

LM124, LM224x, LM324x

Low-power quad operational amplifiers

Datasheet - production data

Features

Wide gain bandwidth: 1.3 MHz

Input common mode voltage range includes ground

Large voltage gain: 100 dB

Very low supply current/amplifier: 375 μA

Low input bias current: 20 nA
Low input voltage: 3 mV max
Low input offset current: 2 nA
Wide power supply range:

Single supply: 3 V to 30 VDual supplies: ±1.5 V to ±15 V

Related products

- See TSB572 and TSB611, 36 V newer technology devices, which have enhanced accuracy and ESD rating, reduced power consumption, and automotive grade qualification
- See LM2902 and LM2902W for automotive grade applications

Description

These circuits consist of four independent, high gain operational amplifiers with frequency compensation implemented internally. They operate from a single power supply over a wide range of voltages.

Operation from split power supplies is also possible and the low-power supply current drain is independent of the magnitude of the power supply voltage.

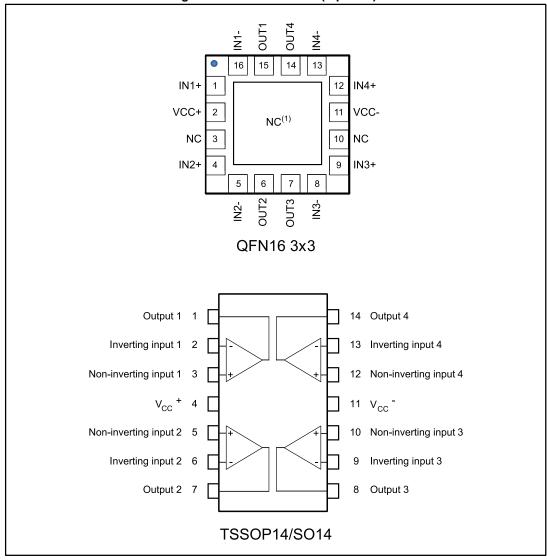
Table 1: Device summary

Product reference	Part numbers
LM124 (1)	LM124
LM224x	LM224, LM224A ⁽²⁾ , LM224W ⁽³⁾
LM324x	LM324, LM324A, LM324W

Notes:

⁽¹⁾Prefixes LM1, LM2, and LM3 refer to temperature range.

(2)Suffix A refers to enhanced Vio performance


(3)Suffix W refers to enhanced ESD ratings

Contents

1	Pin con	nections and schematic diagram	3
2	Absolut	e maximum ratings and operating conditions	5
3	Electric	al characteristics	7
4	Electric	al characteristic curves	9
5	Typical	single-supply applications	12
6	Packag	e information	14
	6.1	QFN16 3x3 package information	15
	6.2	TSSOP14 package information	17
	6.3	SO14 package information	18
7	Orderin	g information	19
8	Revisio	n history	20

1 Pin connections and schematic diagram

Figure 1: Pin connections (top view)

1. The exposed pads of the QFN16 3x3 can be connected to VCC- or left floating

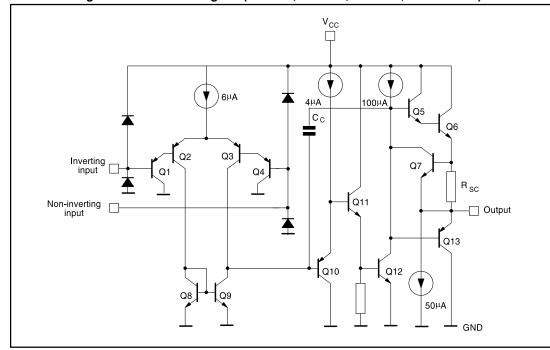
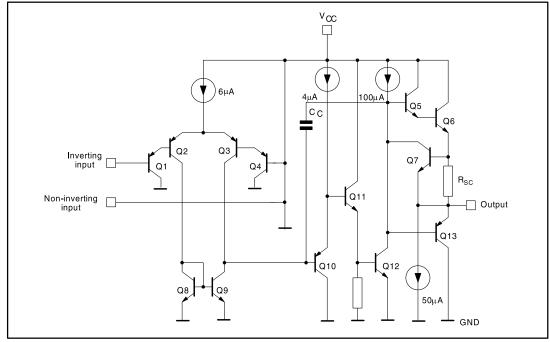



Figure 2: Schematic diagram (LM224A, LM324A, LM324W, one channel)

2 Absolute maximum ratings and operating conditions

Table 2: Absolute maximum ratings

Symbol	Parameter		Value	Unit	
Vcc	Supply voltage	±16 or 32			
Vi	Input voltage	-0.3 to V _{CC} + 0.3	V		
V_{id}	Differential input voltage (1)	32			
P _{tot}	Power dissipation: D suffix		400	mW	
	Output short-circuit duration (2)		Infinite		
l _{in}	Input current (3)		50	mA	
T _{stg}	Storage temperature range		-65 to 150	°C	
Tj	Maximum junction temperature	150			
		QFN16 3x3	45		
R_{thja}	Thermal resistance junction to ambient (4)	TSSOP14	100		
		SO14	103	0000	
		QFN16 3x3	14	°C/W	
Rthjc	Thermal resistance junction to case	TSSOP14	32		
		SO14	31		
		LM224A, LM324A	800		
	HBM: human body model (5)	LM124W, LM324W	700		
ESD		LM124, LM224, LM324	250	V	
	MM: machine model ⁽⁶⁾	100			
	CDM: charged device model		1500		

Notes:

 $^{^{(1)}}$ Neither of the input voltages must exceed the magnitude of (Vcc⁺) or (Vcc⁻).

 $^{^{(2)}}$ Short-circuits from the output to V_{CC} can cause excessive heating if V_{CC} > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.

⁽³⁾This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as an input diode clamp. In addition to this diode action, there is also an NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the Vcc voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output starts up again for input voltages higher than -0.3 V.

⁽⁴⁾Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. These are typical values given for a single layer board (except for TSSOP which is a two-layer board).

 $^{^{(5)}}$ Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

⁽⁶⁾Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

Table 3: Operating conditions

Symbol	Parameter		Value	Unit
	Complexional	Single supply	3 to 30	
Vcc	Supply voltage	Dual supply	±1.5 to ±15	V
VICM	Common-mode input voltage range	(Vcc ⁻) - 0.1 to (Vcc ⁺) - 1		
		LM124	-55 to 125	
T_{Oper}	Operating temperature range	LM224	-40 to 105	°C
		LM324	0 to 70	

3 Electrical characteristics

Table 4: VCC+ = 5 V, VCC- = Ground, Vo = 1.4 V, Tamb = 25 °C (unless otherwise specified)

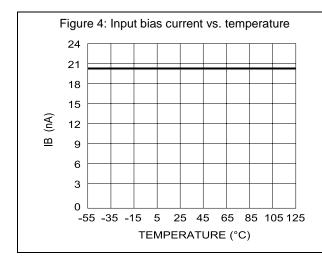
Symbol	Para	Min.	Тур.	Max.	Unit		
Vio		T _{amb} = 25 °C			2	3	
LM224A, LM224W, LM324A, LM324W		T _{min} ≤ T _{amb} ≤ T _{max}				5	
			LM124			_	
.,	Input offset voltage (1)	T _{amb} = 25 °C	LM224		2	5	mV
V _{io} LM124,			LM324		2	7	
LM224,			LM124			_	
LM324		$T_{min} \le T_{amb} \le T_{max}$	LM224			7	
			LM324			9	
		T _{amb} = 25 °C	L		2	20	
l _{io}	Input offset current	T _{min} ≤ T _{amb} ≤ T _{max}				40	
	Language biograph (2)	T _{amb} = 25 °C			20	100	nA
lib	Input bias current (2)	$T_{min} \le T_{amb} \le T_{max}$				200	
	Large signal voltage gain,	T _{amb} = 25 °C		50	100		V/mV
A _{vd}	$V_{CC}^+ = 15 \text{ V}, R_L = 2 \text{ k}\Omega,$ $V_0 = 1.4 \text{ V} \text{ to } 11.4 \text{ V}$	$T_{min} \le T_{amb} \le T_{max}$		25			
SVR	Supply voltage rejection ratio,	T _{amb} = 25 °C		65	110		dB
SVK	$R_s \le 10 \text{ k}\Omega, V_{CC}^+ = 5 \text{ V to } 30 \text{ V}$	$T_{min} \le T_{amb} \le T_{max}$		65			
		T _{amb} = 25 °C, V _{CC} = 5V			0.7	1.2	
Icc	Supply current, all amps, no load	$T_{amb} = 25 ^{\circ}C, V_{CC} = 3$		1.5	3	mA	
100		$T_{min} \le T_{amb} \le T_{max}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		8.0	1.2		
		$T_{min} \le T_{amb} \le T_{max}, V_{CC} = 30 \text{ V}$			1.5	3	
V _{icm}	Input common mode voltage	voltage Vcc = 30 V, T _{amb} = 25 °C		0		28.5	V
VICIII	range (3)	$V_{CC} = 30 \text{ V}, T_{min} \le T_{amb} \le T_{max}$		0		28	
CMR	Common mode rejection ratio,	T _{amb} = 25 °C		70	80		dB
	R _s ≤ 10 kΩ	$T_{min} \le T_{amb} \le T_{max}$		60			
I _{source}	Output current source, $V_{id} = 1 \text{ V}$ $V_{CC} = 15 \text{ V}, V_0 = 2 \text{ V}$		20	40	70	mA	
1	Output sink current,	$V_{CC} = 15 \text{ V}, V_0 = 2 \text{ V}$		10	20		
Isink	V _{id} = -1 V	$V_{CC} = 15 \text{ V}, V_0 = 0.2$	Vcc = 15 V, Vo = 0.2 V		50		μΑ
	High level output voltage,	T _{amb} = 25 °C		26	27		
	$V_{CC} = 30 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	$T_{min} \le T_{amb} \le T_{max}$		26			
V _{OH}	High level output voltage,	T _{amb} = 25 °C		27	28		
▼ On	$V_{CC} = 30 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$	$T_{min} \le T_{amb} \le T_{max}$	$T_{min} \le T_{amb} \le T_{max}$]
	High level output voltage,	T _{amb} = 25 °C		3.5			
	$V_{CC} = 5 \text{ V}, R_L = 2 \text{ k}\Omega$	$T_{min} \le T_{amb} \le T_{max}$	3				

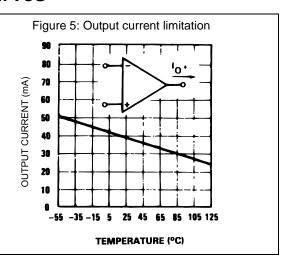
Electrical characteristics

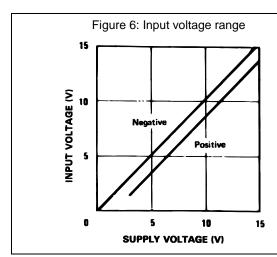
LM124, LM224x, LM324x

Symbol	Para	Min.	Тур.	Max.	Unit	
Va	Low level output voltage,	T _{amb} = 25 °C		5	20	m\/
Vol	$R_L = 10k\Omega$	T _{min} ≤ T _{amb} ≤ T _{max}			20	mV
SR	Slew rate	$V_{CC} = 15 \text{ V}, V_i = 0.5 \text{ to } 3 \text{ V}, \\ R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}, \\ \text{unity gain}$		0.4		V/µs
GBP	Gain bandwidth product	$V_{CC} = 30 \text{ V, } f = 100 \text{ kHz,}$ $V_{in} = 10 \text{ mV, } R_L = 2 \text{ k}\Omega,$ $C_L = 100 \text{ pF}$		1.3		MHz
THD	Total harmonic distortion	$ f = 1 \text{kHz}, A_{\text{V}} = 20 \text{dB}, R_{\text{L}} = 2 \text{k}\Omega, \\ V_{\text{O}} = 2 V_{\text{pp}}, C_{\text{L}} = 100 \text{pF}, \\ V_{\text{CC}} = 30 \text{V} $		0.015		%
e n	Equivalent input noise voltage	$f = 1 \text{ kHz}, R_s = 100 \Omega,$ $V_{CC} = 30 \text{ V}$		40		nV/√Hz
DVio	Input offset voltage drift			7	30	μV/°C
DI _{io}	Input offset current drift			10	200	pA/°C
V_{o1}/V_{o2}	Channel separation (4)	1 kHz ≤ f ≤ 20 kHZ		120		kHz

Notes:

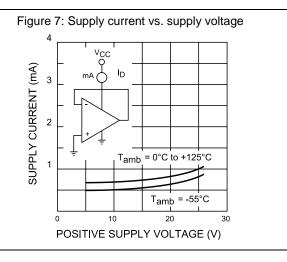
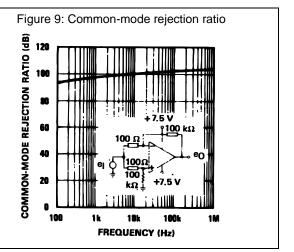
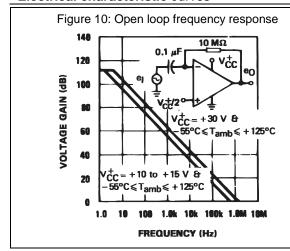
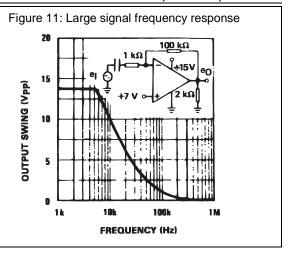

 $^{^{(1)}}V_0 = 1.4 \text{ V}, \text{ Rs} = 0 \text{ }\Omega, \text{ 5 V} < \text{VCC}^+ < 30 \text{ V}, \text{ 0} < \text{Vic} < \text{VCC}^+ - 1.5 \text{ V}$

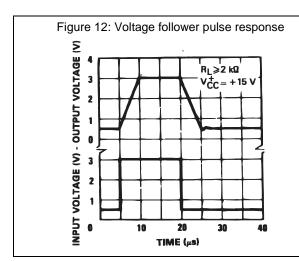

⁽²⁾The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no load change on the input lines.

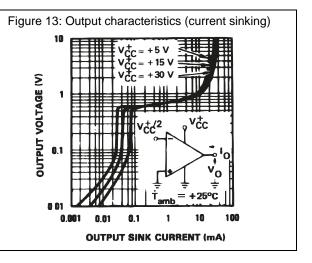

 $^{^{(3)}}$ The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is (V_{CC}^+) - 1.5 V, but either or both inputs can go to 32 V without damage.

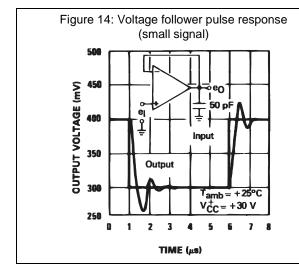
⁽⁴⁾Due to the proximity of external components, ensure that there is no coupling originating from stray capacitance between these external parts. Typically, this can be detected at higher frequencies because this type of capacitance increases.

4 Electrical characteristic curves


Figure 8: Gain bandwidth product vs. temperature


| The color of the c



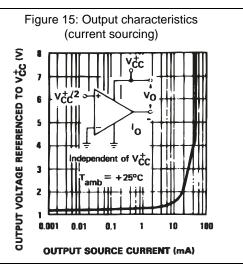
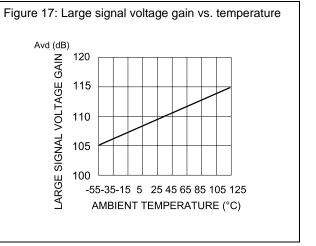
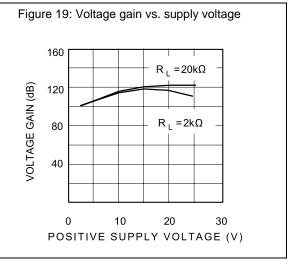
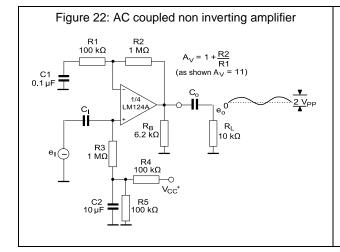
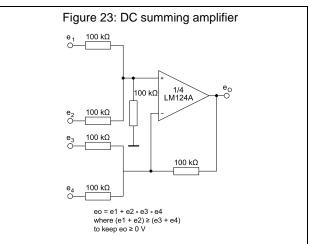
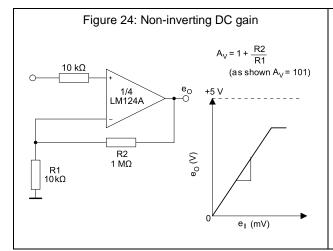




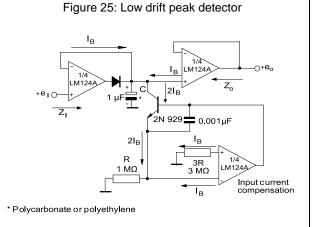
Figure 16: Input current vs. supply voltage

100
(YU) 75
100
25
T_{amb}= +25°C
0 10 20 30
POSITIVE SUPPLY VOLTAGE (V)

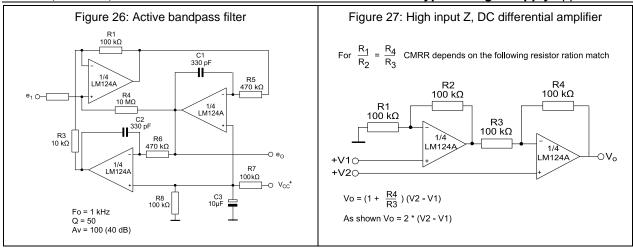


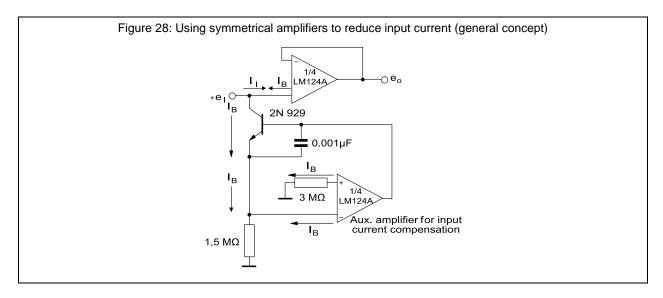



5 Typical single-supply applications


Figure 21: High input Z adjustable gain DC instrumentation amplifier

R1 $100 \text{ k}\Omega$ R2 $2 \text{ k}\Omega$ R3 $100 \text{ k}\Omega$ R4 $100 \text{ k}\Omega$ R5 $100 \text{ k}\Omega$ R6 $100 \text{ k}\Omega$ R7 $100 \text{ k}\Omega$ R8 $100 \text{ k}\Omega$ R9 $100 \text{ k}\Omega$ R1 $100 \text{ k}\Omega$ R1 $100 \text{ k}\Omega$ R1 $100 \text{ k}\Omega$ R2 $100 \text{ k}\Omega$ R3 $100 \text{ k}\Omega$ R4 $100 \text{ k}\Omega$ R5 $100 \text{ k}\Omega$ R6 $100 \text{ k}\Omega$ R7 $100 \text{ k}\Omega$ R8 $100 \text{ k}\Omega$ R9 $100 \text{ k}\Omega$ R1 $100 \text{ k}\Omega$ R1 $100 \text{ k}\Omega$ R2 $100 \text{ k}\Omega$ R3 $100 \text{ k}\Omega$ R4 $100 \text{ k}\Omega$ R5 $100 \text{ k}\Omega$ R6 $100 \text{ k}\Omega$ R7 $100 \text{ k}\Omega$ R8 $100 \text{ k}\Omega$ R9 $100 \text{ k}\Omega$ R1 $100 \text{ k}\Omega$ R1 $100 \text{ k}\Omega$ R1 $100 \text{ k}\Omega$ R2 $100 \text{ k}\Omega$ R3 $100 \text{ k}\Omega$ R4 $100 \text{ k}\Omega$ R5 $100 \text{ k}\Omega$ R6 $100 \text{ k}\Omega$ R7 $100 \text{ k}\Omega$





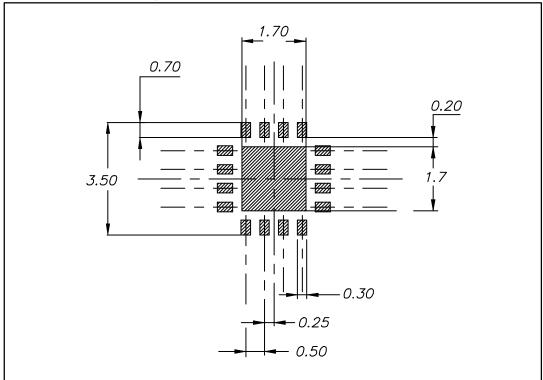
577

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

6.1 QFN16 3x3 package information

Figure 29: QFN16 3x3 package outline



16/21

Table 5: QFN16 3x3 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80	0.90	1.00	0.031	0.035	0.039	
A1	0		0.05	0		0.002	
A3		0.20			0.008		
b	0.18		0.30	0.007		0.012	
D	2.90	3.00	3.10	0.114	0.118	0.122	
D2	1.50		1.80	0.059		0.071	
Е	2.90	3.00	3.10	0.114	0.118	0.122	
E2	1.50		1.80	0.059		0.071	
е		0.50			0.020		
L	0.30		0.50	0.012		0.020	

Figure 30: QFN16 3x3 recommended footprint

6.2 TSSOP14 package information

Figure 31: TSSOP14 package outline

Table 6: TSSOP14 mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.20			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.90	5.00	5.10	0.193	0.197	0.201		
Е	6.20	6.40	6.60	0.244	0.252	0.260		
E1	4.30	4.40	4.50	0.169	0.173	0.176		
е		0.65			0.0256			
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1.00			0.039			
k	0°		8°	0°		8°		
aaa			0.10			0.004		

SO14 package information 6.3

D hx 45° A2 A В △ ddd C Seating Plane 0,25 mm GAGE PLANE С Ε Н

Figure 32: SO14 package outline

Table 7: SO14 mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	1.35		1.75	0.05		0.068	
A1	0.10		0.25	0.004		0.009	
A2	1.10		1.65	0.04		0.06	
В	0.33		0.51	0.01		0.02	
С	0.19		0.25	0.007		0.009	
D	8.55		8.75	0.33		0.34	
Е	3.80		4.0	0.15		0.15	
е		1.27			0.05		
Н	5.80		6.20	0.22		0.24	
h	0.25		0.50	0.009		0.02	
L	0.40		1.27	0.015		0.05	
k			8°	(max)			
ddd			0.10			0.004	

7 Ordering information

Table 8: Order codes

Order code	Temperature range	ESD (HBM, CDM)	V _{io} max @ 25 °C	Package	Marking
LM124DT	-55 °C to 125 °C	250 V, 1.5 kV	5 mV	SO14	124
LM224ADT		900 \/ 1 5 k\/	2 m)/	3014	2244
LM224APT		800 V, 1.5 kV 3 mV	3 mV	TSSOP14	224A
LM224DT	40.00 +- 405.00			SO14	004
LM224PT	-40 °C to 105 °C	250 V, 1.5 kV	5 mV	TSSOP14	224
LM224QT				QFN16 3x3	K425
LM224WDT		700 V, 1.5 kV		CO14	224W
LM324ADT		800 V, 1.5 kV		SO14	0044
LM324APT				TSSOP14	324A
LM324AWDT			3 mV	SO14	324AW
LM324AWPT		700 \		TSSOP14	324AVV
LM324WDT	0 °C to 70 °C	700 V, 1.5 kV		SO14	224147
LM324WPT				TSSOP14	324W
LM324DT				SO14	224
LM324PT		250 V, 1.5 kV	5 mV	TSSOP14	324
LM324QT				QFN16 3x3	K427

8 Revision history

Table 9: Document revision history

Date	Revision	Changes
1-Mar-2001	1	First release
1-Feb-2005	2	Added explanation of V_{id} and V_i limits in Table 2 on page 4. Updated macromodel.
1-Jun-2005	3	ESD protection inserted in Table 2 on page 4.
25-Sep-2006	4	Editorial update.
22-Aug-2013	5	Removed DIP package and all information pertaining to it Table 1: Device summary: Removed order codes LM224AN, LM224AD, LM324AN, and LM324AD; updated packaging. Table 2: Absolute maximum ratings: removed N suffix power dissipation data; updated footnotes 5 and 6. Renamed Figure 3, Figure 4, Figure 6, Figure 7, Figure 16, Figure 17, Figure 18, and Figure 19. Updated axes titles of Figure 4, Figure 5, Figure 7, and Figure 17. Removed duplicate figures. Removed Section 5: Macromodels
06-Dec-2013	6	Table 2: Absolute maximum ratings: updated ESD data for HBM and MM.
10-Jun-2016	7	LM124, LM224, LM324 and LM224W, LM324W datasheets merged with LM224A, LM324A datasheet. The following sections were reworked: Features, Description, Section 1: "Pin connections and schematic diagram", Section 2: "Absolute maximum ratings and operating conditions", and Section 3: "Electrical characteristics". The following sections were added: Related products and Section 7: "Ordering information". Packaged silhouettes, pin connections, and mechanical data were standardized and updated.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved