maxscencl?

MXD8545A

$0.1-3.0 \mathrm{GHz}$ SP4T Antenna Tuning Switch

APPROVED

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8545A is a CMOS silicon-on-insulator (SOI), single-pole, four-throw (SP4T) switch. The high linearity and ruggedness performance and extremely low insertion loss makes the device an ideal choice for GSM/WCDMA/LTE handset antenna tuning application.

The MXD8545A SP4T switch is provided in a compact QFN $1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 0.38 \mathrm{~mm}$ package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Applications

- GSM/WCDMA/LTE band and mode switching
- Antenna tuning switch

Features

- Broadband frequency range: 0.1 to 3.0 GHz
- Low insertion 0.50 dB @ 2.7 GHz
- High P0.1dB of 43.3 dBm
- Positive low voltage control: $\mathrm{VC}=1.0$ to 3.0 V , VDD $=2.5$ to 3.3 V , Small QFN (10-pin,
$1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 0.38 \mathrm{~mm}$) package, MSL1

Functional Block Diagram and Pin Function

Application Circuit

Figure 3. MXD8545A Application Circuit
Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	RF1	RF port 1	6	V2	Control Logic \#2
2	RF2	RF port 2	7	GND	Ground
3	GND	Ground	8	RF4	RF port 4
4	VDD	DC power supply	9	RF3	RF port 3
5	V1	Control Logic \#1	10	ANT	Antenna port

Truth Table

Table 2.

State	V1	V2	RF Path
RF1	0	0	ANT to RF1
RF2	0	1	ANT to RF2
RF3	1	0	ANT to RF3
RF4	1	1	ANT to RF4

Note: "1" $=1.0 \mathrm{~V}$ to 3.00 V . "0" $=0 \mathrm{~V}$ to +0.3 V .

Recommended Operation Range

Table 3.

Parameters	Symbol	Min	Typ	Max	Units
Operation Frequency	$\mathrm{f1}$	0.1	-	3.0	GHz
Power supply	$\mathrm{V}_{\text {DD }}$	2.5	2.8	3.3	V
Switch Control Voltage High	$\mathrm{V}_{\text {CTL H }}$	1.0	1.8	3.0	V
Switch Control Voltage Low	$\mathrm{V}_{\text {CTL_L }}$	0	0	0.3	V

Specifications

Table 4.Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition
		Min.	Typical	Max.		
DC Specifications						
Control voltage:						
Low	$\mathrm{V}_{\text {cti_L }}$	0	0	0.3	V	
High	$\mathrm{V}_{\text {ctil }}$	1.0	1.8	3.0	V	
Supply voltage	$V_{D D}$	2.5	2.8	3.3	V	
Supply current	IDD		75	110	uA	$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}$
Control current	$\mathrm{I}_{\text {ctL }}$		1	5	uA	$\mathrm{V}_{\text {CTL }}=1.8 \mathrm{~V}$
RF Specifications						
Insertion loss	IL		0.35	0.45	dB	0.8 to 1.0 GHz
			0.45	0.55	dB	1.0 to 2.2 GHz
			0.50	0.70	dB	2.2 to 3.0 GHz
Isolation	ISO	26	28		dB	0.8 to 1.0 GHz
		22	24		dB	1.0 to 2.2 GHz
		19	22		dB	2.2 to 3.0 GHz
Return loss	$\left\|\mathrm{S}_{11}\right\|$		20		dB	0.8 to 3.0 GHz
Voltage Standing Wave Ratio	VSWR		1.20			0.8 to 3.0 GHz
On Resistance (RF1/2/3/4 to ANT)	Ron		1.05	1.15	Ω	Switch on Path
OFF Capacitance (RF1/2/3/4 to ANT)	Coff		130	150	fF	Switch off Path
Input 0.1 dB compression point	$\mathrm{P}_{0.1 \mathrm{~dB}}$	+43	+43.3		dBm	0.8 to 3.0 GHz , ANT to RF1/2/3/4
Peak RF operating voltage	$V_{\text {peak }}$		45		V	$\mathrm{f0}=700 \text { to } 2700 \mathrm{MHz},$ CW 25% duty cycle
RF Voltage @3f0=-40dBm	$V_{\text {peak }}$		35		V	$\mathrm{f0}=700 \text { to } 2700 \mathrm{MHz},$ CW 25\% duty cycle
LTE TX harmonic (RF1/2/3/4 to ANT)	2 f0		-90	-80	dBm	$\begin{aligned} & \mathrm{f0}=700 \text { to } 2700 \mathrm{MHz}, \mathrm{PIN}=+26 \\ & \mathrm{dBm} \end{aligned}$
	$3 \mathrm{f0}$		-80	-70	dBm	
GSM LB harmonic (RF1/2/3/4 to ANT)	$2 ¢ 0$		-60	-50	dBm	$\begin{aligned} & \mathrm{f0}=824 \text { to } 915 \mathrm{MHz}, \mathrm{PIN}=+35 \\ & \mathrm{dBm} \end{aligned}$
	$3 \mathrm{f0}$		-60	-50	dBm	
GSM HB harmonic (RF1/2/3/4 to ANT)	$2 f 0$		-60	-50	dBm	$\begin{aligned} & \mathrm{f0}=1710 \text { to } 2690 \mathrm{MHz}, \mathrm{PIN}=+33 \\ & \mathrm{dBm} \end{aligned}$
	$3 \mathrm{f0}$		-60	-50	dBm	
Second order intermodulation	IMD2		-112	-105	dBm	CW Carrier on RF Port, +20 dBm CW Interferer on ANT port, -15 dBm
Third order intermodulation	IMD3		-112	-105	dBm	CW Carrier on RF Port, +20 dBm CW Interferer on ANT port, -15 dBm
Switching on time			3.0	5.0	$\mu \mathrm{s}$	50\% VCTL to 90\% RF
Switching off time			3.0	5.0	$\mu \mathrm{s}$	50\% VCTL to 10\% RF
Startup time			10	20	$\mu \mathrm{s}$	Power off state to any RF switch state

MXD8545A - 0.1-3.0GHz SP4T Antenna Tuning Switch
Table 5. IMD2 Test Conditions

Band	In-band freq	CW Carrier		CW Interferer	
	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{d B m}$	$\mathbf{M H z}$	$\mathbf{d B m}$
1 Low	2140	1950	+20	190	-15
1 High	2140	1950	+20	4090	-15
5 Low	881.5	836.5	+20	45	-15
5 High	881.5	836.5	+20	1718	-15

Table 6. IMD3 Test Conditions

Band	In-band freq	CW Carrier		CW Interferer	
	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{d B m}$	$\mathbf{M H z}$	$\mathbf{d B m}$
1	2140	1950	+20	1760	-15
5	881.5	836.5	+20	791.5	-15

Absolute Maximum Ratings

Table 7. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	$V_{\text {DD }}$	+2.5	+3.6	V
Digital control voltage	$V_{\text {cti }}$	0	+3.6	V
input power (RF port, 25\% DC)	Pin		+43.8	dBm
input power (RF port, VSWR = 10:1, CW)	Pin		+38	dBm
input power (RF port, LTE 10M Full RB, VSWR $=10: 1, \mathrm{CW}$)	Pin		+32	dBm
input power (GSM LB, CW and 50\% DC)	Pin		+40	dBm
$\begin{aligned} & \text { input power (GSM HB, } \\ & \text { CW and } 50 \% \text { DC) } \end{aligned}$	Pin		+38	dBm
Operating temperature	Top	-35	+90	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {STG }}$	-55	+150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge Human body model (HBM), Class 2 Machine Model (MM), Class B Charged device model (CDM), Class III	$\begin{aligned} & \text { ESD_HBM } \\ & \text { ESD_MM } \\ & \text { ESD_CDM } \end{aligned}$		$\begin{aligned} & 1500 \\ & 150 \\ & 500 \end{aligned}$	V

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Package Outline Dimension

Figure 4. Package outline dimension

Marking Specification

Figure 5. Marking specification (Top View)

Reflow Chart

Figure 6. Recommended Lead-Free Reflow Profile
Table 8.

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate $\left(\mathrm{TS}_{\text {max }}\right.$ to $\left.\mathrm{T}_{\mathrm{p}}\right)$	$3^{\circ} \mathrm{C} /$ second max.
Preheat temperature $\left(\mathrm{TS}_{\text {min }}\right.$ to $\left.\mathrm{TS}_{\text {max }}\right)$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Preheat time $\left(\mathrm{t}_{\mathrm{s}}\right)$	$60-180$ seconds
Time above $\mathrm{TL}, 217^{\circ} \mathrm{C}\left(\mathrm{t}_{\mathrm{L}}\right)$	$60-150$ seconds
Peak temperature $\left(\mathrm{T}_{\mathrm{p}}\right)$	$260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of peak temperature $\left(\mathrm{t}_{\mathrm{p}}\right)$	$20-40$ seconds
Ramp-down rate	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

