

description/ordering information

The TL05x series of JFET-input operational amplifiers offers improved dc and ac characteristics over the TL07x and TL08x families of BiFET operational amplifiers. On-chip Zener trimming of offset voltage yields precision grades as low as 1.5 mV (TL051A) for greater accuracy in dc-coupled applications. Texas Instruments improved BiFET process and optimized designs also yield improved bandwidth and slew rate without increased power consumption. The TL05x devices are pin-compatible with the TL07x and TL08x and can be used to upgrade existing circuits or for optimal performance in new designs.

BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors, without sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption.

The TL05x family was designed to offer higher precision and better ac response than the TL08x, with the low noise floor of the TL07x. Designers requiring significantly faster ac response or ensured lower noise should consider the Excalibur TLE208x and TLE207x families of BiFET operational amplifiers.

Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required, and loads should be terminated to a virtual-ground node at mid-supply. Texas Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single supplies.

The TL05x are fully specified at \pm 15 V and \pm 5 V. For operation in low-voltage and/or single-supply systems, Texas Instruments LinCMOS families of operational amplifiers (TLC-prefix) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to the slew rate and bandwidth requirements, and also the output loading.

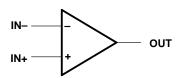
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

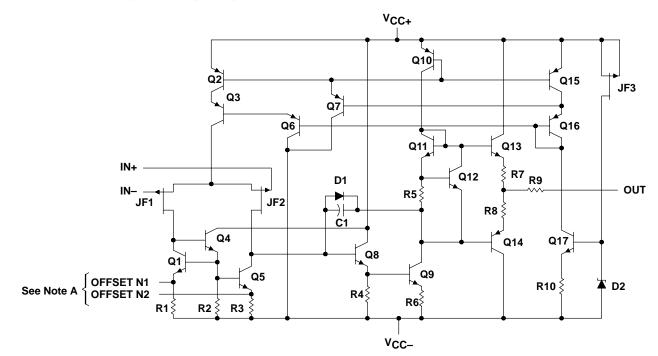
Copyright © 2003, Texas Instruments Incorporated

1

SLOS178A – FEBRUARY 1997 - REVISED FEBRUARY 2003


TOP-SIDE VIOmax ORDERABLE PACKAGE[†] TA AT 25°C PART NUMBER MARKING TL051ACP TL051ACP PDIP (P) Tube of 50 TL052ACP TL052ACP 800 μV Tube of 75 TL051ACD 051AC SOIC (D) Tube of 75 TL052ACD 052AC Reel of 2500 TL052ACDR TL051CP TL051CP PDIP (P) Tube of 50 TL052CP TL052CP PDIP (N) Tube of 25 TL054ACN TL054ACN Tube of 75 TL051CD TL051C Reel of 2500 TL051CDR $0^{\circ}C$ to $70^{\circ}C$ Tube of 75 TL052CD 1.5 mV SOIC (D) TL052C Reel of 2500 TL052CDR Tube of 50 TL054ACD **TL054C** Reel of 2500 TL054ACDR SOP (PS) Reel of 2000 TL052CPSR TL052 SSOP (DB) Reel of 2000 TL054CDBR TL054 TL054CN PDIP (N) Tube of 25 TL054CN Tube of 50 TL054CD 4 mV SOIC (D) TL054C Reel of 2500 TL054CDR TL054CNSR SOP (NS) Reel of 2000 TL054 PDIP (P) Tube of 50 TL052AIP TL052AI TL052AID Tube of 75 800 µV SOIC (D) 052AI Reel of 2500 TL052AIDR Tube of 25 TL054AIN PDIP (N) TL054AIN TL051IP TL051IP PDIP (P) Tube of 50 TL052IP TL052IP Tube of 75 TL051ID TL051I -40°C to 85°C 1.5 mV Tube of 75 TL052ID TL052I Reel of 2500 TL052IDR SOIC (D) Tube of 50 TL054AID TL054AI Reel of 2500 TL054AIDR PDIP (N) Tube of 25 TL054IN TL054IN TL054ID 4 mV Tube of 50 SOIC (D) TL054I Reel of 2500 TL054IDR

ORDERING INFORMATION


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

symbol (each amplifier)

equivalent schematic (each amplifier)

NOTE A: OFFSET N1 and OFFSET N2 are available only on the TL051x.

ACTUAI		ONENT COUNT	†						
COMPONENT	TL051	TL052	TL054						
Transistors	20	34	62						
Resistors	10	19	37						
Diodes	2	3	5						
Capacitors 1 2 4									

[†] These figures include all four amplifiers and all ESD, bias, and trim circuitry.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V_{CC+} (see Note 1) Supply voltage, V_{CC-} (see Note 1) Differential input voltage (see Note 2) Input voltage range, V_I (any input, see Notes 1 and 3) Input current, I_I (each input) Output current, I_O (each output) Total current into V_{CC+} Total current out of V_{CC-} Duration of short-circuit current at (or below) 25°C Package thermal impedance, θ_{JA} (see Notes 4 and 5):	D package (8 pin) D package (14 pin) DB package (14 pin) N package (14 pin) NS package (14 pin) P package (8 pin)	$\begin{array}{c} -18 \ V \\ \pm 30 \ V \\ \pm 15 \ V \\ \pm 15 \ V \\ \pm 1 \ mA \\ \pm 80 \ mA \\ 160 \ mA \\ 160 \ mA \\ 160 \ mA \\ 160 \ mA \\ 07^{\circ}C/W \\ 86^{\circ}C/W \\ 96^{\circ}C/W \\ 80^{\circ}C/W \\ 80^{\circ}C/W \\ 85^{\circ}C/W \\ 85^{\circ}C/W \\ 85^{\circ}C/W \\ \end{array}$
		85°C/W
Operating virtual junction temperature, T _J Lead temperature 1,6 mm (1/16inch) from case for 10 Storage temperature range	seconds	150°C 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) – T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			C SU	FFIX	I SUF	FIX	UNIT
			MIN	MAX	MIN	MAX	UNIT
$V_{CC\pm}$	Supply voltage		±5	±15	±5	±15	V
Via	Common mode input voltage	$V_{CC\pm} = \pm 5 V$	-1	4	–1	4	V
VIC	Common-mode input voltage	$V_{CC\pm} = \pm 15 V$	-11	11	-11	11	v
ТĄ	Operating free-air temperature		0	70	-40	85	°C

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL051C and TL051AC electrical characteristics at specified free-air temperature

						Т	L051C, 1	L051A0	2		
	PARAMETER	TEST CO	NDITIONS	TA [†]	٧c	;C± = ±5	v	٧c	C± = ±15	v	
					MIN	TYP	MAX	MIN	TYP	MAX	1
			TI 0540	25°C		0.75	3.5		0.59	1.5	
	have the first sector and		TL051C	Full range			4.5			2.5	
VIO	Input offset voltage		TL 054 A O	25°C		0.55	2.8		0.35	0.8	mV
			TL051AC	Full range			3.8			1.8	1
~	Temperature coefficient	$V_{O} = 0,$ $V_{IC} = 0,$ $R_{S} = 50 \Omega$	TL051C	25°C to 70°C		8			8		
$\alpha_{V_{IO}}$	of input offset voltage [‡]		TL051AC	25°C to 70°C		8			8	25	μV/°C
	Input offset-voltage long-term drift§			25°C		0.04			0.04		μV/mo
l	longet offerst summerst	V _O = 0,	VIC = 0,	25°C		4	100		5	100	pА
IIO	Input offset current	See Figure		70°C		0.02	1		0.025	1	nA
L -	Innut biog ourrest	V _O = 0,	VIC = 0,	25°C		20	200		30	200	pА
IВ	Input bias current	See Figure	5	70°C		0.15	4		0.2	4	nA
	Common-mode input			25°C	-1 to 4	–2.3 to 5.6		-11 to 11	–12.3 to 15.6		
VICR	voltage range			Full range	-1 to 4			-11 to 11			
		D. 10 kO		25°C	3	4.2		13	13.9		
Vari	Maximum positive peak	$R_L = 10 \text{ k}\Omega$		Full range	3			13			v
VOM+	output voltage swing	$R_L = 2 k\Omega$		25°C	2.5	3.8		11.5	12.7		v
				Full range	2.5			11.5			
		$R_L = 10 \ k\Omega$		25°C	-2.5	-3.5		-12	-13.2		
Vom-	Maximum negative peak			Full range	-2.5			-12			v
• Oivi–	output voltage swing	$R_L = 2 k\Omega$		25°C	-2.3	-3.2		-11	-12		ľ
				Full range	-2.3			-11			
	Large-signal differential			25°C	25	59		50	105		
AVD	voltage amplification¶	$R_L = 2 k\Omega$		0°C	30	65		60	129		V/mV
				70°C	20	46		30	85		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
ci	Input capacitance			25°C		10			12		pF
	Common-mode	VIC = VICR	min	25°C	65	85		75	93		
CMRR	rejection ratio	$V_{O} = 0,$	$R_{S} = 50 \Omega$	0°C	65	84		75	92		dB
	-	<u> </u>	0	70°C	65	84		75	91		
	Supply-voltage rejection			25°C	75	99		75	99		
^k SVR	ratio ($\Delta V_{CC+}/\Delta V_{IO}$)	$V_{O} = 0,$	$R_S = 50 \Omega$	0°C	75	98		75	98		dB
				70°C	75	97		75	97		
				25°C		2.6	3.2		2.7	3.2	
ICC	Supply current	$V_{O} = 0,$	No load	0°C		2.7	3.2		2.8	3.2	mA
				70°C		2.6	3.2		2.7	3.2	

[†] Full range is 0°C to 70°C.

[‡] This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

§ Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}$ C, extrapolated to $T_A = 25^{\circ}$ C using the Arrhenius equation, and assuming an activation energy of 0.96 eV. ¶ For $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V, or for $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL051C and TL051AC operating characteristics at specified free-air temperature

						Т	L051C, 1	LO51AC	;		
	PARAMETER	TEST CO	NDITIONS	тд†	٧c	C± = ±5	v	Vc	$C\pm = \pm 15$	v	
					MIN	TYP	MAX	MIN	TYP	MAX	1
				25°C		16		13	20		
SR+	Positive slew rate at unity gain [‡]	RL = 2 kΩ,	C _L = 100 pF,	Full range		16.4		11	22.6		
		See Figure 1	_	25°C		15		13	18		V/μs
SR-	Negative slew rate at unity gain‡			Full range		16		11	19.3		
				25°C		55			56		
tr	Rise time			0°C		54			55		1
				70°C		63			63		1
		$V_{I(PP)} = \pm 10 \text{ r}$	nV,	25°C		55			57		ns
tf	Fall time	$R_{L} = 2 k\Omega,$ $C_{L} = 100 \text{ pF},$		0°C		54			56		1
		See Figures 1	70°C		62			64			
				25°C		24			19		
	Overshoot factor			0°C		24			19		%
				70°C		24			19		
Vn	Equivalent input noise		f = 10 Hz	25°C		75			75		nV/√ H :
۷n	voltage§	R _S = 20 Ω,	f = 1 kHz	25°C		18			18	30	NV/∛⊓.
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV
In	Equivalent input noise current	f = 1 kHz		25°C		0.01			0.01		pA/√H
THD	Total harmonic distortion \P	R _S = 1 kΩ, f = 1 kHz	$R_L = 2 k\Omega$,	25°C		0.003	5		0.003		%
				25°C	3			3.1			
B ₁	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$ $C_{I} = 25 \text{ pF},$	$R_L = 2 k\Omega,$ See Figure 4 0°	0°C		3.2			3.3		MHz
	CL = 25 pF,		70°C		2.7			2.8			
	Dhana margin at units	10 mV		25°C		59			62		
[¢] m	Phase margin at unity gain	V _I = 10 mV, C _L = 25 pF,	$R_L = 2 k\Omega$, See Figure 4	0°C		58			62		deg
	5	L -, ,	5 pF, See Figure 4			59			62		

[†] Full range is 0°C to 70°C.

[‡] For $V_{CC\pm} = \pm 5 V$, $V_{I(PP)} = \pm 1 V$; for $V_{CC\pm} = \pm 15 V$, $V_{I(PP)} = \pm 5 V$. § This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

¶ For $V_{CC\pm} = \pm 5$ V, $V_{O(RMS)} = 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{O(RMS)} = 6$ V.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL051I and TL051AI electrical characteristics at specified free-air temperature

							FL0511 , 1	L051AI			
	PARAMETER	TEST CON	DITIONS	т _A †	۷c	C± = ±5	v	۷ _C	$C\pm = \pm 15$	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
				25°C		0.75	3.5		0.59	1.5	
	have to the standard to be		TL0511	Full range			5.3			3.3	
VIO	Input offset voltage		TLOCAL	25°C		0.55	2.8		0.35	0.8	mV
			TL051AI	Full range			4.6			2.6	
	Temperature coefficient of	$V_{O} = 0,$ $V_{IC} = 0,$ $R_{S} = 50 \Omega$	TL0511	25°C to 85°C		7			8		240
$\alpha_{V_{IO}}$	input offset voltage‡		TL051AI	25°C to 85°C		8			8	25	μV/°C
	Input offset-voltage long-term drift§	1		25°C		0.04			0.04		μV/mo
		V _O = 0,	VIC = 0,	25°C		4	100		5	100	pА
ΙΟ	Input offset current	See Figure 5		85°C		0.06	10		0.07	10	nA
l	Innut high ourset	V _O = 0,	$V_{IC} = 0,$	25°C		20	200		30	200	pА
IВ	Input bias current	See Figure 5		85°C		0.6	20		0.7	20	nA
	Common-mode input			25°C	-1 to 4	-2.3 to 5.6		-11 to 11	-12.3 to 15.6		
VICR	voltage range			Full range	-1 to 4			-11 to 11			V
		D 1010	-	25°C	3	4.2		13	13.9	9	
	Maximum positive peak	$R_L = 10 k\Omega$		Full range	3			13			
VOM +	output voltage swing	$\mathbf{P}_{1} = 2 \mathbf{k} 0$		25°C	2.5	3.8		11.5	12.7		V
		$R_L = 2 k\Omega$		Full range	2.5			11.5			
		RL = 10 kΩ		25°C	-2.5	-3.5		-12	-13.2		
V _{OM} –	Maximum negative peak	NL = 10 K32		Full range	-2.5			-12			v
	output voltage swing	$R_L = 2 k\Omega$		25°C	-2.3	-3.2		-11	-12		Ň
				Full range	-2.3			-11			
	Large-signal differential			25°C	25	59		50	105		
AVD	voltage amplification	$R_L = 2 k\Omega$		-40°C	30	74		60	145		V/mV
				85°C	20	43		30	76		
r _i	Input resistance			25°C		1012			1012		Ω
Cj	Input capacitance	4		25°C		10			12		pF
<u></u>	Common-mode	VIC = VICRm	nin,	25°C	65	85		75	93		
CMRR	rejection ratio	$V_0 = 0,$		-40°C	65	83		75	90		dB
		R _S = 50 Ω		85°C	65	84		75	93		
	Supply-voltage rejection	V _O = 0,		25°C	75	99		75	99		
ksvr	ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$R_{S} = 50 \Omega$		-40°C	75	98		75	98		dB
		+		85°C	75	99		75	99	0.0	
	Current a current t		Nie Isteril	25°C		2.6	3.2		2.7	3.2	
ICC	Supply current	VO = 0,	No load	-40°C		2.4	3.2		2.6	3.2	mA
				85°C		2.5	3.2		2.6	3.2	

[†]Full range is -40°C to 85°C

[‡] This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

§ Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at T_A = 150°C, extrapolated to $T_A = 25^{\circ}C \text{ using the Arrhenius equation, and assuming an activation energy of 0.96 eV.}$ **1** For V_{CC±} = ±5 V, V_O = ±2.3 V, or for V_{CC±} = ±15 V, V_O = ±10 V.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL051I and TL051AI operating characteristics at specified free-air temperature

							TL051I, 1	LO51AI			
	PARAMETER	TEST CO	NDITIONS	т _A †	٧c	:C± = ±5	v	٧c	C± = ±15	5 V	UNIT
					MIN TYP		MAX	MIN	TYP	MAX	
				25°C		16		13	20		
SR+	Positive slew rate at unity gain‡	R _L = 2 kΩ,	C _L = 100 pF,	Full range				11			
		See Figure 1		25°C		15		13	18		V/μs
SR-	Negative slew rate at unity gain‡			Full range				11			
				25°C		55			56		
tr	Rise time			_40°C		52			53		
				85°C		64			65		
		$V_{I(PP)} = \pm 10 \text{ mV},$ R _L = 2 kΩ,		25°C		55			57		ns
tf	Fall time	C _L = 100 pF,		-40°C		51			53		
		See Figures 1	and 2	85°C		64			65		
			25°C		24			19			
	Overshoot factor			-40°C		24			19		%
				85°C		24			19		
Vn	Equivalent input noise		f = 10 Hz	25°C		75			75		nV/√H
۰n	voltage§	$R_{S} = 20 \Omega,$	f = 1 kHz	25°C		18			18	30	11 V / VI I
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV
In	Equivalent input noise current	f = 1 kHz		25°C		0.01			0.01		pA/√H
THD	Total harmonic distortion \P	R _S = 1 kΩ, f = 1 kHz	$R_L = 2 k\Omega$,	25°C		0.003			0.003		%
				25°C		3			3.1		
B ₁			-40°C		3.5			3.6		MHz	
		CL = 25 pr, See Fig		85°C		2.6			2.7		
		1/1 - 10 m/1	$\mathbf{P}_{\mathbf{k}} = 2 \mathbf{k} \mathbf{O}$	25°C		59			62		
[¢] m	Phase margin at unity gain	V _I = 10 mV, C _L = 25 pF,	$R_L = 2 k\Omega$, See Figure 4	_40°C		58			61		deg
	-		0	85°C		59			62		

[†] Full range is –40°C to 85°C.

⁺ For V_{CC±} = ±5 V, V_I(PP) = ±1 V; for V_{CC±} = ±15 V, V_I(PP) = ±5 V. § This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

¶ For $V_{CC\pm} = \pm 5$ V, $V_{O(RMS)} = 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{O(RMS)} = 6$ V.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL052C and TL052AC electrical characteristics at specified free-air temperature

						Т	L052C, T	L052A0	;		
	PARAMETER	TEST CON	DITIONS	тд†	٧ _C	C± = ±5	v	٧ _C	$C\pm = \pm 15$	i V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TL 0500	25°C		0.73	3.5		0.65	1.5	
N/	lanut offerst velteres		TL052C	Full range			4.5			2.5	
VIO	Input offset voltage			25°C		0.51	2.8		0.4	0.8	mV
		V _O = 0, V _{IC} = 0,	TL052AC	Full range			3.8			1.8	
a	Temperature coefficient	$R_{S} = 50 \Omega$	TL052C	25°C to 70°C		8			8		μV/°C
$\alpha_{V_{IO}}$	of input offset voltage‡		TL052AC	25°C to 70°C		8			6	25	μν/ Ο
	Input offset-voltage long-term drift§	$V_{O} = 0,$ R _S = 50 Ω	V _{IC} = 0,	25°C		0.04			0.04		μV/mo
l. e	Input offect ourrest	$V_{O} = 0,$	$V_{12} = 0$	25°C		4	100		5	100	pА
10	Input offset current	See Figure 5	$V_{IC} = 0,$	70°C		0.02	1		0.025	1	nA
10	Input bias current	V _O = 0,	VIC = 0,	25°C		20	200		30	200	pА
IВ	input bias current	See Figure 5	VIC = 0,	70°C		0.15	4		0.2	4	nA
VICR	Common-mode input			25°C	-1 to 4	–2.3 to 5.6		-11 to 11	–12.3 to 15.6		v
VICR	voltage range			Full range	-1 to 4			-11 to 11			v
		$P_{\rm b} = 10 \rm ko$		25°C	3	4.2		13	13.9		
Vou	Maximum positive peak	$R_L = 10 k\Omega$		Full range	3			13			v
VOM+	output voltage swing	$R_L = 2 k\Omega$		25°C	2.5	3.8		11.5	12.7		v
				Full range	2.5			11.5			
		R _I = 10 kΩ		25°C	-2.5	-3.5		-12	-13.2		
V _{OM} –	Maximum negative peak			Full range	-2.5			-12			v
•OIVI-	output voltage swing	$R_L = 2 k\Omega$		25°C	-2.3	-3.2		-11	-12		v
				Full range	-2.3			-11			
	Large-signal differential			25°C	25	59		50	105		
AVD	voltage amplification¶	$R_L = 2 k\Omega$		0°C	30	65		60	129		V/mV
		ļ		70°C	20	46		30	85		
r _i	Input resistance			25°C		1012			1012		Ω
ci	Input capacitance			25°C		10			12		pF
	Common-mode	$V_{IC} = V_{ICR}min,$		25°C	65	85		75	93		
CMRR	rejection ratio	$V_{\rm O} = 0,$	$R_S = 50 \Omega$	0°C	65	84		75	92		dB
				70°C	65	84		75	91		

[†] Full range is 0°C to 70°C.

[‡] This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

§ Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}$ C, extrapolated to $T_A = 25^{\circ}$ C using the Arrhenius equation, and assuming an activation energy of 0.96 eV. ¶ For $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL052C and TL052AC electrical characteristics at specified free-air temperature (continued)

						Т	L052C, 1	L052AC	;					
	PARAMETER	TEST CONDITIONS		TEST CONDITIONS		METER TEST CONDITIONS T _A V _{CC±} =			;C± = ±5 V		V _{CC±} = ±15 V			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX				
				25°C	75	99		75	99					
k SVR	Supply-voltage rejection ratio ($\Delta V_{CC+}/\Delta V_{IO}$)	V _O = 0,	$R_S = 50 \Omega$	0°C	75	98		75	98		dB			
				70°C	75	97		75	97					
				25°C		4.6	5.6		4.8	5.6				
ICC	Supply current (two amplifiers)	V _O = 0,	No load	0°C		4.7	6.4		4.8	6.4	mA			
	(two unipinioro)			70°C		4.4	6.4		4.6	6.4				
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100		25°C		120			120		dB			

TL052C and TL052AC operating characteristics at specified free-air temperature

						Т	L052C, 1	L052AC	;			
	PARAMETER	TEST CO	NDITIONS	т _A †	٧c	C± = ±5	V	VC	C± = ±15	i V	UNIT	
					MIN	TYP	MAX	MIN	TYP	MAX		
SR+	Slew rate at unity gain			25°C		17.8		9	20.7			
517+	Siew rate at unity gain	$R_L = 2 k\Omega$,	$C_{L} = 100 \text{ pF},$	Full range				8			V/µs	
SR-	Negative slew rate	See Figure 1		25°C		15.4		9	17.8		ν/μ3	
	at unity gain‡							8				
				25°C		55						
t _r	Rise time			0°C		54			55			
				70°C		63			63		ns	
		$V_{I(PP)} = \pm 10$	mV,	25°C		55			57		110	
tf	Fall time	$R_{L} = 2 k\Omega,$ $C_{I} = 100 pF,$		0°C		54			56			
		See Figures 1 a	and 2	70°C		62			64			
				25°C		24			19			
	Overshoot factor			0°C		24			19		%	
				70°C		24			19			
v _n	Equivalent input noise		f = 10 Hz	25°C	71 7	71		nV/√Hz				
۳n	voltage§	R _S = 20 Ω,	f = 1 kHz	25°C		19			19	30	110/ 112	
V _{N(PP)}	Peak-to-peak equivalent input noise current	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV	
۱ _n	Equivalent input noise current	f = 1 kHz	-	25°C		0.01			0.01		pA/√Hz	
THD	Total harmonic distortion \P	R _S = 1 kΩ, f = 1 kHz	R _L = 2 kΩ,	25°C		0.003			0.003		%	
				25°C		3			3			
B ₁	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$ $C_{I} = 25 \text{ pF},$	$R_L = 2 k\Omega$, See Figure 4	0°C		3.2	3.2	.2		3.2		MHz
		0L - 20 pr,	Coor Iguio 4	70°C		2.6			2.7			
		Vi. 10 mV		25°C		60			63			
[¢] m	Phase margin at unity gain	$V_{I} = 10 \text{ mV},$ $C_{I} = 25 \text{ pF},$	$I_{l} = 10 \text{ mV}, R_{L} = 2 \text{ k}\Omega,$ $C_{L} = 25 \text{ pF}, \text{See Figure 4}$	0°C		59			63		deg	
	.	L - F.,		70°C		60			63			

[†] Full range is 0°C to 70°C.

 \pm For V_{CC±} = \pm 5 V, V_I(PP) = \pm 1 V; for V_{CC±} = \pm 15 V, V_I(PP) = \pm 5 V. § This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

¶ For $V_{CC\pm} = \pm 5$ V, $V_{O(RMS)} = 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{O(RMS)} = 6$ V.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL052I and TL052AI electrical characteristics at specified free-air temperature

							FL052I, T	L052AI			
	PARAMETER	TEST CON	DITIONS	т _А †	٧c	C± = ±5	V	VCC	c± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 0501	25°C		0.73	3.5		0.65	1.5	
. ,	1 <i></i>		TL0521	Full range			5.3			3.3	.,
VIO	Input offset voltage		TI 05041	25°C		0.51	2.8		0.4	0.8	mV
		V _O = 0, V _{IC} = 0,	TL052AI	Full range			4.6			2.6	
	+	$R_{S} = 50 \Omega$	TL052I	25°C to 85°C		7			6		
$\alpha_{V_{IO}}$	Temperature coefficient [‡]		TL052AI	25°C to 85°C		6			6	25	μV/°C
	Input offset-voltage long-term drift§	$V_{O} = 0,$ R _S = 50 Ω	V _{IC} = 0,	25°C		0.04			0.04		μV/mc
	land offersterment	V _O = 0,	V _{IC} = 0,	25°C		4	100		5	100	pА
10	Input offset current	See Figure 5	10	85°C		0.06	10		0.07	10	nA
l	lanut bing summant	V _O = 0,	V _{IC} = 0,	25°C		20	200		30	200	pА
IВ	Input bias current	See Figure 5		85°C		0.6	20		0.7	20	nA
VICR	Common-mode input			25°C	-1 to 4	–2.3 to 5.6		-11 to 11	-12.3 to 15.6		v
VICR	voltage range			Full range	-1 to 4			-11 to 11			v
		Rι = 10 kΩ		25°C	3	4.2		13	13.9		
VOM+	Maximum positive peak			Full range	3			13			v
VOM+	output voltage swing	$R_L = 2 k\Omega$		25°C	2.5	3.8		11.5	12.7		v
				Full range	2.5			11.5			
		$R_{I} = 10 k\Omega$		25°C	-2.5	-3.5		-12	-13.2		
V _{OM} –	Maximum negative peak			Full range	-2.5			-12			v
· 0///=	output voltage swing	$R_1 = 2 k\Omega$		25°C	-2.3	-3.2		-11	-12		
		· ··		Full range	-2.3			-11			
	Large-signal differential			25°C	25	59		50	105		
AVD	voltage amplification¶	$R_L = 2 k\Omega$		_40°C	30	74		60	145		V/mV
				85°C	20	43		30	76		
r _i	Input resistance			25°C		1012			1012		Ω
ci	Input capacitance			25°C		10			12		pF
	Common-mode	$V_{IC} = V_{ICR}min$,		25°C	65	85		75	93		
CMRR	rejection ratio	$V_{O} = 0,$	Rg = 50 Ω	_40°C	65	83		75	90		dB
				85°C	65	84		75	93		

[†]Full range is –40°C to 85°C.

[‡] This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters

§ Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}$ C, extrapolated to $T_A = 25^{\circ}$ C using the Arrhenius equation, and assuming an activation energy of 0.96 eV. ¶ At $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL052I and TL052AI electrical characteristics at specified free-air temperature (continued)

		TEST CONDITIONS				٦	FL052I, 1	L052AI			
	PARAMETER			TA	V _{CC±} = ±5 V			Vcc	;± = ±15	۷	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
				25°C	75	99		75	99		
k SVR	Supply-voltage rejection ratio ($\Delta V_{CC+}/\Delta V_{IO}$)	VO = 0,	$R_S = 50 \ \Omega$	-40°C	75	98		75	98		dB
				85°C	75	99		75	99		
				25°C		4.6	5.6		4.8	5.6	
ICC	Supply current (two amplifiers)	V _O = 0,	No load	-40°C		4.5	6.4		4.7	6.4	mA
	(two ampimoro)			85°C		4.4	6.4		4.6	6.4	
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100		25°C		120			120		dB

TL052I and TL052AI operating characteristics at specified free-air temperature

		TEST CONDITIONS		т _A †								
	PARAMETER				V _{CC±} = ±5 V			V _{CC±} = ±15 V			UNIT	
					MIN	TYP	MAX	MIN	TYP	MAX	1	
SR+				25°C		17.8		9	20.7			
3R+	Slew rate at unity gain‡	$R_L = 2 k\Omega$,	C _L = 100 pF,	Full range				8			V/µs	
SR-	Negative slew rate at	See Figure 1		25°C		15.4		9	17.8		v/µs	
3K-	unity gain‡			Full range				8				
				25°C		55			56			
t _r	Rise time			_40°C		52			53			
				85°C		64			65			
	Fall time	$V_{I(PP)} = \pm 10 \text{ mV},$ $R_L = 2 \Omega, C_L = 100 \text{ pF},$ See Figures 1 and 2		25°C		55			57		ns	
t _f				_40°C		51			53			
				85°C		64			65			
	Overshoot factor			25°C		24%			19%			
				_40°C		24%			19%		%	
				85°C		24%			19			
V	Equivalent input noise		f = 10 Hz f = 1 kHz	25°C		71			71		nV/√Hz	
v _n	voltage§	R _S = 20 Ω,		25°C		19			19	30	nv/vHz	
V _{N(PP)}	Peak-to-peak equivalent input noise current	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV	
In	Equivalent input noise current	f = 1 kHz	-	25°C		0.01			0.01		pA/√Hz	
THD	Total harmonic distortion \P	R _S = 1 kΩ, f = 1 kHz	R _L = 2 kΩ,	25°C		0.003			0.003		%	
				25°C		3			3			
B ₁	Unity-gain bandwidth	V _I = 10 mV, C _I = 25 pF,	$R_L = 2 k\Omega$, See Figure 4	-40°C		3.5			3.6		MHz	
	-	οL = 29 μr,	See Figure 4	85°C		2.5			2.6			
	Dhara analia at anii	10	D 010	25°C		60			63			
[¢] m	Phase margin at unity gain	VI = 10 mV, CI = 25 pF,	R _L = 2 kΩ, See Figure 4	-40°C		58			61		deg	
	J			85°C		60			63			

[†] Full range is –40°C to 85°C.

⁺ For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V. § This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

¶ For $V_{CC\pm} = \pm 5$ V, $V_{O(RMS)} = 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{O(RMS)} = 6$ V.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL054C and TL054AC electrical characteristics at specified free-air temperature

			TL054C, TL054AC								
	PARAMETER	TEST CONDITIONS		т _A †	V _{CC±} = ±5 V V _{CC±} = ±15 V					5 V	
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 05 40	25°C		0.64	5.5		0.56	4	
N/	lanut offerst velteres		TL054C	Full range			7.7			6.2	
VIO	Input offset voltage			25°C		0.57	3.5		0.5	1.5	mV
		V _O = 0,	TL054AC	Full range			5.7			3.7	
	Temperature coefficient	$V_{IC} = 0,$ $V_{IC} = 0,$ $R_{S} = 50 \Omega$	TL054C	25°C to 70°C		25			23		2//00
$\alpha_{V_{IO}}$	of input offset voltage		TL054AC	25°C to 70°C		24			23		μV/°C
	Input offset-voltage long-term drift [‡]			25°C		0.04			0.04		μV/mc
h	logist affect assument	V _O = 0,	V _{IC} = 0,	25°C		4	100		5	100	pА
10	Input offset current	See Figure	5	70°C		0.02	1		0.025	1	nA
		V _O = 0,	VIC = 0,	25°C		20	200		30	200	pА
IВ	Input bias current	See Figure	5	70°C		0.15	4		0.2	4	nA
	Common-mode input voltage range			25°C	-1	-2.3		-11	-12.3		
					to	to		to	to		
VICR					4	5.6		11	15.6		v
					-1 to			-11 to			
				Full range	4			11			
				25°C	3	4.2		13	13.9		
	Maximum positive peak output voltage swing	$R_L = 10 \text{ k}\Omega$		Full range	3			13			
VOM+					2.5	3.8		11.5	12.7		V
		$R_L = 2 k\Omega$		Full range	2.5			11.5			1
				25°C	-2.5	-3.5		-12	-13.2		- v
M	Maximum negative peak output voltage swing	$R_L = 10 k\Omega$ $R_L = 2 k\Omega$		Full range	-2.5			-12			
VOM-				25°C	-2.3	-3.2		-11	-12		
		KL = 2 K32		Full range	-2.3			-11			
	Large-signal differential voltage amplification§	R _L = 2 kΩ		25°C	25	72		50	133		
AVD				0°C	30	88		60	173		V/mV
				70°C	20	57		30	85		
r _i	Input resistance			25°C		10 ¹²			1012		Ω
ci	Input capacitance			25°C		10			12		pF
	Common-mode		min	25°C	65	84		75	92		
CMRR	rejection ratio	$V_{IC} = V_{ICR}$ $V_O = 0,$	$R_S = 50 \Omega$	0°C	65	84		75	92		dB
		.0 - 0,		70°C	65	84		75	93		
	Supply-voltage rejection	$V_{00} = \pm 5$	/ to +15 \/	25°C 0°C	75	99		75	99		
^k SVR	ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{O} = 0,$	$V_{CC\pm} = \pm 5 \text{ V to } \pm 15 \text{ V},$ $V_{O} = 0, \qquad R_{S} = 50 \Omega$		75	99		75	99		dB
		,	0	70°C	75	99		75	99		
	Supply current			25°C		8.1	11.2		8.4	11.2	
ICC	(four amplifiers)	V _O = 0, No load		0°C		8.2	12.8		8.5	12.8	
				70°C		7.9	11.2		8.2	11.2	
V01/V02	Crosstalk attenuation	$A_{VD} = 100$		25°C		120			120		dB

[†] Full range is 0°C to 70°C.

⁺ Typical values are based on the input offset-voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}$ C, extrapolated to $T_A = 25^{\circ}$ C using the Arrhenius equation, and assuming an activation energy of 0.96 eV. § For $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V, at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V.B

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL054C and TL054AC operating characteristics at specified free-air temperature

			TL054C, TL054C								
	PARAMETER	TEST CONDITIONS		тд†	V _{CC±} = ±5 V			V _{CC±} = ±15 V			UNIT
						TYP	MAX	MIN	TYP	MAX	
SR+	Positive slew rate			25°C		15.4		10	17.8		
5K+	at unity gain			0°C		15.7		8	17.9		1
		$R_L = 2 k\Omega$,	C _L = 100 pF,	70°C		14.4		8	17.5		
CD	Negative slew rate at	See Figure 1 a	and Note 7	25°C		13.9		10	15.9		V/μs
SR-	unity gain‡			0°C		14.3		8	16.1		1
				70°C		13.3		8	15.5		1
				25°C		55			56		
t _r	Rise time			0°C		54			55		1
						63			63		ns
	Fall time	$V_{I(PP)} = \pm 10 \text{ mV},$ $R_L = 2 \text{ k}\Omega,$ $C_L = 100 \text{ pF},$ See Figures 1 and 2		25°C		55			57		
t _f				0°C		54			56		
				70°C		62			64		
				25°C		24%			19%		%
	Overshoot factor			0°C		24%			19%		
				70°C		24%			19		1
V	Equivalent input noise		f = 10 Hz	25°C		75			75		nV/√Hz
Vn	voltage§	R _S = 20 Ω,	f = 1 kHz	25°C		21			21	45	
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV
I _n	Equivalent input noise current	f = 1 kHz		25°C		0.01			0.01		pA/√Hz
THD	Total harmonic distortion¶	R _S = 1 kΩ, f = 1 kHz	RL = 2 kΩ,	25°C		0.003			0.003		%
				25°C		2.7			2.7		
В ₁	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$	$R_L = 2 k\Omega$,	0°C		3			3		MHz
		C _L = 25 pF,	See Figure 4	70°C		2.4			2.4		
	Dhara annia at	10 m)/		25°C		61			64		
[¢] m	Phase margin at unity gain	$V_{l} = 10 \text{ mV},$	$R_L = 2 k\Omega$, See Figure 4	0°C		60			64		deg
	anty gain	$C_L = 25 \text{ pF},$ See Figure 4		70°C		61			63		1

[†] Full range is 0°C to 70°C.

[‡] For V_{CC±} = ±5 V, V_I(PP) = ±1 V; for V_{CC±} = ±15 V, V_I(PP) = ±5 V. § This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

¶ For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{O(RMS)} = 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{O(RMS)} = 6 \text{ V}$.

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TL054I and TL054AI electrical characteristics at specified free-air temperature

					TL054I, TL054AI						
	PARAMETER	TEST CONDITIONS		т _А †	V _{CC±} = ±5 V V _{CC±} = ±15 V						UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	1
			TL0541	25°C		0.64	5.5		0.56	4	
Via	Input offset voltage		110041	Full range			8.8			7.3	mV
VIO	input onset voltage		TL054AI	25°C		0.57	3.5		0.5	1.5	111V
		$V_{O} = 0,$	TL054AI	Full range			6.8			4.8	
0	Temperature coefficient of	$V_{IC} = 0,$ $R_S = 50 \Omega$	TL054I	25°C to 85°C		25			24		μV/°C
α _{VIO}	input offset voltage	Ŭ	TL054AI	25°C to 85°C		25			23		μν/ Ο
	Input offset voltage long-term drift [‡]			25°C		0.04			0.04		μV/mc
l. e	logut offect ourrest	V _O = 0,	V _{IC} = 0,	25°C		4	100		5	100	pА
10	Input offset current	See Figure 5	5	85°C		0.06	10		0.07	10	nA
lin	Input bias current		VIC = 0,	25°C		20	200		30	200	pА
IВ		See Figure 5	5	85°C		0.6	20		0.7	20	nA
					-1	-2.3		-11	-12.3		
	Common-mode input voltage range			25°C	to 4	to 5.6		to 11	to 15.6		
VICR					-1	5.0		-11	15.0		V
				Full range	to			to			
				J-	4			11			
	Maximum positive peak output voltage swing	R _L = 10 kΩ		25°C	3	4.2		13	13.9		
Var				Full range	3			13			v
VOM+		$R_L = 2 k\Omega$		25°C	2.5	3.8		11.5	12.7		, v
				Full range	2.5			11.5			
	Maximum negative peak output voltage swing	$R_L = 10 kΩ$ $R_L = 2 kΩ$		25°C	-2.5	-3.5		-12	-13.2		- V
Vom-				Full range	-2.5			-12			
• Olvi–				25°C	-2.3	-3.2		-11	-12		
				Full range	-2.3			-11			
	Large-signal differential	R _L = 2 kΩ		25°C	25	72		50	133		V/mV
AVD	voltage amplification§			_40°C	30	101		60	212		
				85°C	20	50		30	70		
r _i	Input resistance			25°C		1012			1012		Ω
c _i	Input capacitance	ļ		25°C		10			12		pF
	Common-mode	VIC = VICR	nin.	25°C	65	84		75	92		
CMRR	rejection ratio		$R_S = 50 \Omega$	-40°C	65	83		75	92		dB
			-	85°C	65	84		75	93		
	Supply-voltage rejection	$V_{CC\pm} = \pm 5$ V	/ to ±15 V.	25°C	75	99		75	99		
ksvr	ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)		$R_{S} = 50 \Omega$	-40°C	75	98		75	99		dB
				85°C	75	99	44.0	75	99	44.0	
	Supply current			25°C		8.1	11.2		8.4	11.2	-
ICC	(four amplifiers)	$V_{O} = 0$, No load		_40°C 85°C		7.9	12.8 11.2		8.2	12.8 11.2	_
			A _{VD} = 100			120	11.2		7.9	11.2	

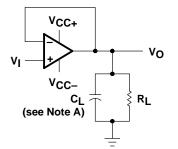
[†]Full range is -40°C to 85°C.

⁺ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}$ C, extrapolated to $T_A = 25^{\circ}$ C using the Arrhenius equation, and assuming an activation energy of 0.96 eV. § For $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V, at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V.

SLOS178A – FEBRUARY 1997 - REVISED FEBRUARY 2003

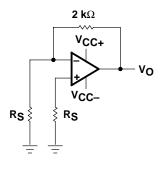
			т _А †	TL054I, TL054AI							
	PARAMETER	TEST CONDITIONS		V _{CC±} = ±5 V			V _{CC±} = ±15 V			UNIT	
			Ŷ	MIN	TYP	MAX	MIN	TYP	MAX		
<u></u>	Positive slew rate			25°C		15.4		10	17.8		
SR+	at unity gain			_40°C		16.4		8	18		
		$R_L = 2 k\Omega$,	C _L = 100 pF,	85°C		14		8	17.3		
00	Negative slew rate at	See Figure 1		25°C		13.9		10	15.9		V/μs
SR-	unity gain‡			_40°C		14.7		8	16.1		
				85°C		13		8	15.3		
				25°C		55			56		
t _r	Rise time			_40°C		52			53		
				85°C		64			65		
t _f	Fall time	$V_{I}(PP) = \pm 10 \text{ mV}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$ See Figures 1 and 2		25°C		55			57		ns
				_40°C		51			53		
				85°C		64			65		
	Overshoot factor			25°C		24			19		
				_40°C		24			19		%
			85°C		24			19			
	Equivalent input noise		f = 10 Hz	25°C		75			75		nV/√H
Vn	voltage§	R _S = 20 Ω,	f = 1 kHz	25°C		21			21	45	
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	See Figure 3	f = 10 Hz to 10 kHz	25°C		4			4		μV
In	Equivalent input noise current	f = 1 kHz		25°C		0.01			0.01		pA/√H
THD	Total harmonic distortion ${ m I}$	R _S = 1 kΩ, f = 1 kHz	$R_{L} = 2 k\Omega$,	25°C	0	0.003%		0	.003%		%
		10 10 V		25°C		2.7			2.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, C _I = 25 pF,	$R_L = 2 k\Omega$, See Figure 4	_40°C		3.3			3.3		MHz
		$O_{L} = 20 \text{ pr},$		85°C		2.3			2.4		
	Dhase merris at	10 m)/		25°C		61			64		
∮m	Phase margin at unity gain	VI = 10 mV, CL = 25 pF,	$R_L = 2 k\Omega$, See Figure 4	_40°C		59			62		deg
	anny gan	ο _L = 20 pl,	$O_L = 25 \text{pr}, \text{See Figure 4}$			61			64		1

TL054I and TL054AI operating characteristics at specified free-air temperature


[†] Full range is –40°C to 85°C.

[‡] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{I(PP)} = \pm 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{I(PP)} = \pm 5 \text{ V}$. § This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters.

¶ For $V_{CC\pm} = \pm 5$ V, $V_{O(RMS)} = 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{O(RMS)} = 6$ V.



PARAMETER MEASUREMENT INFORMATION

NOTE A: CI includes fixture capacitance.

Figure 1. Slew Rate, Rise/Fall Time, and Overshoot Test Circuit

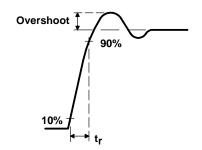
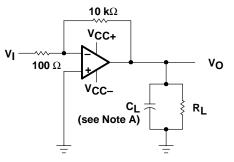
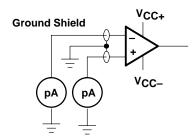
Figure 3. Noise-Voltage Test Circuit

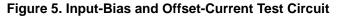
typical values

Typical values, as presented in this data sheet represent the median (50% point) of device parametric performance.

input bias and offset current

At the picoamp-bias-current level typical of the TL05x and TL05xA, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but


Figure 2. Rise-Time and Overshoot Waveform

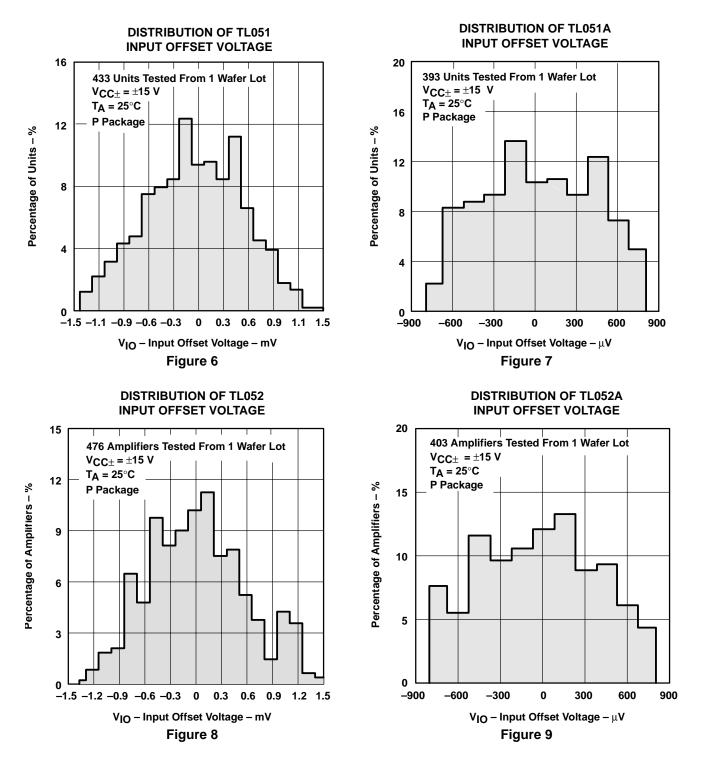
NOTE A: C_L includes fixture capacitance.

Figure 4. Unity-Gain Bandwidth and Phase-Margin Test Circuit

test-socket leakages easily can exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied, but with no device in the socket. The device then is inserted in the socket, and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements then are subtracted algebraically to determine the bias current of the device.

noise

Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage density is sample tested at f = 1 kHz. Texas Instruments also has additional noise-testing capability to meet specific application requirements. Please contact the factory for details.


SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

TYPICAL CHARACTERISTICS

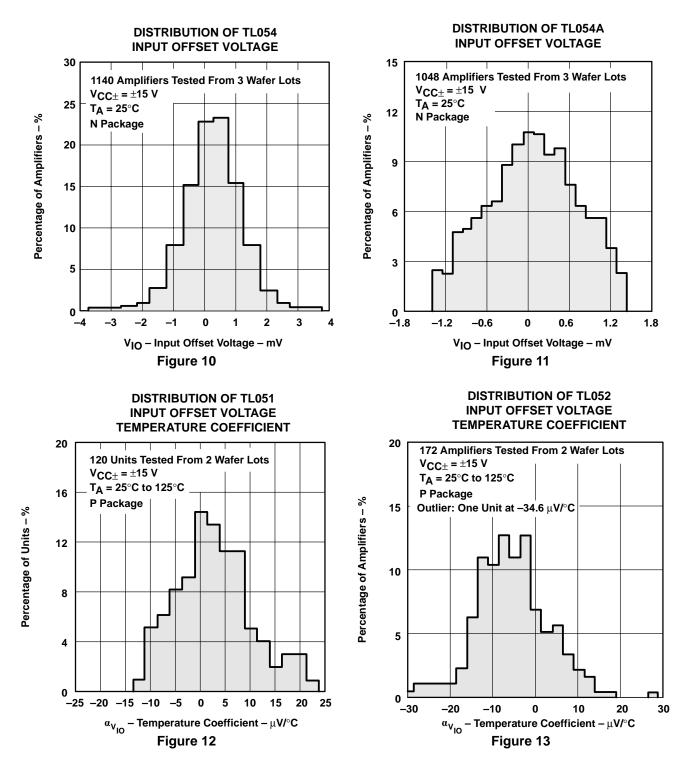
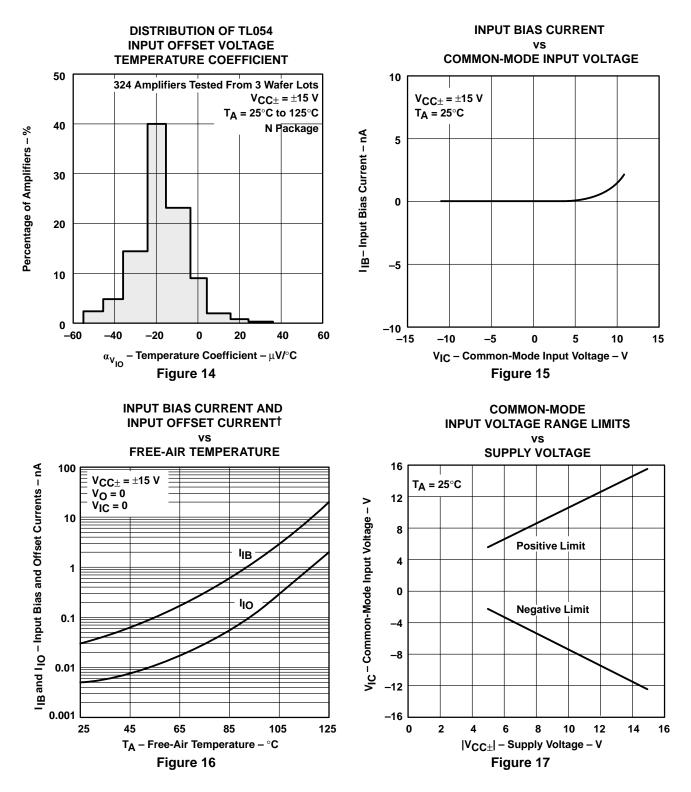
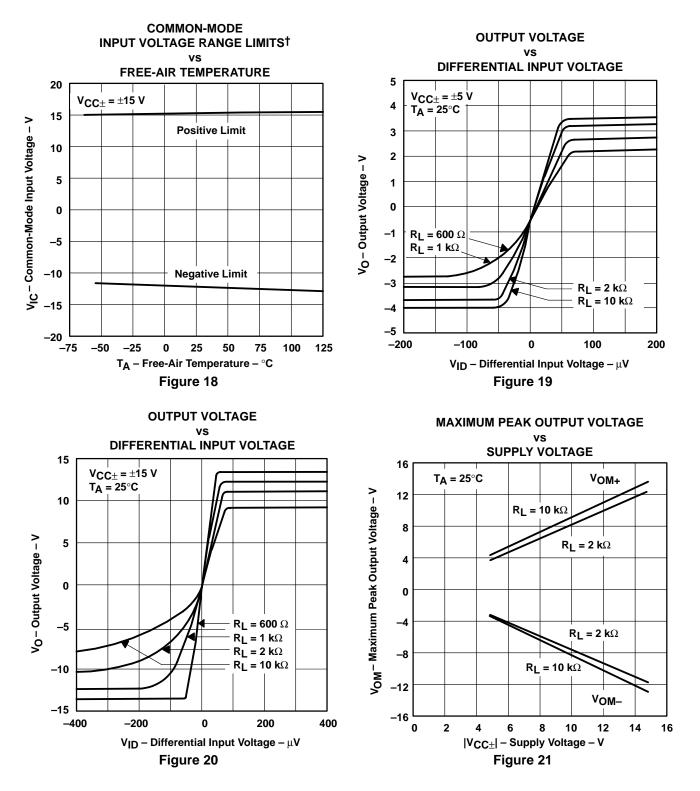
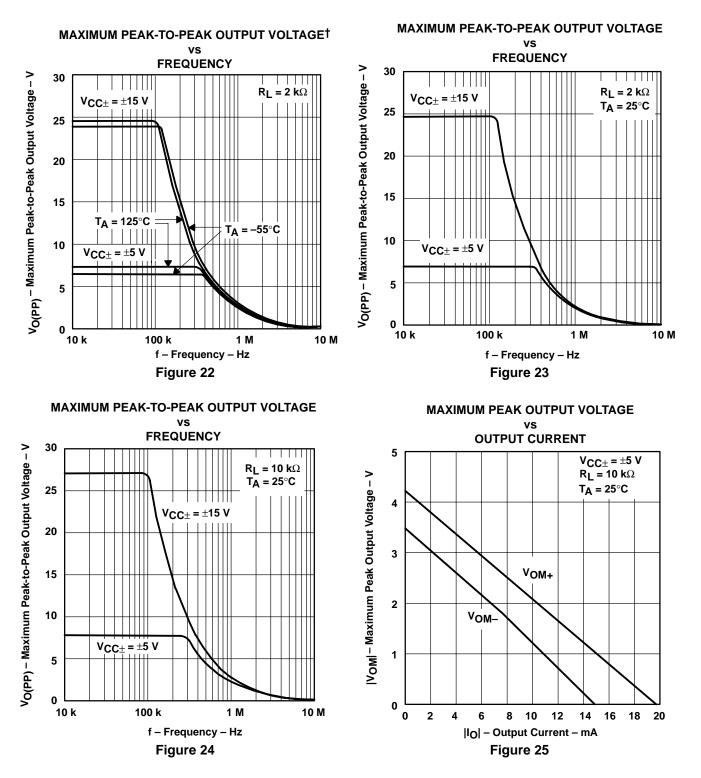

Table of Graphs

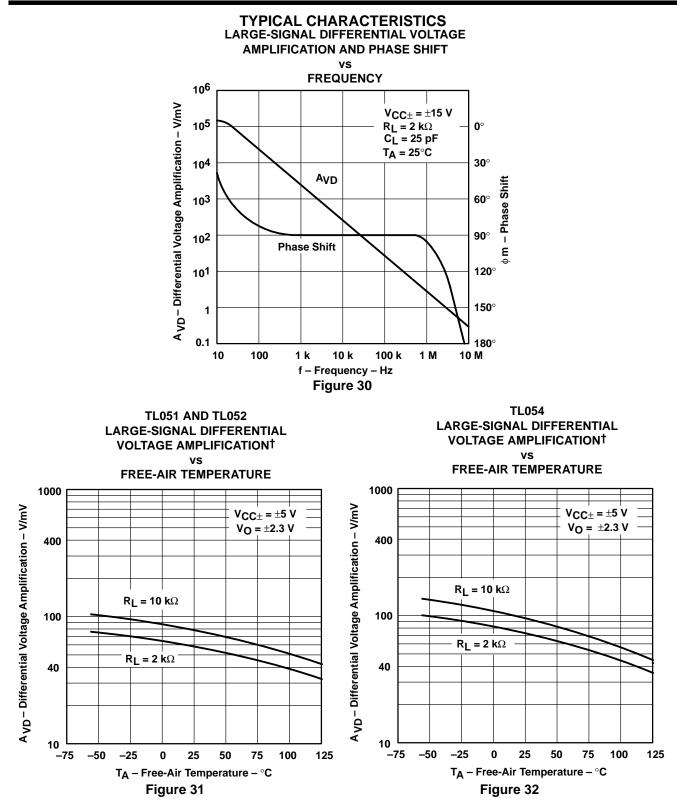
			FIGURE
VIO	Input offset voltage	Distribution	6–11
$\alpha_{V_{IO}}$	Temperature coefficient of input offset voltage	Distribution	12, 13, 14
IIB	Input bias current	vs Common-mode input voltage vs Free-air temperature	15 16
10	Input offset current	vs Free-air temperature	16
VIC	Common-mode input voltage range limits	vs Supply voltage vs Free-air temperature	17 18
Vo	Output voltage	vs Differential input voltage	19, 20
Vom	Maximum peak output voltage	vs Supply voltage vs Output current vs Free-air temperature	21 25, 26 27, 28
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	22, 23, 24
AVD	Large-signal differential voltage amplification	vs Load resistance vs Frequency vs Free-air temperature	29 30 31, 32, 33
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	34, 35 36
z _o	Output impedance	vs Frequency	37
ksvr	Supply-voltage rejection ratio	vs Free-air temperature	38
IOS	Short-circuit output current	vs Supply voltage vs Time vs Free-air temperature	39 40 41
ICC	Supply current	vs Supply voltage vs Free-air temperature	42, 43, 44 45, 46, 47
SR	Slew rate	vs Load resistance vs Free-air temperature	48–53 54–59
	Overshoot factor	vs Load capacitance	60
V _n	Equivalent input noise voltage	vs Frequency	61, 62
THD	Total harmonic distortion	vs Frequency	63
В ₁	Unity-gain bandwidth	vs Supply voltage vs Free-air temperature	64, 65, 66 67, 68, 69
[¢] m	Phase margin	vs Supply voltage vs Load capacitance vs Free-air temperature	70, 71, 72 73, 74, 75 76, 77, 78
	Phase shift	vs Frequency	30
	Voltage-follower small-signal pulse response	vs Time	79
	Voltage-follower large-signal pulse response	vs Time	80

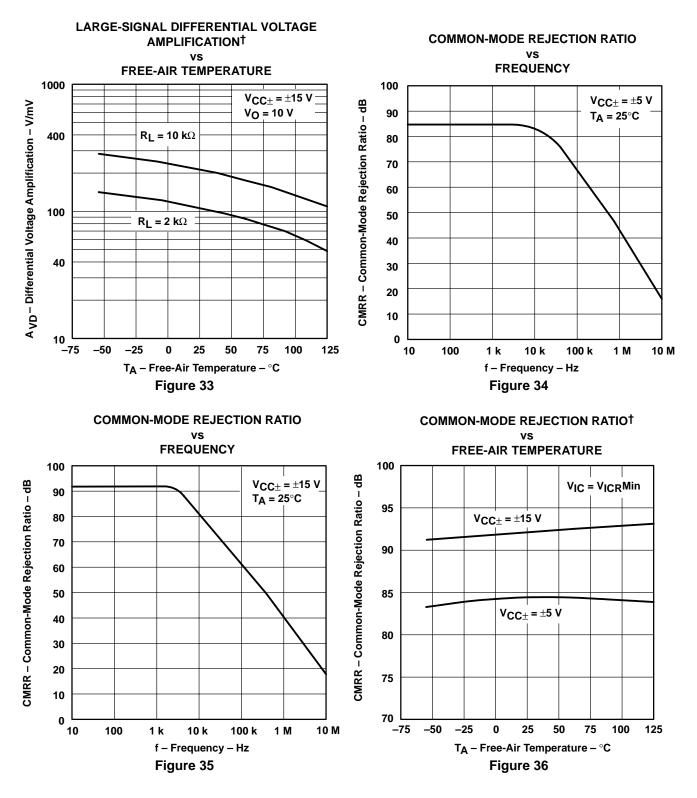


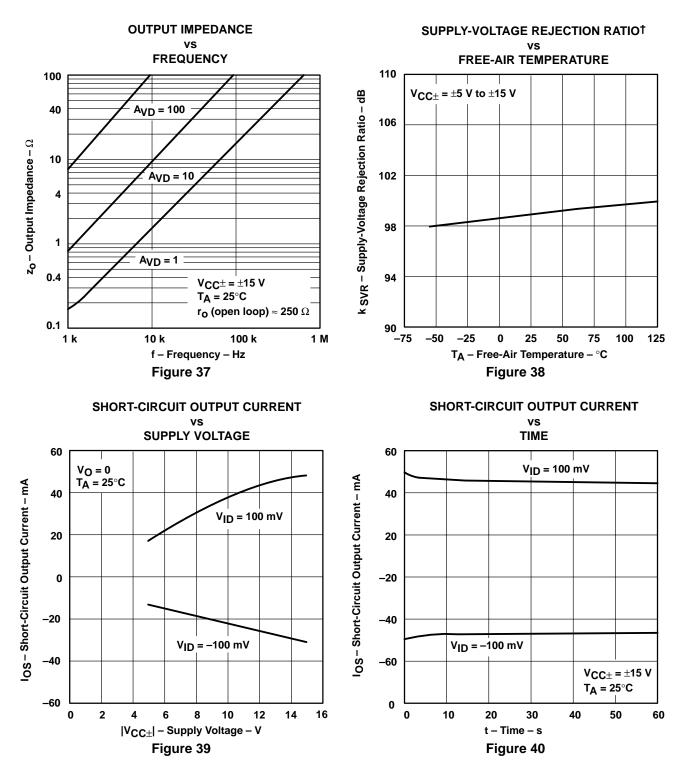


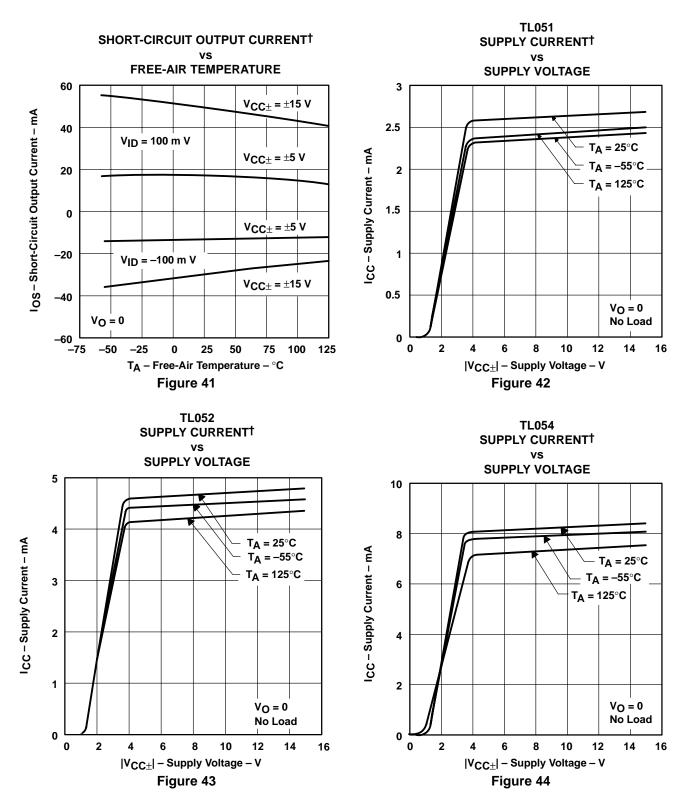


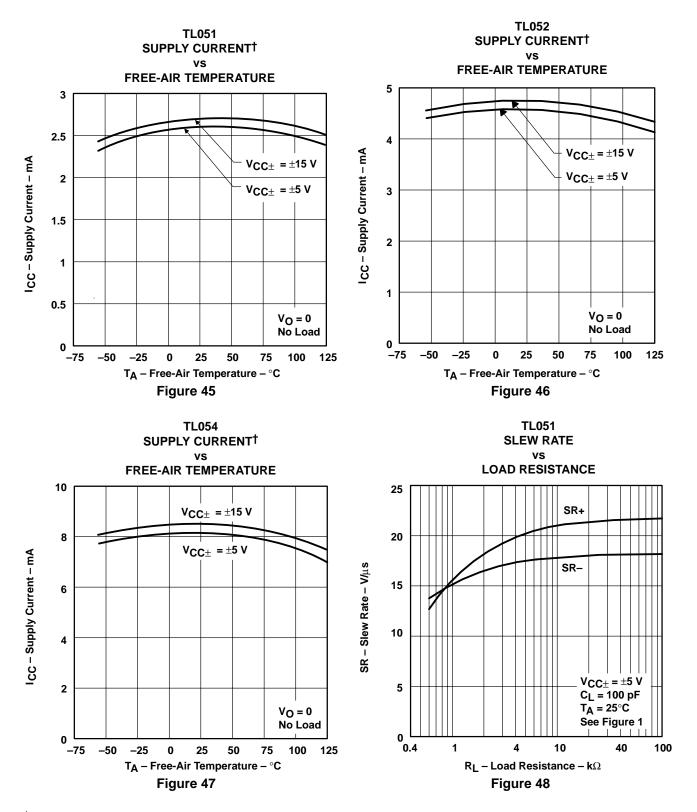


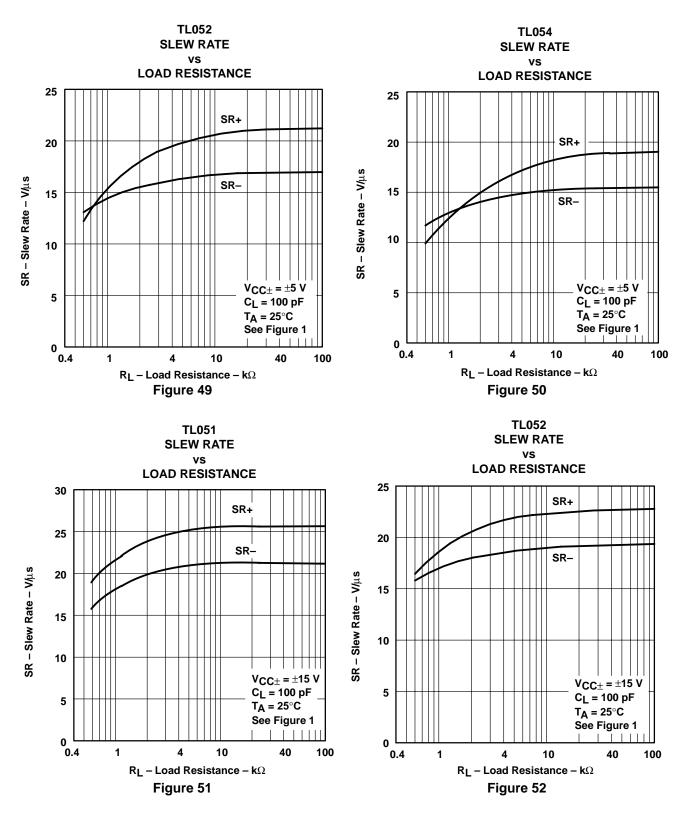






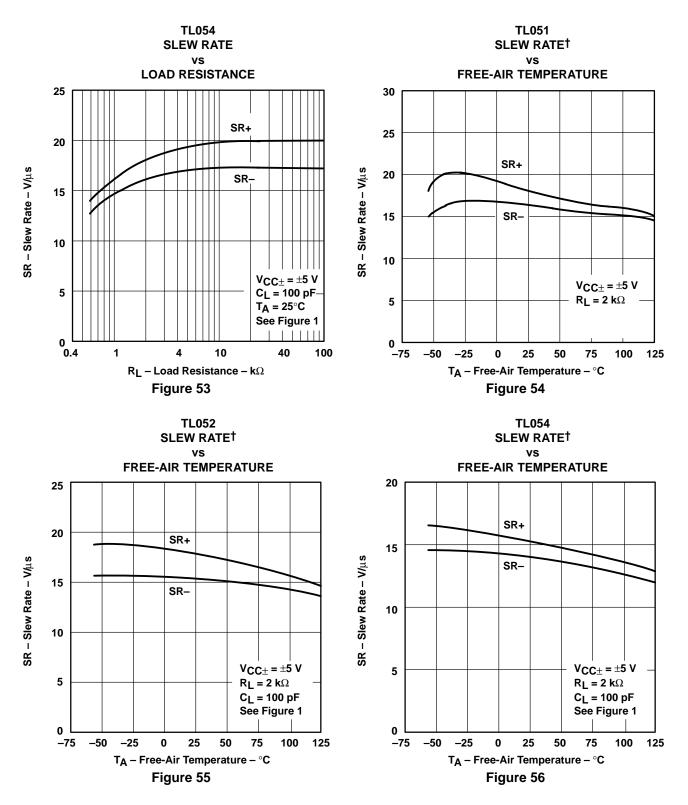


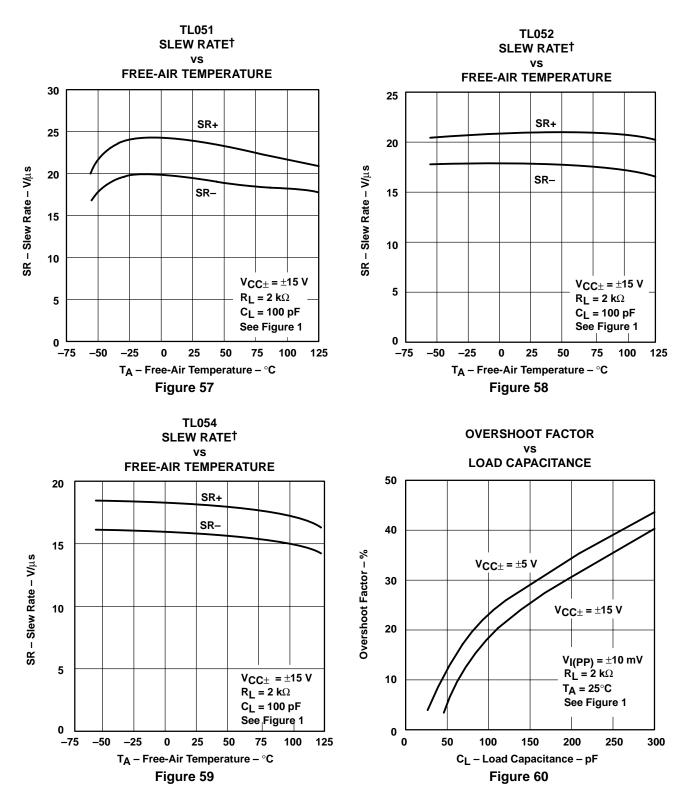




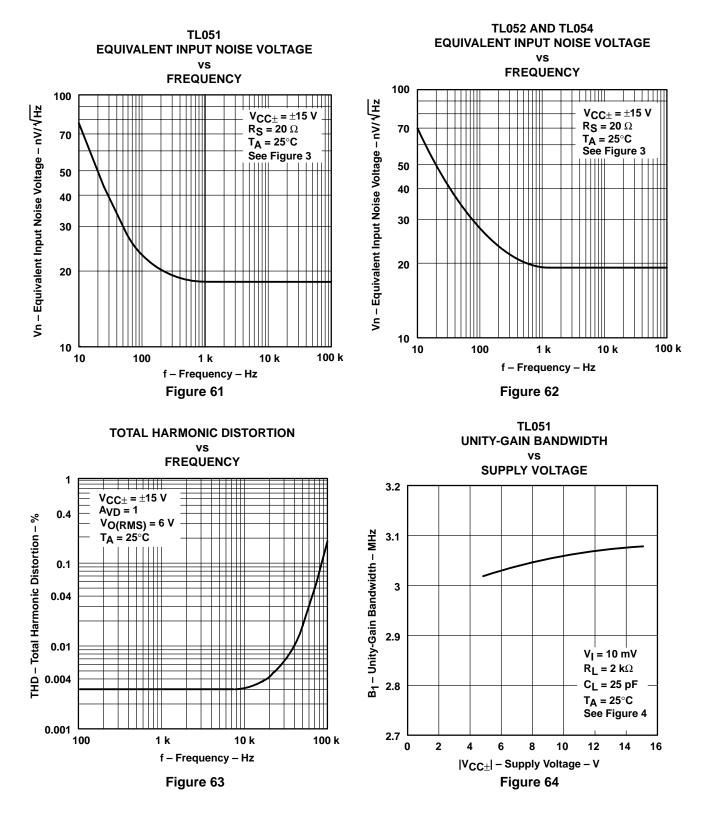
TL05x, TL05xA ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS178A – FEBRUARY 1997 - REVISED FEBRUARY 2003

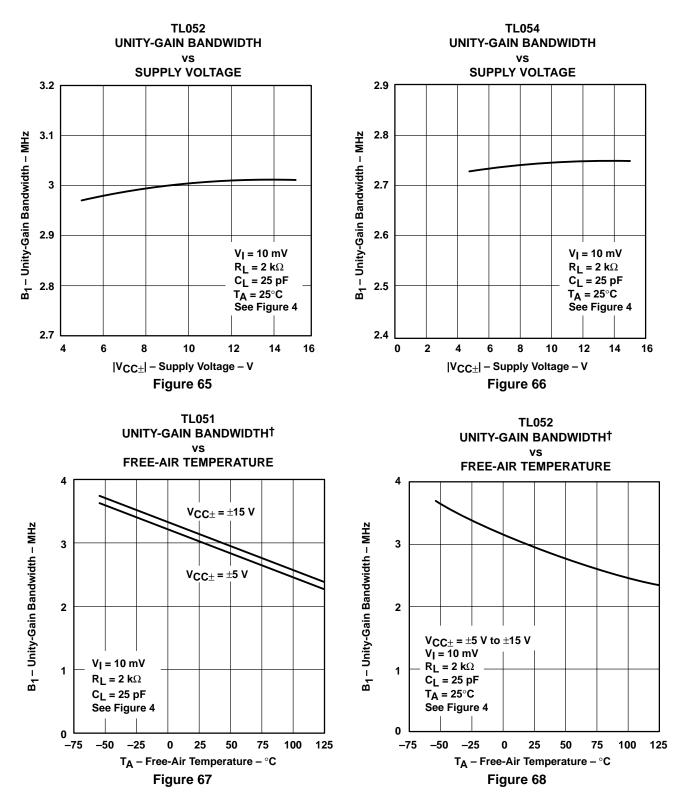
TYPICAL CHARACTERISTICS

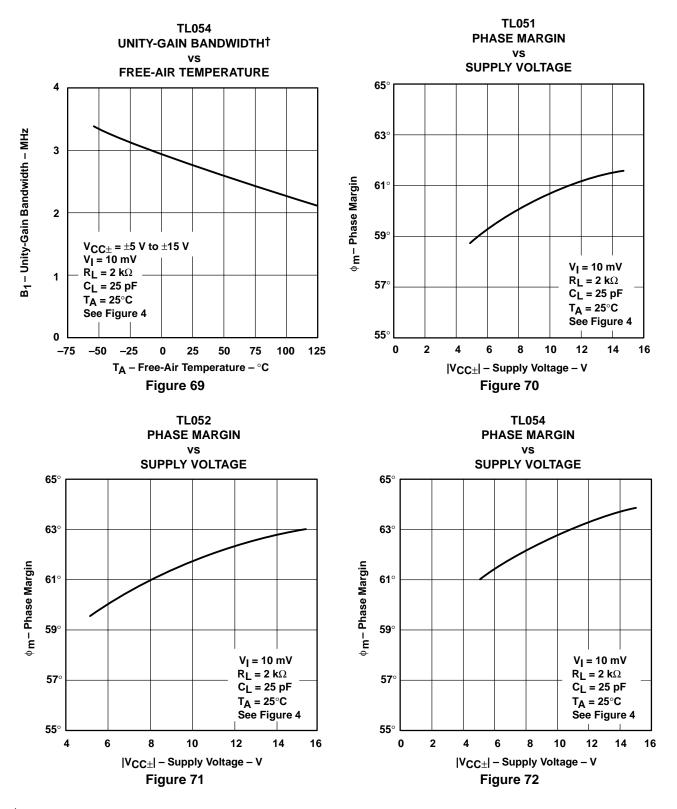


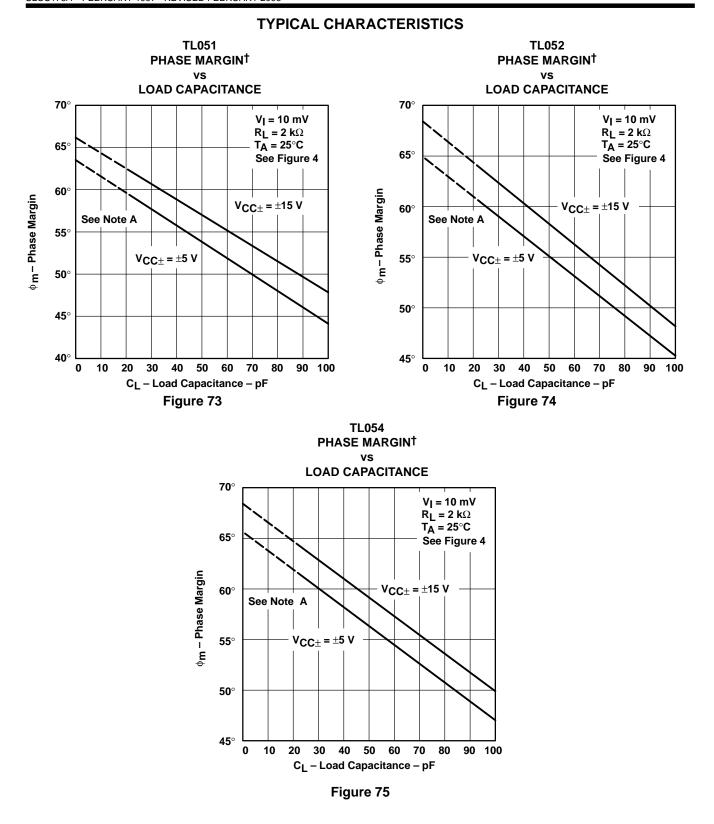


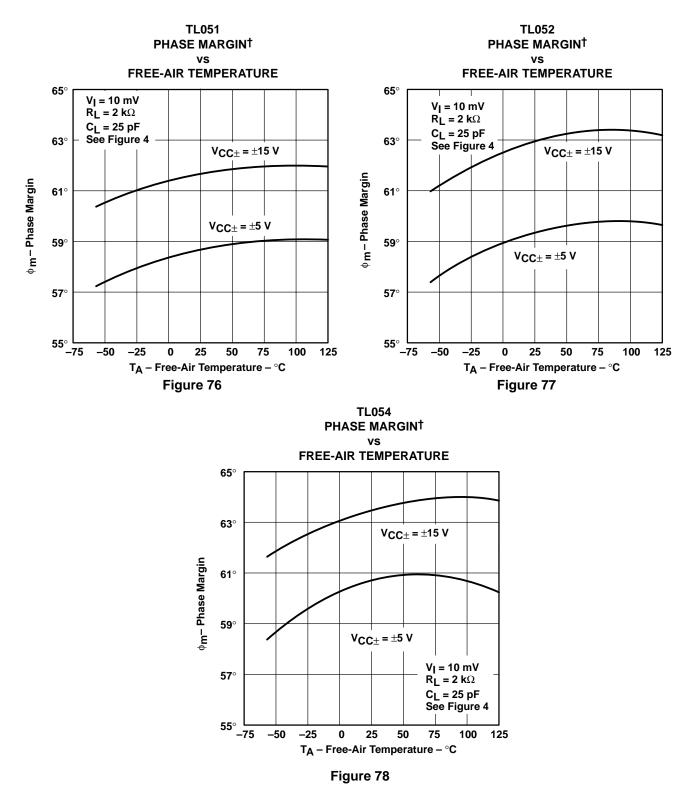
TL05x, TL05xA ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS178A – FEBRUARY 1997 - REVISED FEBRUARY 2003


TYPICAL CHARACTERISTICS

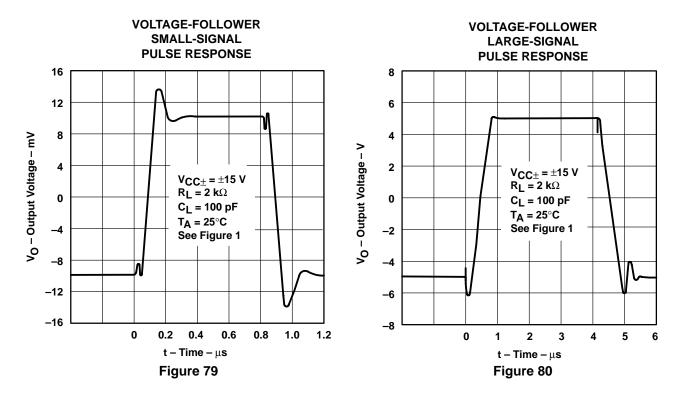




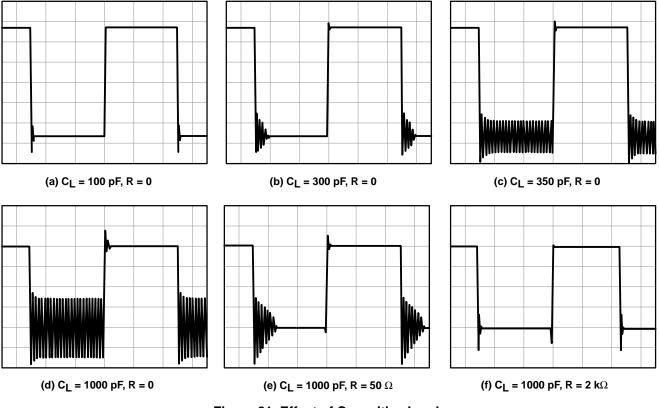


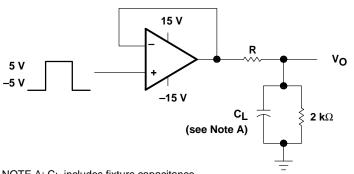


[†] Values of phase margin below a load capacitance of 25 pF were estimated.


TYPICAL CHARACTERISTICS

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


TYPICAL CHARACTERISTICS

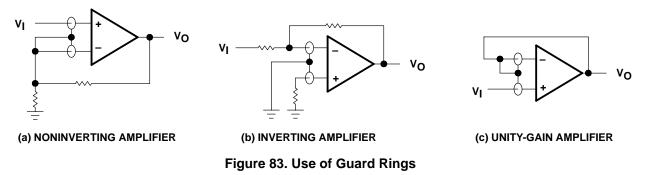


output characteristics

All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL05x and TL05xA drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem. Capacitive loads of 1000 pF, and larger, may be driven if enough resistance is added in series with the output (see Figure 81 and Figure 82).

NOTE A: CL includes fixture capacitance.

Figure 82. Test Circuit for Output Characteristics



input characteristics

The TL05x and TL05xA are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction.

Because of the extremely high input impedance and resulting low-bias current requirements, the TL05x and TL05xA are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets easily can exceed bias current requirements and cause degradation in system performance. It is good practice to include guard rings around inputs (see Figure 83). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input.

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input-bias current requirements of the TL05x and TL05xA result in a very low current noise. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω .

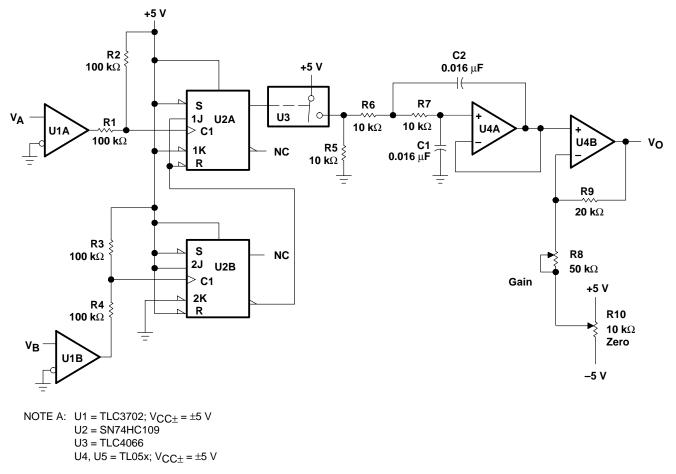
phase meter

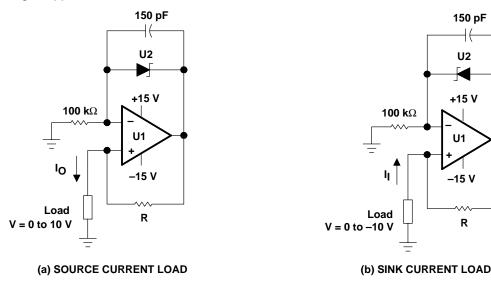
The phase meter in Figure 84 produces an output voltage of 10 mV per degree of phase delay between the two input signals V_A and V_B . The reference signal V_A must be the same frequency as V_B . The TLC3702 comparators (U1) convert these two input sine waves into \pm 5-V square waves. Then, R1 and R4 provide level shifting prior to the SN74HC109 dual J-K flip flops.

Flip-flop U2B is connected as a toggle flip-flop and generates a square wave at one-half the frequency of V_B. Flip-flop U2A also produces a square wave at one-half the input frequency. The pulse duration of U2A varies from zero to one-half the period, where zero corresponds to zero phase delay between V_A and V_B and one-half the period corresponds to V_B lagging V_A by 360 degrees.

The output pulse from U2A causes the TLC4066 (U3) switch to charge the TL05x (U4) integrator capacitors C1 and C2. As the phase delay approaches 360 degrees, the output of U4A approximates a square wave, and U2A has an output of almost 2.5 V. U4B acts as a noninverting amplifier with a gain of 1.44 in order to scale the 0- to 2.5-V integrator output to a 0- to 3.6-V output range.

R8 and R10 provide output gain and zero-level calibration. This circuit operates over a 100-Hz to 10-kHz frequency range.




Figure 84. Phase Meter

precision constant-current source over temperature

A precision current source (see Figure 85) benefits from the high input impedance and stability of Texas Instruments enhanced-JFET process. A low-current shunt regulator maintains 2.5 V between the inverting input and the output of the TL05x. The negative feedback then forces 2.5 V across the current-setting resistor R; therefore, the current to the load simply is 2.5 V divided by R.

Possible choices for the shunt regulator include the LT1004, LT1009, and LM385. If the regulator's cathode connects to the operational amplifier output, this circuit sources load current. Similarly, if the cathode connects to the inverting input, the circuit sinks current from the load. To minimize output current change with temperature, R should be a metal film resistor with a low temperature coefficient. Also, this circuit must be operated with split-voltage supplies.

NOTE A: U1 = 1/2 TL05x

U2 = LM385, LT1004, or LT1009 voltage reference I = $\frac{2.5 \text{ V}}{\text{R}}$, R = Low-temperature-coefficient metal-film resistor

Figure 85. Precision Constant-Current Source

instrumentation amplifier with adjustable gain/null

The instrumentation amplifier in Figure 86 benefits greatly from the high input impedance and stable input offset voltage of the TL05xA. Amplifiers U1A, U1B, and U2A form the actual instrumentation amplifier, while U2B provides offset null. Potentiometer R1 provides gain adjustment. With R1 = $2 k\Omega$, the circuit gain equals 100, while with R1 = $200 k\Omega$, the circuit gain equals two. The following equation shows the instrumentation amplifier gain as a function of R1:

$$A_{\rm V} = 1 + \left(\frac{\rm R2 + R3}{\rm R1}\right)$$

Readjusting the offset null is necessary when the circuit gain is changed. If U2B is needed for another application, R7 can be terminated at ground. The low input offset voltage of the TL05xA minimizes the dc error of the circuit. For best matching, all resistors should be one-percent tolerance. The matching between R4, R5, R6, and R7 controls the CMRR of this application.

The following equation shows the output voltages when the input voltage equals zero. This dc error can be nulled by adjusting the offset null potentiometer; however, any change in offset voltage over time or temperature also creates an error. To calculate the error from changes in offset, consider the three offset components in the equation as delta offsets, rather than initial offsets. The improved stability of Texas Instruments enhanced JFETs minimizes the error resulting from change in input offset voltage with time. Assuming V_I equals zero, V_O can be shown as a function of the offset voltage:

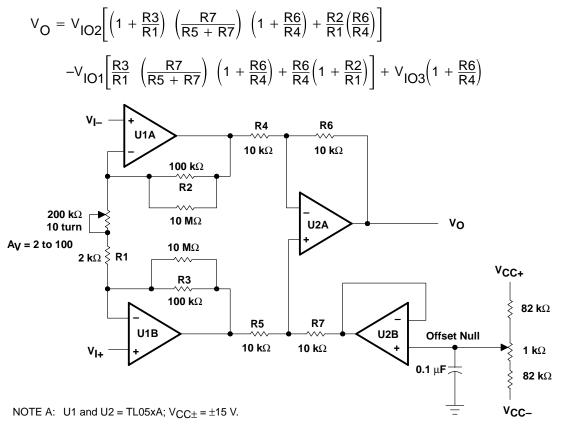
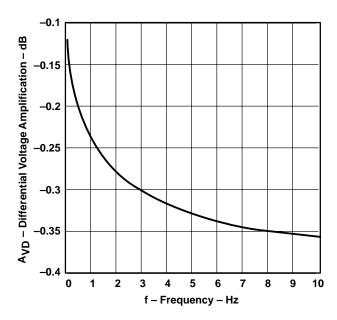


Figure 86. Instrumentation Amplifier

TL05x, TL05xA ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS

SLOS178A - FEBRUARY 1997 - REVISED FEBRUARY 2003

APPLICATION INFORMATION


high input impedance log amplifier

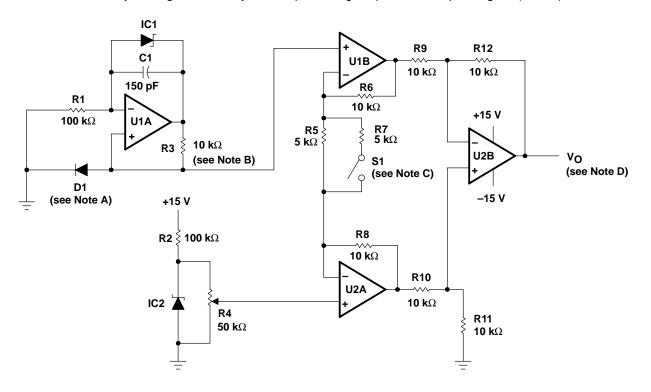
The low input offset voltage and high input impedance of the TL05xA creates a precision log amplifier (see Figure 87). IC1 is a 2.5-V, low-current precision, shunt regulator. Transistors Q1 and Q2 must be a closely matched npn pair. For best performance over temperature, R4 should be a metal-film resistor with a low temperature coefficient.

In this circuit, U1A serves as a high-impedance unity-gain buffer. Amplifier U1B converts the input voltage to a current through R1 and Q1. Amplifier U1C, IC1, and R4 form a 1-µA temperature-stable current source that sets the base-emitter voltage of Q2. U1D amplifies the difference between the base-emitter voltage of Q1 and Q2 (see Figure 88). The output voltage is given by the following equation:

NOTE A: U1A through U1D = TL05xA. IC1 = LM385, LT1004, or LT1009 voltage reference

Figure 87. Log Amplifier

Figure 88. Output Voltage vs Input Voltage for Log Amplifier



analog thermometer

By combining a current source that does not vary over temperature with an instrumentation amplifier, a precise analog thermometer can be built (see Figure 89). Amplifier U1A and IC1 establish a constant current through the temperature-sensing diode D1. For this section of the circuit to operate correctly, the TL05x must use split supplies, and R3 must be a metal-film resistor with a low temperature coefficient.

The temperature-sensitive voltage from the diode is compared to a temperature-stable voltage reference set by IC2. R4 should be adjusted to provide the correct output voltage when the diode is at a known temperature. Although this potentiometer resistance varies with temperature, the divider ratio of the potentiometer remains constant.

Amplifiers U1B, U2A, and U2B form the instrumentation amplifier that converts the difference between the diode and reference voltage to a voltage proportional to the temperature. With switch S1 closed, the amplifier gain equals 5 and the output voltage is proportional to temperature in degrees Celsius. With S1 open, the amplifier gain is 9 and the output is proportional to temperature in degrees Fahrenheit. Every time S1 is changed, R4 must be recalibrated. By setting S1 correctly, the output voltage equals 10 mV per degree (C or F).

- NOTES: A. Temperature-sensing diode \approx (-2 mV/°C)
 - B. Metal-film resistor (low temperature coefficient)
 - C. Switch open for °F and closed for °C
 - D. V_O α temperature; 10 mV/°C or 10 mV/°F
 - E. U1, U2 = TL05x. IC1, IC2 = LM385, LT1004, or LT1009 voltage reference

Figure 89. Analog Thermometer

TL05x, TL05xA ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS178A – FEBRUARY 1997 - REVISED FEBRUARY 2003

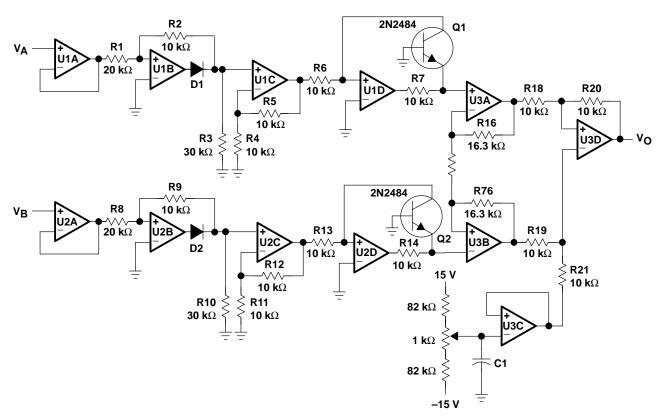
APPLICATION INFORMATION

voltage-ratio-to-dB converter

The application in Figure 90 measures the amplitude ratio of two signals, then converts the ratio to decibels (see Figure 91). The output voltage provides a resolution of 100 mV/dB. The two inputs can be either dc or sinusoidal ac signals. When using ac signals, both signals should be the same frequency or output glitches will occur. For measuring two input signals of different frequencies, extra filtering should be added after the rectifiers.

The circuit contains three low-offset TL05xA devices. Two of these devices provide the rectification and logarithmic conversion of the inputs. The third TL05xA forms an instrumentation amplifier. The stage performing the logarithmic conversion also requires two well-matched npn transistors.

The input signal first passes through a high-impedance unity-gain buffer U1A (U2A). Then U1B (U2B) rectifies the input signal at a gain of 0.5, and U1C (U2C) provides a noninverting gain of 2, so that the system gain is still one. U1D (U2D), R6 (R13), and Q1 (Q2) perform the logarithmic conversion of the rectified input signal. The instrumentation amplifier formed by U3A, U3B, U3D scales the difference of the two logarithmic voltages by a gain of 33.6. As a result, the output voltage equals 100 mV/dB. The 1-k Ω potentiometer on the input of U3C calibrates the zero-dB reference level. The following equations are used to derive the relationship between the input voltage ratio, expressed in decibels, and the output voltage.


$$X dB = 20 \log \left[\frac{V_A}{V_B} \right] = 20 \left[\frac{\ln (V_A) - (V_B)}{\ln (10)} \right]$$
$$X dB = 8.686 \left[\ln (V_A) - \ln (V_B) \right]$$
$$V_{BE(Q1)} = \frac{kT}{q} \ln \left[\frac{V_A}{R \times I_S} \right] \qquad V_{BE(Q2)} = \frac{kT}{q} \ln \left[\frac{V_B}{R \times I_S} \right]$$
$$\Delta V_{BE} = V_{BE(Q1)} - V_{BE(Q2)} = \frac{kT}{q} \left[\ln (V_A) - \ln (V_B) \right]$$
$$X dB = \frac{8.686}{kT/q} \left[V_{BE(Q1)} - V_{BE(Q2)} \right] = 336 \left[V_{BE(Q1)} - V_{BE(Q2)} \right]$$
at 25°C

where

 $k=1.38\times 10^{-23},\ q=1.602\times 10^{-19},$ and T is Kelvin temperature

This gives a resolution of 1 V/dB. Therefore, the gain of the instrumentation amplifier is set at 33.6 to obtain 100 mV/dB.

NOTE A: U1A through U3D = TL05xA, $V_{CC\pm} = \pm 15$ V. D1 and D2 = 1N914.

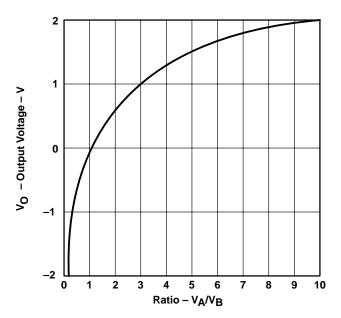
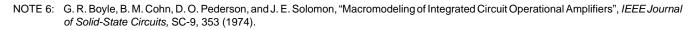
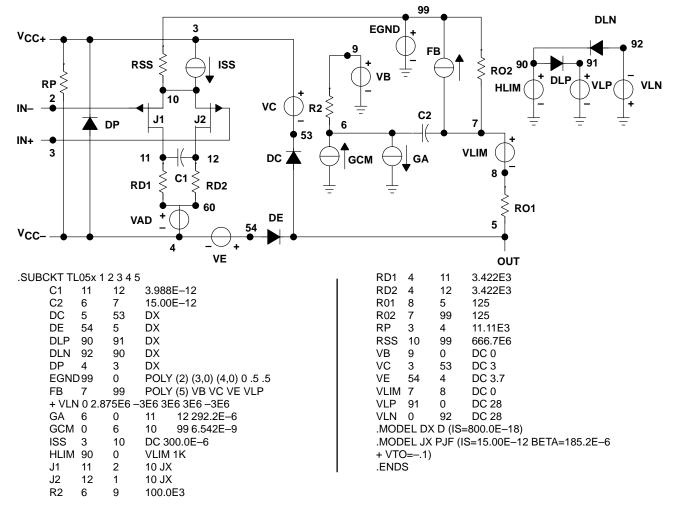


Figure 91. Output Voltage vs the Ratio of the Input Voltages for Voltage-to-dB Converter




macromodel information

Macromodel information provided was derived using Microsim *Parts*TM, the model-generation software used with Microsim *PSpice*TM. The Boyle macromodel (see Note 6 and subcircuit Figure 92) are generated using the TL05x typical electrical and operating characteristics at $T_A = 25^{\circ}$ C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

PSpice and Parts are trademarks of MicroSim Corporation.

Macromodels, simulation models, or other models provided by TI, directly or indirectly, are not warranted by TI as fully representing all of the specification and operating characteristics of the semiconductor product to which the model relates.

2-Jun-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TL051ACD	(1) ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	(6) CU NIPDAU	(3) Level-1-260C-UNLIM	0 to 70	(4/5) 051AC	Samples
TL051ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	CU NIPDAU Level-1-260C-UNLIM		051AC	Samples
TL051ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL051ACP	Samples
TL051CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL051C	Samples
TL051CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL051C	Samples
TL051CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL051C	Samples
TL051CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL051CP	Samples
TL051CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL051CP	Samples
TL052ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	052AC	Samples
TL052ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	052AC	Samples
TL052ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	052AC	Samples
TL052ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	052AC	Samples
TL052ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL052ACP	Samples
TL052ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL052ACP	Samples
TL052AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	052AI	Samples
TL052AIDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	052AI	Samples
TL052AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	052AI	Samples

PACKAGE OPTION ADDENDUM

2-Jun-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL052AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	052AI	Samples
TL052AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	052AI	Samples
TL052AIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL052AIP	Samples
TL052CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL052C	Samples
TL052CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL052C	Samples
TL052CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL052C	Samples
TL052CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL052C	Samples
TL052CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL052C	Samples
TL052CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL052CP	Samples
TL052CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T052	Samples
TL052ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL052I	Samples
TL052IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL052I	Samples
TL052IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL052I	Samples
TL052IDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL0521	Samples
TL052IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL052IP	Samples
TL052IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL052IP	Samples
TL054ACD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL054AC	Samples
TL054ACDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL054AC	Samples

PACKAGE OPTION ADDENDUM

2-Jun-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL054ACDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL054AC	Samples
TL054ACDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL054AC	Samples
TL054ACN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL054ACN	Samples
TL054AID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL054AI	Samples
TL054AIDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL054AI	Samples
TL054AIDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL054AI	Samples
TL054AIDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL054AI	Samples
TL054CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL054C	Samples
TL054CDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL054C	Samples
TL054CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL054C	Samples
TL054CDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL054C	Samples
TL054CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL054CN	Samples
TL054CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL054CN	Samples
TL054CNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL054	Samples
TL054ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL054I	Samples
TL054IDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL054I	Samples
TL054IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL054I	Samples
TL054IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL054I	Samples

2-Jun-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL054IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL054I	Samples
TL054IN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL054IN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

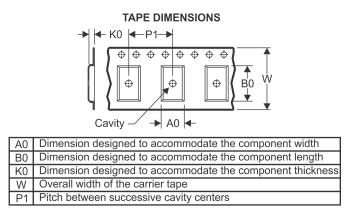
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

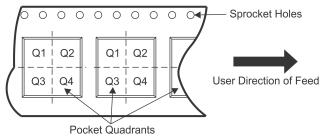
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL051CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL052ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL052AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL052CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL052CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TL052IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL054ACDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL054AIDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL054CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL054IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Aug-2014

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL051CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL052ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TL052AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TL052CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL052CPSR	SO	PS	8	2000	367.0	367.0	38.0
TL052IDR	SOIC	D	8	2500	340.5	338.1	20.6
TL054ACDR	SOIC	D	14	2500	333.2	345.9	28.6
TL054AIDR	SOIC	D	14	2500	333.2	345.9	28.6
TL054CDR	SOIC	D	14	2500	333.2	345.9	28.6
TL054IDR	SOIC	D	14	2500	333.2	345.9	28.6

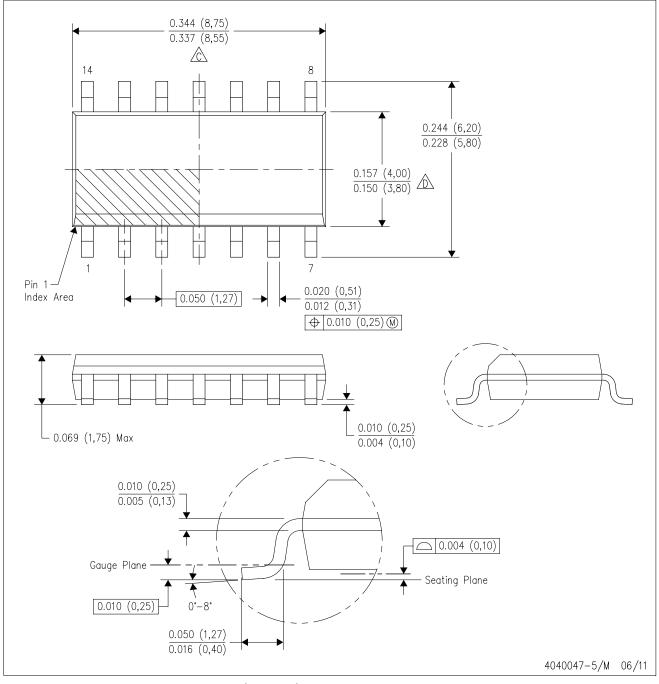
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

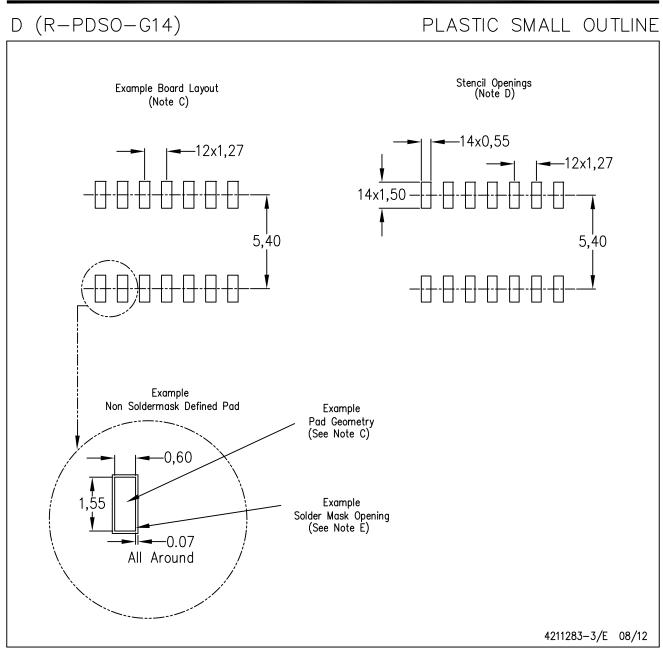
NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)


14-PINS SHOWN

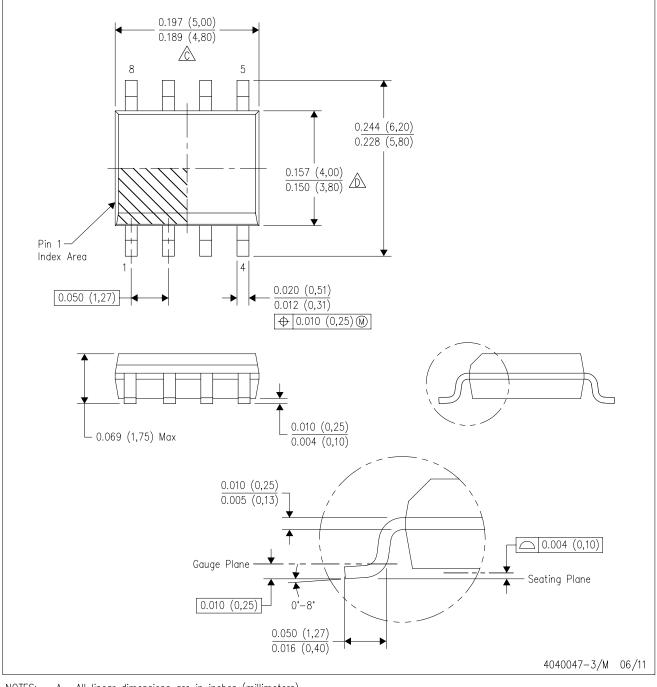
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

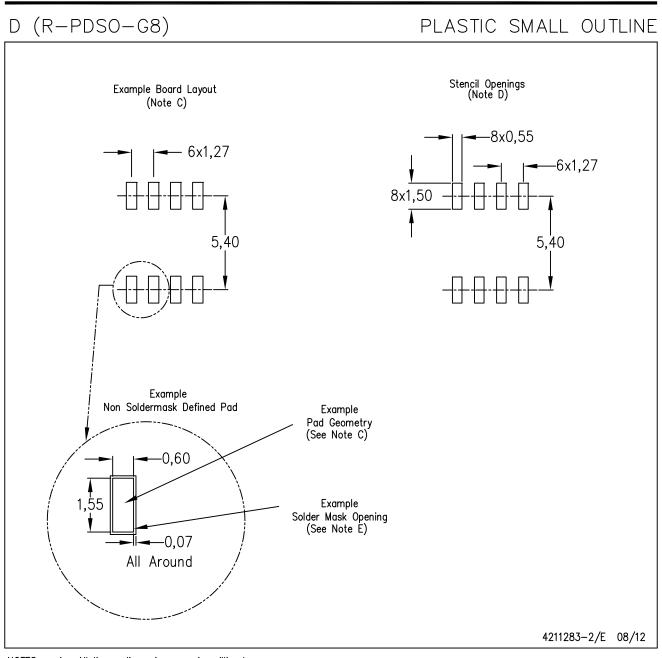
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

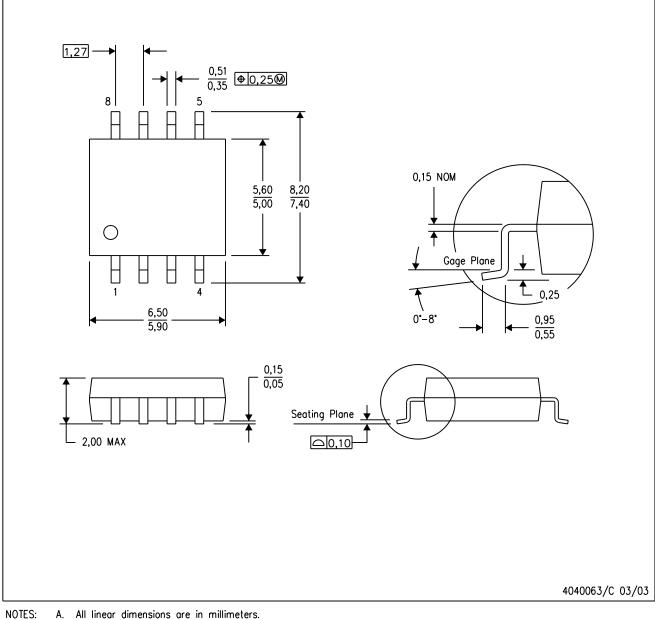
D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

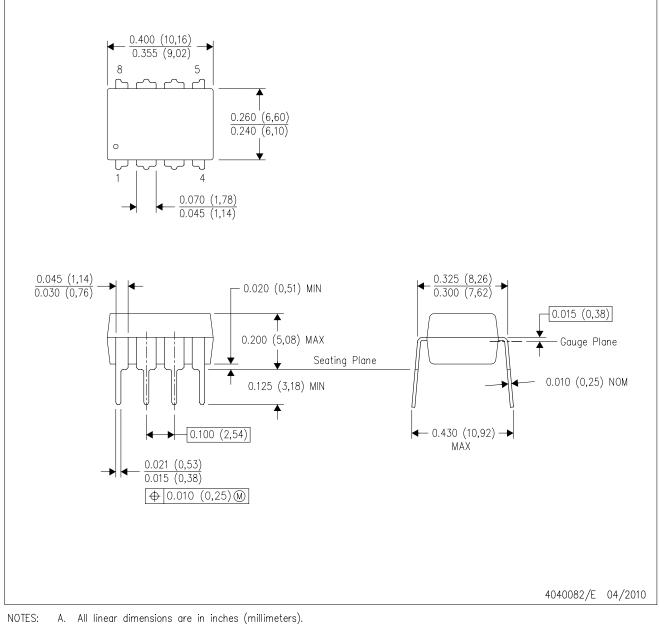

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

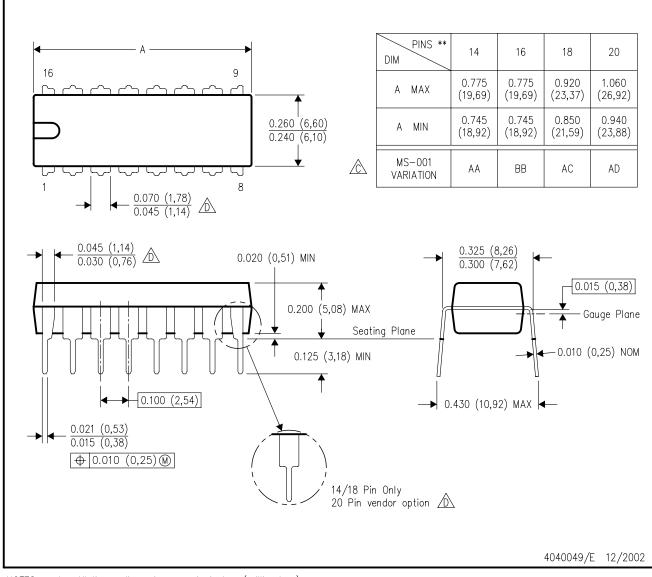
A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE


- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated