

Controller for Adaptive 100/120Hz Current Ripple Removing Circuit

Parameters Subject to Change Without Notice

DESCRIPTION

JW®1221 is a controller for driving external NMOSFET to remove the 100/120Hz LED current ripple on AC/DC power by a capacitor between VC and GND.

The adaptive technology of JW1221 ensures minimum power dissipation on NMOSFET while removing LED current ripple.

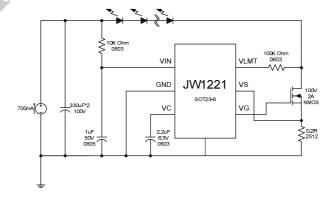
JW1221 allows user to setup maximum LED current by the sensing resistor between the source of NMOSFET and ground, which protects NMOSFET from being damaged when LED short connected or hot-plug.

By sensing the drain voltage of NMOSFET via a resistor between the drain and VLMT pin, JW1221 allows user to setup the maximum cathode voltage of LED string, which could help limit the power dissipation on chip.

It is considered that LED is shorted when the cathode voltage of LED is higher than short connecting threshold and remains over 60us JW1221 shuts down NMOSFET when LED is shorted and recovers after 13ms.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc.

JW1221 provides over thermal protection. When the temperature of JW1221 exceed 135 $^{\circ}$ C, OTP is trigged. JW1221 shuts down NMOSFET until the temperature decrease to 110 $^{\circ}$ C.

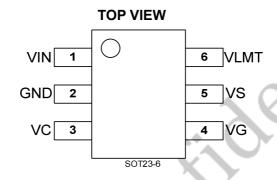

FEATURES

- Controller for adaptive 100/120Hz current ripple remover
- Built-in zener diode for input voltage clamping
- VG output voltage high to 10V
- Programmable amplitude of LED current ripple
- Programmable maximum cathode voltage of LED
- Programmable maximum LED current
- Short protection
- Over temperature protection
- SOT23-6 Package

APPLICATIONS

LED lighting

TYPICAL APPLICATION


ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PACKAGE	ТОР
			MARKING
JW1221SOTB#PBF	JW1221SOTB#TRPBF	SOT23-6	1221

Note:

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING1)

VIN clamp voltage	36V
VG	20V
VS, VC, VLMT	0.3V to 6V
Junction Temperature ²) ³⁾	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C
ESD Susceptibility (Human Body Model)	2kV

RECOMMENDED OPERATING CONDITIONS

Junction Temperature (T_J).....-40°C to 125°C

THERMAL PERFORMANCE⁴)

Note:

- 1) Exceeding these ratings may damage the device.
- 2) The JW1221 guarantees robust performance from -40°C to 150°C junction temperature. The junction temperature range specification is assured by design, characterization and correlation with statistical process controls.
- 3) The JW1221 includes thermal protection that is intended to protect the device in overload conditions. Thermal protection is active when junction temperature exceeds the maximum operating junction temperature. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- **4)** Measured on JESD51-7, 4-layer PCB.

 θ_{Jc}

 θ_{JA}

ELECTRICAL CHARACTERISTICS

VIN = 18V, TA = 25°C, unless otherwise stated. **Condition Item Symbol** Min. Max. Units Typ. VIN clamp voltage $V_{\text{IN CLP}}$ 29 32 35 ٧ VIN operation current⁵⁾ I_{IN} 17V<VIN<27V 0.24 0.3 0.58 mΑ VIN startup voltage threshold 15 16.5 18 V $V_{\text{IN_ST}}$ VIN UVLO threshold 11.5 VIN UVLO V Maximum VG output voltage 10.5 12 V_{VG} VC short to GND when 0.45 0.65 0.85 VC startup current **I**VCST mΑ startup 2.05 2.25 ٧ VLMT reference voltage V_{VLMTR} 1.85 Drain voltage of NMOSFET $V_{\text{D_CLP}}$ NMOSFET drain voltage limit when voltage limit is 3.7 4.4 5.1 trigged. RLIMIT=100K. Drain voltage of NMOSFET when SHORT is trigged. SHORT protection threshold 5 6 7.5 V $V_{\text{TH_SHORT}}$ RLIMIT=100K. SHORT protection delay time5) **TSPD** 160 us SHORT protection hold time **TSPH** 8.3 11.3 14.3 ms

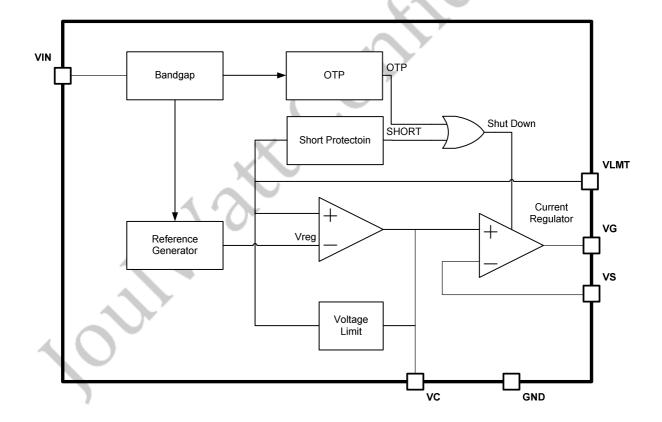
0.175

0.195

0.215

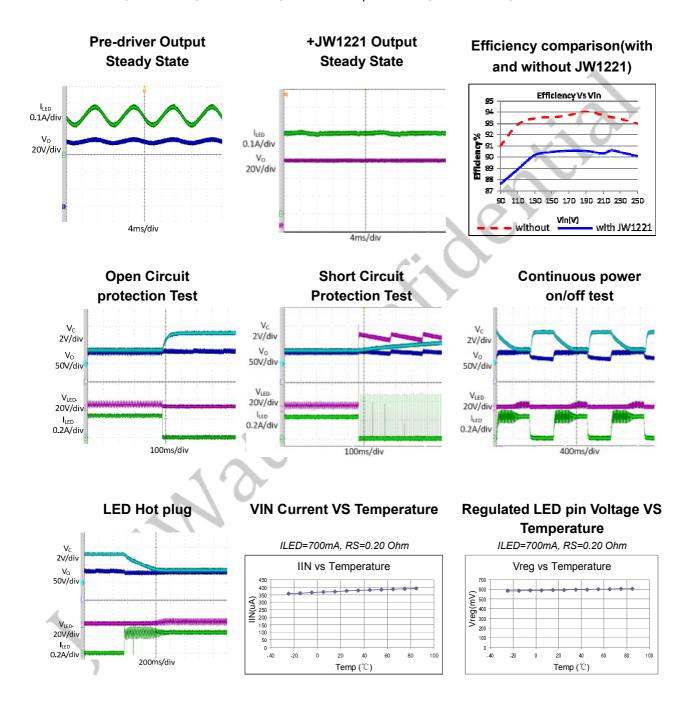
V

 V_{VS}


VS voltage limit

⁵⁾ Guaranteed by design

PIN DESCRIPTION


SOT23-6 Pin No.	Name	Description
1	VIN	Power Supply
2	GND	Ground
3	VC	LED Current Ripple Programming
4	VG	NMOSFET GATE driving voltage output
5	VS	LED current sensing input
6	VLMT	LED Voltage Limit and SHORT protection Programming

BLOCK DIAGRAM

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{IN} = 90~264 V_{AC} , V_{OUT} =75V, I_{OUT} =240mA, COUT= 100 μ F/100V*2, TA = +25°C, unless otherwise noted

FUNCTIONAL DESCRIPTION

JW1221 is a controller for driving external NMOSFET to remove the 100/120Hz LED current ripple on AC/DC power.

Theory of Operation

The LED string and JW1221 are both supplied by an AC/DC current source. JW1221 clamps the input voltage on VIN pin to V_{IN_CLP} . Only one resistor is needed when the output voltage of AC/DC power is higher than V_{IN_CLP} .

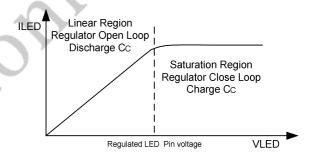
The drain of external NMOSFET is connected to the cathode of LED string. A sensing resistor R_{SENSE} is connected between the source of NMOSFET and GND. The gate is connected to the VG of JW1221.

JW1221 drives NMOSFET to transfer the LED current ripple to voltage ripple on NMOSFET, and ensures the constant voltage across LED string and the current flow through LED string. The scalable adaptive function of JW1221 can regulate the cathode voltage of LED string to minimum to improve the efficiency of the system.

Current Ripple Removing

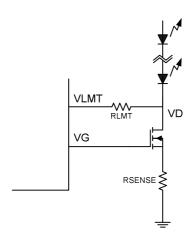
The capacitor C_{C} between VC and GND is an integration capacitor. JW1221 transform the voltage on C_{C} to a reference voltage. The current regulator regulates the voltage on R_{SENSE} equal to the reference voltage.

The relationship between the voltage on $C_{\mathbb{C}}$ and $R_{\mathbb{S}}$ is shown as following:


$$V_{RS} = I_{LED} * R_{SENSE} = V_{VC} / 10$$

 $C_{\mathbb{C}}$ should be large enough in order to remove the current ripple of the LED string. However, too large capacitor may slow down the dynamic response.

Adaptive Regulation


JW1221 control the voltage on $C_{\rm C}$ by monitoring the operation state of external NMOSFET. The efficiency of system is relatively low when NMOSFET is working in the saturation region. JW1221 detects it and charges $C_{\rm C}$ to raise the $V_{\rm VC}$ and $I_{\rm LED}$, then the output voltage of power supply is reduced, and the voltage drop on NMOSFET decreases.

Conversely, when NMOSFET is working in the linear region, LED current regulation loop is open. JW1221 detects it and discharges $C_{\rm C}$ to reduce the $V_{\rm VC}$ and $I_{\rm LED}$, then the output voltage of power supply is raised, and the LED current regulation loop is close.

Drain Voltage of NMOSFET Limit

The voltage ripple on the drain of NMOSFET maybe very large when the current ripple is removed, which would bring large power dissipation on chip. The resistor between the drain of NMOSFET and VLMT pin can setup the limit value of drain voltage of NMOSFET.

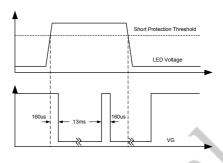
The limit threshold is calculated as below:

$$V_{limit}$$
= 2V + R_{LMT} * 20uA

LED Current Limit

The voltage of VS pin is limited to 0.2V internally. So the current limitation is $0.2V/R_{\rm S}$.

Current limit can protect the chip when LED is short connected or HOT-PLUG.


The function of current limit is higher priority than drain voltage limit. It means that the voltage on drain of NMOSFET is not limited when LED current exceed current limit threshold.

LED Short Protection

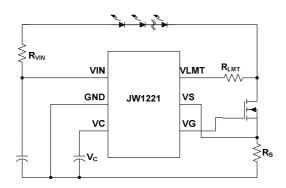
JW1221 detect SHORT by R_{LMT}. When the drain voltage of NMOSFET exceeds the SHORT PROTECTION THRESHOLD and the state holds for more than 160us, JW1221 considers the LED string is SHORT connected, and shut down the external MOSFET. The SHORT state is reset after 13ms.

The SHORT PROTECTION THRESHOLD is calculated as:

Over Thermal Protection

JW1221 monitors operation temperature. When the temperature is higher than 135 $^{\circ}$ C, the NMOSFET is shut down until the temperature decrease to 115 $^{\circ}$ C.

PCB Design Guideline


- The bypass capacitor of VIN should be placed as close as possible to the VIN pin and GND pin of IC.
- 2. JW1221 should be placed far away from the power devices such as MOSFET and SBD.
- 3. The area of LED current loop should be as small as possible.

MOSFET Selection Recommendation

- PDD0910, N-Channel MOSFET 100V, 8A, 200mohm, TO252, Potens.
- FDS86240, N-Channel MOSFET 150V 7.5A 19.8mohm, SO-8, FAIRCHILD.
- 3. FQD18N20V2, N-Channel MOSFET 200V, 18A, 140mohm, TO252, FAIRCHILD.
- 4. CS630A8H, N-Channel MOSFET 200V, 9A, 0.23ohm, TO-220AB, Huajing.
- 5. CS640A8H, N-Channel MOSFET 200V, 18A, 0.12ohm, TO-220AB, Huajing.

APPLICATION INFORMATION

JW1221 design guide:

1. Because of the 30V zener integrated and the 16V V_{IN} start threshold, the value of R_{VIN} may satisfy the following conditions:

$$R_{VIN} < \frac{V_F - 16V}{0.5mA}$$

V_F: the voltage of LED

 The maximum voltage of VS pin is 0.2V in order to limit the maximum output current especially in the short circuit condition. The value of R_S can be calculated as below:

$$R_s < \frac{0.2V}{I_{res}}$$

I_{LED}: the output current of the pre-driver

3. When the voltage of LED- reaches V_{SCP} which is set by the R_{LMT} , JW1221 pulls down the VIN then turns off the MOSFET. In order to ensure nothing will be damaged in the short circuit condition, the value of R_{LMT} must satisfy the following conditions:

$$V_{CVR} - V_E < V_{SCR} < V_E$$

$$V_{SCP} < V_{INSTART} = R_{VIN} * 0.5mA + 16V$$

$$V_{SCP} = 2V + 40uA * R_{LMT}$$

 V_{OVP} : the output voltage when the

pre-driver is open.

V_{SCP}: the threshold of JW1221 short

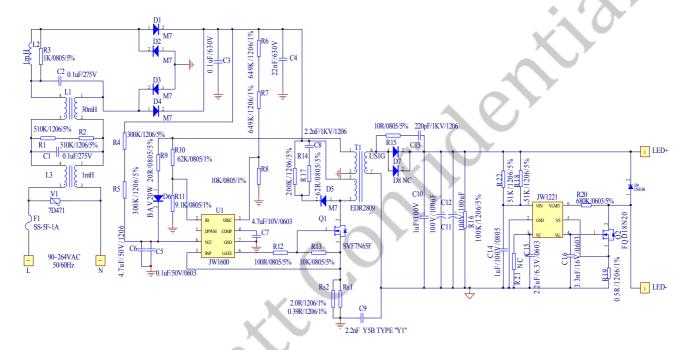
circuit protection.

V_{INSTART}: the output voltage of the pre-driver when the VIN of JW1221 is 16V.

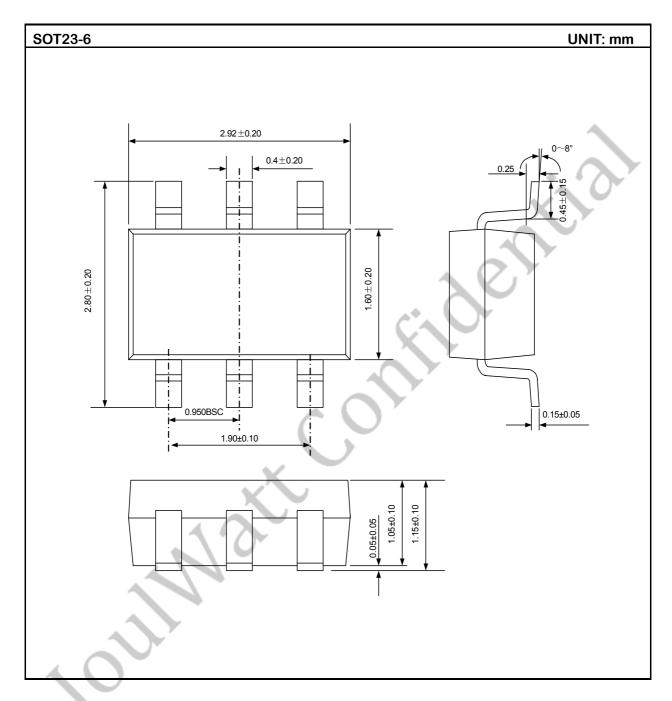
- 4. The value of the capacitor between VC and GND can determine the final amplitude of the current ripple. It should be large enough in order to remove the current ripple of the LED string. However, too large capacitor may slow down the dynamic response. In normal condition, 1uF or 2.2uF is relatively reasonable.
- To ensure JW1221 work properly, the R_{DSON} of MOSFET must be less than 3R_S. The MOSFET will endure a large power shorting the output on the moment, so the appropriate package and R_{DSON} of the MOSFET is necessary.
- When short the LED, there is an overshoot on the drain of the MOSFET. The breakdown voltage of the MOSFET must be higher than V_{OVP}. A diode connected to LED+&LED- can reduce the overshoot when short.

REFERENCE DESIGN

Reference:


VIN: 90~260VAC

VOUT: **75V**


Іоит: **240mA**

PF: >0.9

Current ripple:<5%

PACKAGE OUTLINE

JOUIWatt

IMPORTANT NOTICE

Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.

Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.

Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2015 JW1221 Incorporated.

All rights are reserved by Joulwatt Technology Inc.