W单声道AB类音频功放

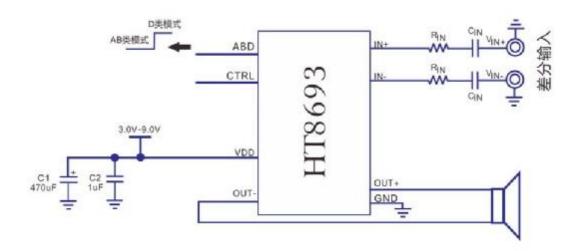
■ 特点

- 防削顶失真功能(Anti-Clipping Function, ACF)
- 免滤波器数字调制,直接驱动扬声器
- 输出功率 11W (Class D,V_{DD}=9.0V, R_L=4Ω, THD+N=10%) 9W (Class AB,V_{DD}=8.4V, R_L=4Ω, THD+N=10%)
- 具有D类和AB类两种工作模式
- 过流保护功能
- 过热保护功能
- 欠压异常保护功能
- 无铅无卤封装,SOP8L-PP

■ 应用

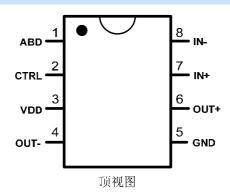
- 蓝牙音箱
- 21声道小音箱
- iphone/ipod/ipod docking
- 平板电脑, 笔记本电脑
- · 小尺寸LCD电视/监视器
- 便携式音箱
- 扩音器
- 拉杆音箱
- 便携式游戏机
- MP4, 导航仪

■ 概述


HT8693是一款具有D类和AB类两种工作模式的音频功率放大器。D类模式下最大供电电压可达到9.0V,在VDD=9.0V、THD+N=10%、4Ω负载下,能连续输出11W功率;AB类模式下最大供电电压可达到8.4V,在VDD=8.4V、THD+N=10%、4Ω负载下,能连续输出9W功率。

HT8693在D类工作模式下具有防削顶失真(ACF)输出控制功能,可检测并抑制由于输入音乐、语音信号幅度过大所引起的输出信号削顶失真(破音),显著提高音质,创造舒适听音享受,并保护扬声器免受过载损坏。同时芯片也具有ACF-Off模式可配置。

HT8693可实现AB类和D类的自由切换功能,在受到D类功放EMI干扰困扰时,可随时切换至AB类音频功放模式。


此外,HT8693内置的关断功能使待机电流最小化,还集成了输出端过流保护、片内过温保护和电源 欠压异常保护等功能。

■ 典型应用图

■ 引脚信息

■ 引脚定义*1

SOP8L-PP 引脚号	引脚 名称	I/O	功能
1	ABD	Ī	AB类模式和D类模式控制端
2	CTRL	I	ACF模式和关断模式控制端
3	VDD	Power	电源
4	OUT-	0	反相输出端(BTL-)
5	GND	Ground	地
6	OUT+	0	同相输出端(BTL+)
7	IN+	Α	同相输入端(差分+)
8	IN-	Α	反相输入端(差分-)

注1 I: 输入端 O: 输出端 A: 模拟端

当大于VDD的电压外加于PN保护型端口(ESD保护电路由PMOS和NMOS组成)时,PMOS电路将有漏电流流过。

■ 订购信息

产品型号	封装形式	顶面标记	工作温度范围	包装和供货形式
HT8693	SOP8L-PP	HT8693 UVWXYZ *2	-40℃~85℃ (扩展工业级)	管装 100片/管

注2: WXYZ/UVWXYZ为内部生产跟踪随机编码。

注3: 除特殊说明外,以下页面的数据内容均针对SOP8L-PP封装形式的HT8693型号产品。

■ 电气特性

● 极限工作条件*1

参数	符号	最小值	最大值	单位
电源电压范围	V _{DD}	-0.3	9.2	V
输入信号电压范围 (IN+, IN-)	Vin	Vss-0.6	V _{DD} +0.6	V
输入信号电压范围 (除IN+, IN-外)	Vin	Vss-0.3	V _{DD} +0.3	V
工作环境温度范围	TA	- 40	85	${\mathbb C}$
工作结温范围	TJ	- 40	150	${\mathbb C}$
储存温度	T _{STG}	- 50	150	${\mathbb C}$

注1: 为保证器件可靠性和寿命,以上绝对最大额定值不能超过。否则,芯片可能立即造成永久性损坏或者其可靠性大大恶化。若输入端电压在可能超过VDD/GND的应用环境中使用,推荐使用一个外部二极管来保证该电压不会超过绝对最大额定值。

● 推荐工作条件

参数	符号	条件	最小值	典型值	最大值	单位
电源电压 ^{*2}	V _{DD}		3		9	V
工作环境温度	Ta		- 40	25	85	$^{\circ}$
扬声器阻抗	RL			4		Ω

注2: VDD的上升时间应当超过1µs。

● 电气特性*3

注3: 以下模拟特性随所选元件和PCB布局而有所变化;

参数	符号	条件		最小值	典型值	最大值	单位
VDD电源的启动阈值	Vuvlh				2.2		V
VDD电源的关断阈值	Vuvll				1.9		٧
载波调制频率	fрwм				430		kHz
系统增益	Av ₀	D -501-0	ClassD		26		-ID
尔 尔坦 <u>加</u>		Av ₀ R_{IN} =56 k Ω	ClassAB		20		dB
上电启动时间 (或从关断 唤醒时间)	tstup				260		ms
ACF衰减增益	Aa			-16		0	dB
Class D CTRL Terminal							
ACF-Off 模式阈值	VMOD1			26/36V _{DD}		V_{DD}	٧
ACF-1 模式阈值	VMOD2			16/36V _{DD}		26/36V _{DD}	٧
ACF-2 模式阈值	Vмодз			3/36V _{DD}		16/36V _{DD}	V
SD 关断模式阈值	VMOD4			Vss		3/36V _{DD}	٧

TA=25°C, VDD=5V, RL=4 Ω , ClassD

参数	符号	条件	最小值	典型值	最大值	单位
输出功率	Po	f=1kHz,THD+N=1%		2.75		w
制山功学	FO	f=1kHz,THD+N=10%		3.40		VV
总谐波失真加噪声	THD+N	f=1kHz, Po=1W		0.1		%
输出噪声	V_N	f=20Hz~20kHz, A加权, Av=26dB		150		μV_{rms}
失调电压	Vos			2.3		mV
信噪比	SNR	A加权, Av=26dB, THD+N=0.4%		87.5		dB
电源抑制比	PSRR	f=1kHz		- 75		dB
效率	η	f=1kHz, Po=3W		87.5		%
静态电流	I DD	Input Grounded, No Load		5.7		mA
关断电流	Isd	CTRL=Vss		0.1		μΑ

TA=25°C, V_{DD} =6.5V, R_L =4 Ω , ClassD

参数	符号	条件	最小值	典型值	最大值	单位
输出功率	Po	f=1kHz,THD+N=1%		4.65		W
相山切罕	FU	f=1kHz,THD+N=10%		5.75		VV
总谐波失真加噪声	THD+N	f=1kHz, Po=2W		0.15		%
输出噪声	V _N	f=20Hz~20kHz, A加权, Av=26dB		150		μV_{rms}
失调电压	Vos			3.3		mV
信噪比	SNR	A加权, Av=26dB, THD+N=0.4%		88.5		dB
电源抑制比	PSRR	f=1kHz		- 75		dB
效率	η	f=1kHz, Po=5W		89.5		%
静态电流	I DD	Input Grounded, No Load		7.0		mA
关断电流	İsd	CTRL=Vss		0.2		μΑ

TA=25℃, V_{DD}=7.2V~8.4V (双锂电池应用), R_L=4Ω

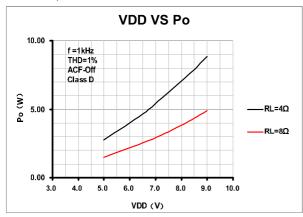
参数	符号		条件	最小值	典型值	最大值	单位	
		VDD=7.2V	f-1kH- THD N-10/		5.75			
输出功率	Do	VDD=8.4V	f=1kHz,THD+N=1%		7.75		w	
- 制田切学	Po	VDD=7.2V	f=1kU= TUD+N=100/		7.05		\ \v	
		VDD=8.4V	f=1kHz,THD+N=10%		9.60			
总谐波失真加噪声	THD+N	VDD=7.2\	/,f=1kHz, Po=3W		0.2		- %	
心陷极大具加噪严	וודטחו	VDD=8.4V	VDD=8.4V,f=1kHz, Po=5W		0.3		70	
输出噪声	V_N	f=20Hz~20kH	f=20Hz~20kHz, A加权, Av=26dB		150		μV_{rms}	
失调电压	V	VDD=7.2V			5.0		mV	
大 炯 	Vos	VDD=8.4V			6.1		1110	
信噪比	SNR	A加权, Av=2	6dB, THD+N=0.4%		89.5		dB	
电源抑制比	PSRR	1	f=1kHz		- 75		dB	
效率		VDD=7.2V,f=1kHz, Po=6W			87.5		%	
双华	η	VDD=8.4\	/,f=1kHz, Po=9W		87.5		%	
静态电流	lan	VDD=7.2V	Input Grounded,		8.0		A	
	DD	VDD=8.4V	No Load		10.8		mA	
关断电流	los	VDD=7.2V	CTDL=Vaa		0.5			
	SD	VDD=8.4V	CIRL=VSS	CTRL=Vss 3.9			μA	

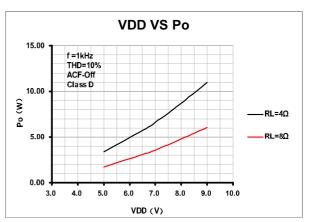
TA=25°C, V_{DD} =9V, R_L =4 Ω , ClassD

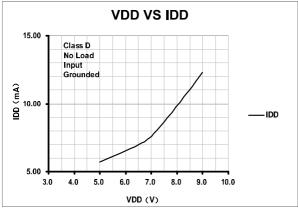
参数	符号	条件	最小值	典型值	最大值	単位
输出功率	Po	f=1kHz,THD+N=1%		8.85		W
- 制 出 切 学 	10	f=1kHz,THD+N=10%		11.00		\ \v
总谐波失真加噪声	THD+N	f=1kHz, Po=5W		0.3		%
输出噪声	V _N	f=20Hz~20kHz, A加权, Av=26dB		150		μV_{rms}
失调电压	Vos			6.6		mV
信噪比	SNR	A加权, Av=26dB, THD+N=0.4%		90		dB
电源抑制比	PSRR	f=1kHz		- 75		dB
效率	η	f=1kHz, Po=10W		81.5		%
静态电流	IDD	Input Grounded, No Load		12.3		mA
关断电流	I SD	CTRL=Vss		4.7		μΑ

TA=25°C, RL=4 Ω , ClassAB

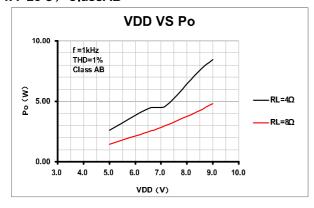
参数	符号	条件		最小值	典型值	最大值	单位
		V _{DD} =5.0V			2.60		
		V _{DD} =6.5V	f=1kHz, THD+N=1%		4.40		w
		VDD=7.2V			4.65		
~ 輸出功率	Po	V _{DD} =8.4V			7.40		
■ 棚田切坐	60	V _{DD} =5.0V			3.20		VV
		V _{DD} =6.5V	f=1kHz,		5.50		
		V _{DD} =7.2V	THD+N=10%		6.75		
		V _{DD} =8.4V			9.00		

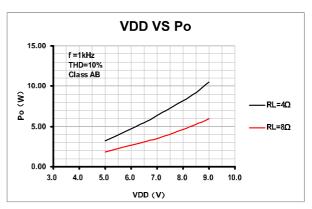

TA=25℃,R∟=8Ω,ClassAB

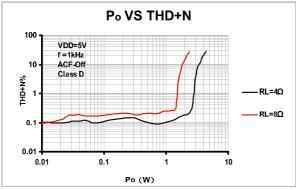

参数	符号	条件	条件		典型值	最大值	单位
		V _{DD} =5.0V			1.45		- - - - W
		V _{DD} =6.5V			2.50		
		V _{DD} =7.2V	f=1kHz, THD+N=1%		3.05		
	Po -	V _{DD} =8.4V	1110-114-170		4.15		
输出功率		VDD=9.0V			4.80		
- 棚田切坐		VDD=5.0V			1.80		VV
		VDD=6.5V			3.05		
		V _{DD} =7.2V	f=1kHz, THD+N=10%		3.75		
		V _{DD} =8.4V	1110.14 1070		5.15		
		VDD=9.0V			5.95		

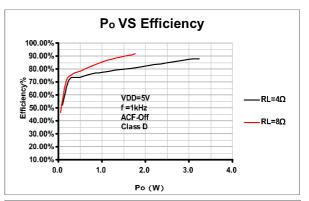


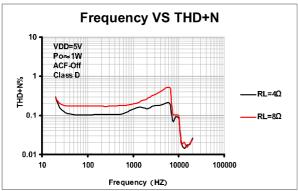
■ 典型特性曲线

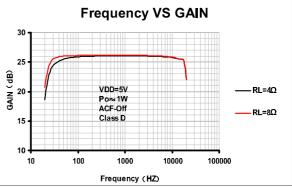

TA=25℃, ClassD

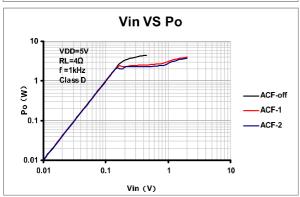


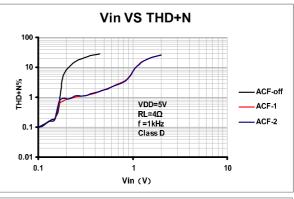

TA=25℃, ClassAB

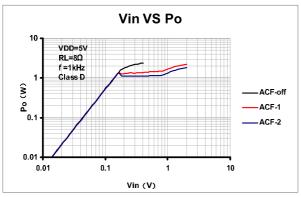


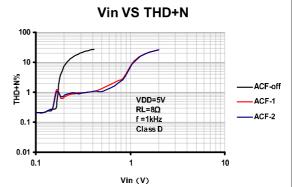


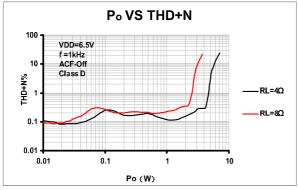


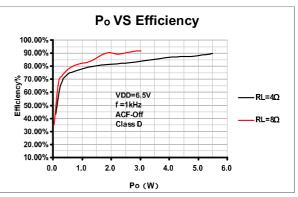

TA=25℃, VDD=5V, ClassD

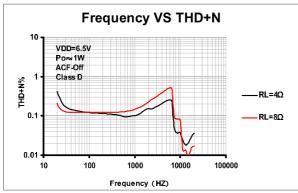


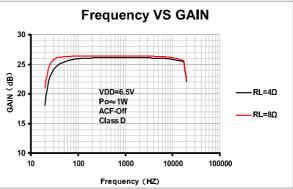


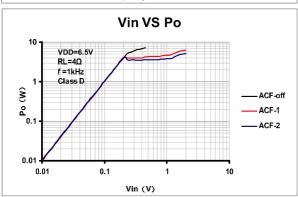


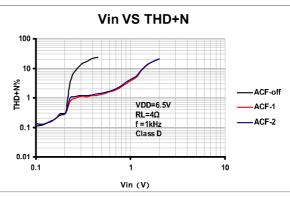


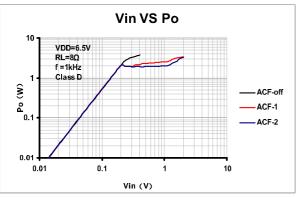


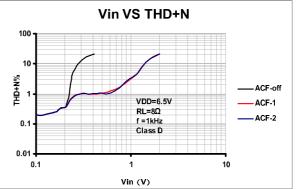


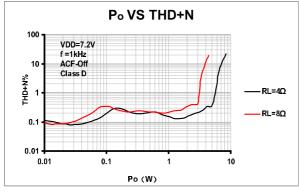


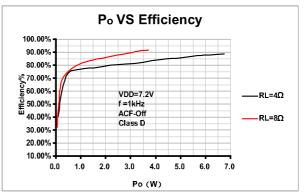

TA=25℃, VDD=6.5V, ClassD

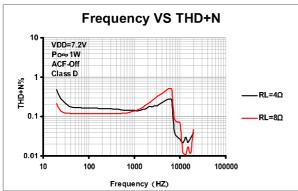


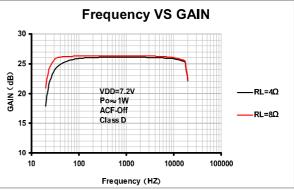


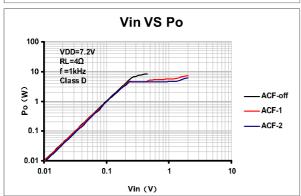


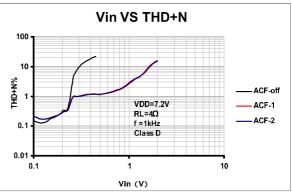


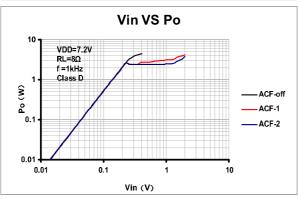


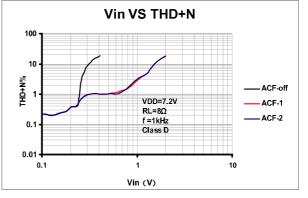


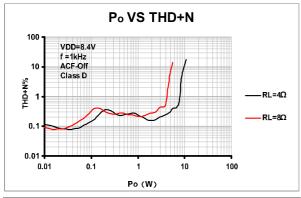


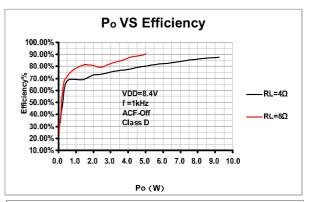

TA=25℃, VDD=7.2V, ClassD

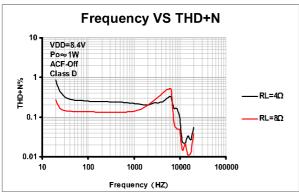


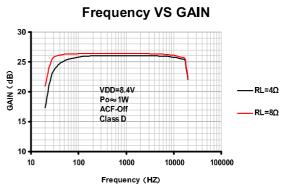


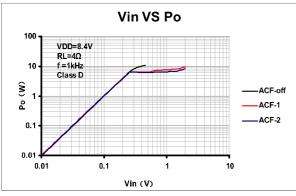




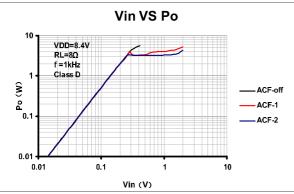


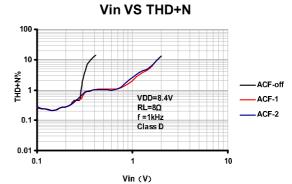


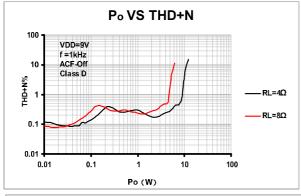


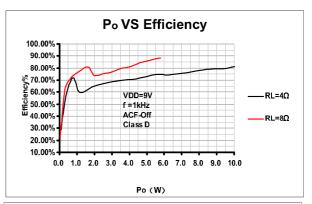

TA=25℃, VDD=8.4V, ClassD

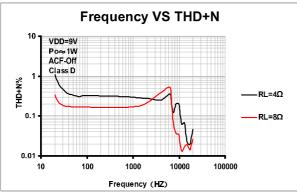


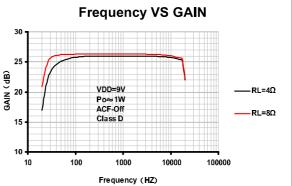


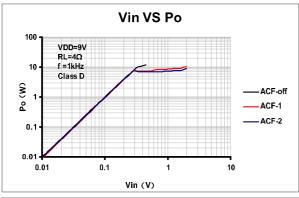


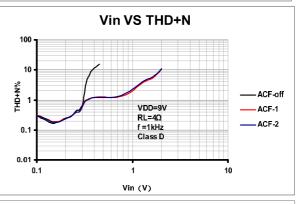


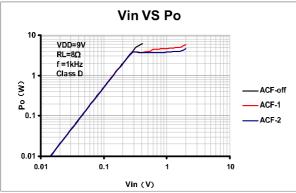


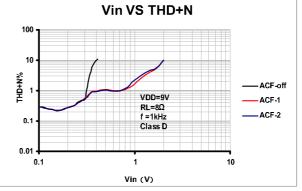


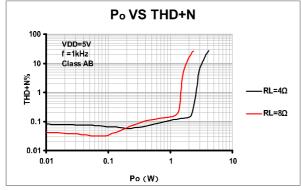


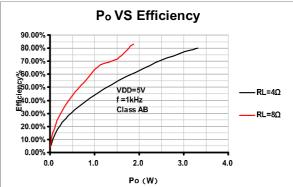

TA=25℃, VDD=9V, ClassD

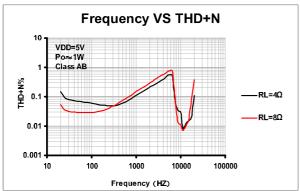


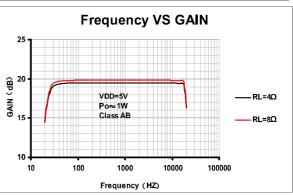




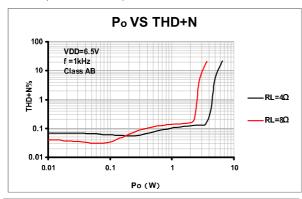


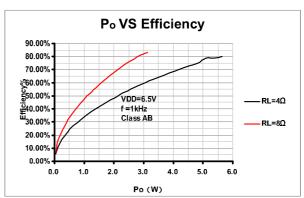


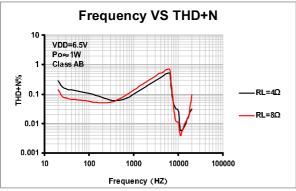


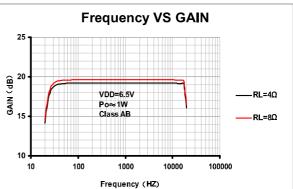


TA=25℃, VDD=5V, ClassAB

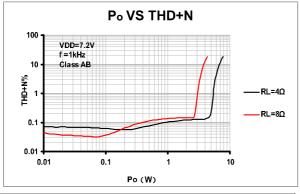


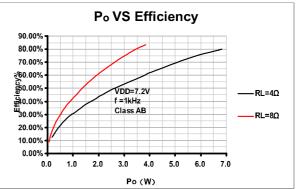




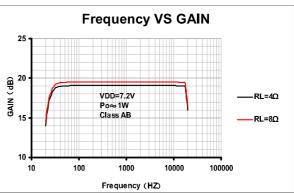


TA=25℃, VDD=6.5V, ClassAB

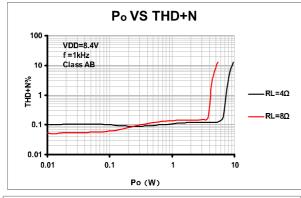


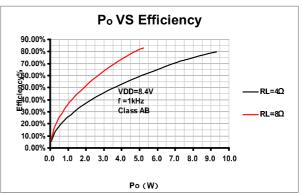


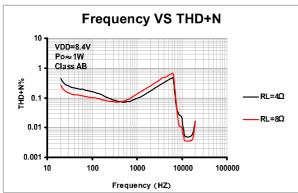


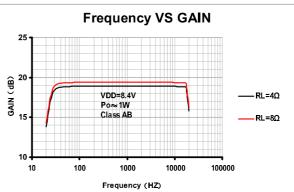


TA=25℃, VDD=7.2V, ClassAB



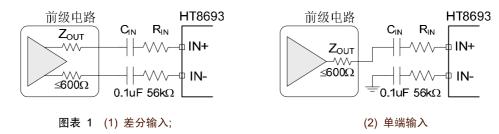






TA=25℃, VDD=8.4V, ClassAB

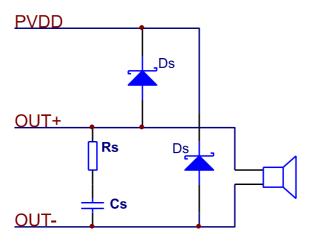
■ 功能描述及应用信息


● 输入配置

HT8693 接受模拟差分或单端音频信号输入,产生 PWM 脉冲输出信号驱动扬声器。

对差分输入,通过隔直电容 C_{IN} 和输入电阻 R_{IN} 分别输入到 IN+和 $IN-端。系统增益 <math>Av=1200k/R_{IN}$ (D 类模式)或 $Av=600k/R_{IN}$ (AB 类模式),输入 RC 高通滤波器的截止频率 $f_c=1/(2\pi R_{IN}C_{IN})$ 。

对单端输入,则通过 C_{IN} 耦合到 IN+端。IN-端必须通过输入电阻和电容(与 C_{IN} 、 R_{IN} 值相同)接地。增益 Av 和截止频率 f_c 与差分输入时相同。


注意系统前级电路的输出阻抗 Z_{OUT} 应不超过 600Ω。

● 功放输出

一般而言,输出端可直接连接负载喇叭。如果输出端的输出线较长,或者对EMI的要求较高,则可选择添置铁氧体磁珠或LC滤波器。

另外,如果电源电压较大(>8.5V),纹波较严重,或输入信号幅度较大(≥1.0Vrms),或负载喇叭阻抗较小(<4Ω)时,有必要适当增大电源端电容(至少100uF以上),并在输出端加入Snubber电路和肖特基二极管(如图4),防止芯片异常。

图表 2 输出端的连接

推荐参数:

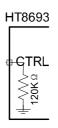
Rs: $1.5 \sim 2\Omega$;

Cs: 330pF~680pF;

Ds: 正向平均电流≥2A; 正向浪涌峰值电流≥6A; 正向电压(I_E=1A) ≤0.38V。

● ABD模式设置

在ABD端输入高电平或者悬空,HT8693处于Class D模式,系统增益 Av=1200k/R_{IN}。 在ABD端输入低电平,HT8693处于Class AB模式,系统增益 Av=600k/R_{IN}。

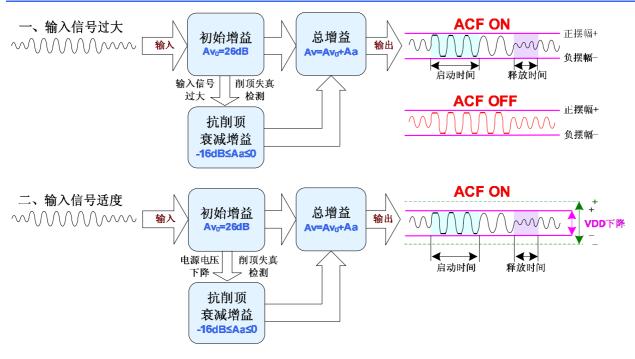

● CTRL模式设置

Class D模式下,在 CTRL 端输入不同电压值,能实现 4 种工作模式,即防削顶模式 1 (ACF-1),防削顶模式 2 (ACF-2),防削顶功能关闭模式 (ACF-Off) 和芯片关断模式 (SD),详见下表。

表格 1 CTRL 引脚不同模式设置的输入电压

参数名	符号	最小值	典型值	最大值	单位
ACF-Off 模式的设置阈值电压	V_{MOD1}	26/36VDD		VDD	V
ACF-1 模式的设置阈值电压	V_{MOD2}	16/36VDD		26/36VDD	V
ACF-2模式的设置阈值电压	V_{MOD3}	3/36VDD		16/36VDD	V
SD 模式的设置阈值电压	V_{MOD4}	VSS		3/36VDD	V

在配置 CTRL 端外部电压时,需要注意的是,其内部有一个 120Kohm 下拉电阻,如下图示。


图表 3 CTRL 端内部电阻

● CTRL模式功能描述

(一) ACF ON 模式

在 ACF-1、ACF-2 模式下,当电路检测到输入信号幅度过大而产生输出削顶时,HT8693 通过自动调整系统增益,控制输出达到一种最大限度的无削顶失真功率水平,由此大大改善了音质效果。此外,当电源电压下降时,HT8693 也能自动衰减输出增益,实现与 VDD 下降值相匹配的最大限度无削顶输出水平。

图表 4 ACF工作原理示意图

ACF ON 模式下的启动时间(Attack time)指在突然输入足够大信号而产生输出削顶的条件下,从 ACF 启动对放大器的增益调整,直到增益从 Avo 衰减至距目标衰减增益 3dB 时的时间间隔;释放时间(Release time)指从产生削顶的输入条件消失,到增益退出衰减状态恢复到 Avo 的时间间隔。HT8693 的最大衰减增益为 16dB。

ACF-1 和 ACF-2 模式具有不同的启动时间和释放时间(见下表)。

模式启动时间释放时间ACF-1 (推荐)50ms64msACF-22.5ms1200ms

表格 2 ACF-1 和 ACF-2 模式区别

(二) ACF OFF 模式

在 ACF-Off 模式下,ACF 功能被关闭,HT8693 不对输出削顶条件作检测,也不对系统增益作自动调整操作,系统增益保持为 Av=Av₀=26dB 恒定不变。HT8693 可能因输出存在破音失真而音质变坏。

(三) SD 模式

在关断模式(低功耗待机)下,芯片关闭所有功能并将功耗降低到最小,输出端为弱低电平状态(内部通过高阻接地)。

● 咔嗒-噼噗声消除

HT8693 内置控制电路实现了全面的杂音抑制效果,有效地抑制住了系统在上电、下电、关断及其唤醒操作过程中出现的瞬态咔嗒-噼噗(Click-Pop)噪声。

为达到更优异的咔嗒-噼噗声消除效果,一般情况下,建议采用 0.1μ F 或更小的隔直电容 C_{IN} 。同时 POP 噪声还可通过下列上电、下电时关断模式的时序控制措施来达到杂声微乎其微的效果:

- 电源上电时,保持关断模式,等电源足够稳定后再解除关断模式。
- 电源下电时,提前设为关断模式。

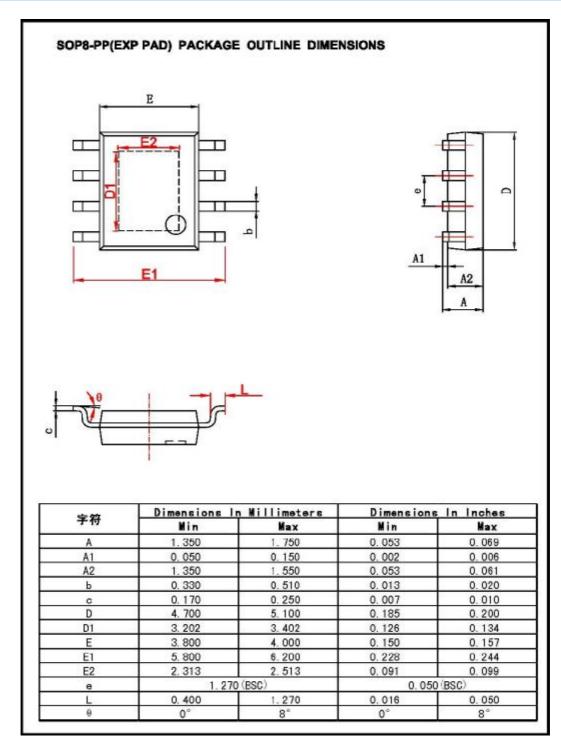
● 保护功能

HT8693 具有以下几种保护功能:输出端过流保护、片内过温保护、电源欠压异常保护。

(1) 过流保护

当检测到一输出端对电源、对地、或对另一输出端短路时,过流保护启动,输出端切换至高阻态,防止 芯片烧毁损坏。短路情况消除后,通过关断、唤醒一次芯片,或重新上电均能使芯片退出保护模式。

(2) 过温保护


当检测到芯片内温度超过 **150**℃时,过温保护启动,正负输出端切换至弱低电平状态(内部通过高阻接地),防止芯片被热击穿损坏。

(3) 欠压保护

当检测到电源端 VDD 低于 V_{UVLL}(1.9V),启动欠压保护,输出端为弱低电平状态(内部通过高阻接地); 当检测到 VDD 高于 V_{UVLH}(2.2V),保护模式自动解除,经启动时间 T_{STUP} 后进入正常工作状态。

■ 封装外形

深圳市宝华龙科技有限公司--总代理

联系电话: 0755-83510265,83510263,83281129,83280393

传 真:0755-83280392

联系地址:深圳市华强北路深纺大厦A座1488F&G室