SWK9435 # 30V Single P-Channel Enhancement-Mode MOSFET ### **General Description** - Low gate charge. - Uses advanced trench process technology. - Use in PWM applications ### **Product Summary** - BV_{DSS} -30V - $R_{DS(on)}$ @VGS = 10V < 60m Ω - $R_{DS(on)}$ @VGS = 4.5V < 90m Ω # **Absolute Maximum Ratings** (T_A = 25°C unless otherwise noted) | Parameter | Symbol | Maximum | Units | |---|-----------------|------------|--------| | i didilietei | Symbol | Maximum | Uillia | | Drain-Source Voltage | V_{DS} | -30 | V | | Gate-Source Voltage | V_{GS} | ±20 | V | | Drain Current (T _A =25°C) | | -5.3 | Α | | Drain Current (T _A =75°C) | I _D | -2.8 | Α | | Pulsed Drain Current ^a | I _{DM} | -18 | Α | | Power Dissipation ^b (T _A =25°C) | | 2.5 | W | | Power Dissipation ^b (T _A =75°C) | P _D | 1.0 | W | | Junction and Storage Temperature Range | $T_{J,}T_{STG}$ | -55 ~ +150 | °C | #### **Thermal Characteristics** | Parameter | Symbol | Maximum | Units | | |---|----------------|---------|-------|--| | Junction-to-Ambient ^a (t ≤ 10s) | 0 | 50 | °C/W | | | Junction-to-Ambient ^{a,d} (Steady-State) | $R_{ heta JA}$ | 90 | °C/W | | | Junction-to-Lead (Steady-State) | $R_{ heta JL}$ | 25 | °C/W | | **SWK9435** | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |----------------------|---------------------------------|--|-----|-----|------|-------| | Off Char | acteristics | | | | • | | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0V$, $I_D = -250uA$ | -30 | | | V | | I_{DSS} | Zero Gate Voltage Drain Current | V _{DS} = -24V , V _{GS} = 0V | | | -1 | uA | | I_{GSS} | Gate-Body Leakage Current | $V_{GS} = \pm 20V, V_{DS} = 0V$ | | | ±100 | nA | | On Chara | acteristics | | | | | | | $V_{\text{GS(th)}}$ | Gate Threshold Voltage | $V_{DS} = V_{GS}$, $I_D = -250uA$ | -1 | | -2.5 | V | | В | Drain-Source | $V_{GS} = -10V$, $I_D = -5.3A$ | | | 60 | mΩ | | R _{DS(ON))} | On-State Resistance | $V_{GS} = -4.5V$, $I_D = -4.5A$ | | | 90 | mΩ | | 9 FS | Forward Transconductance | $V_{DS} = -10V$, $I_{D} = -5.3A$ | | 18 | | S | | Drain-So | urce Diode Characteristics | | | | | | | V_{SD} | Diode Forward Voltage | $V_{GS} = 0V$, $I_{S} = -1.0A$ | | | -1.3 | V | | Is | Maximum Body-Diode Continuous | num Body-Diode Continuous Current | | | -2.0 | Α | | Dynamic | Characteristics | | | | | | | C_{iss} | Input Capacitance | V _{DS} = -15V , V _{GS} = 0V
f = 1.0MHz | | 553 | | pF | | C_{oss} | Output Capacitance | | | 93 | | pF | | C_{rss} | Reverse Transfer Capacitance | | | 63 | | pF | | Switchin | g Characteristics | | | | | | | Q_{g} | Total Gate Charge | | | 12 | | nC | | Q_gs | Gate-Source Charge | $V_{DS} = -15V$, $I_{D} = -5.3A$ $V_{GS} = -10V$ | | 4 | | nC | | Q_{gd} | Gate-Drain Charge | | | 5 | | nC | | t _{D(ON}) | Turn-On Delay Time | $V_{DD} = -15V$, $ID = -1A$ $V_{GS} = -10 V$ $R_{GEN} = -6 \text{ ohm}$ | | 14 | | ns | | t _r | Turn-On Rise Time | | | 5 | | ns | | $t_{D(OFF)}$ | Turn-Off Delay Time | | | 20 | | ns | | t _f | Turn-Off Fall Time | | | 6 | | ns | a. Repetitive rating, Pulse width limited by junction temperature $T_{J(MAX)}$ =150 °C. Ratings are based on low frequency and duty cycles to keep initial T_J =25 °C b. The power dissipation P_D is based on $T_{J(MAX)}$ =150 °C , using \leq 10s junction-to-ambient thermal resistance. c. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25$ °C. The value in any given application depends on the user's specific board design. d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.