
SLOS548-SEPTEMBER 2007

FEATURES

- Qualified for Automotive Applications
- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Low Total Harmonic Distortion: 0.003% Typ
- High Input Impedance: JFET-Input Stage
- Latchup-Free Operation
- High Slew Rate: 13 V/µs Typ
- Common-Mode Input Voltage Range Includes V_{CC+}

DESCRIPTION/ORDERING INFORMATION

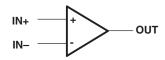
The TL082 JFET-input operational amplifier incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The device features high slew rates, low input bias and offset currents, and low offset-voltage temperature coefficient.

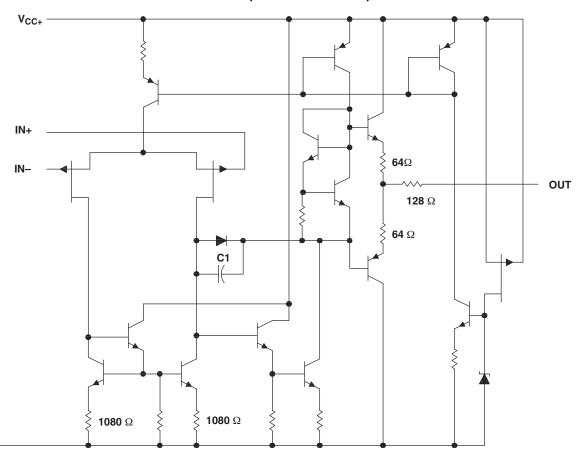
The I-suffix device is characterized for operation from -40° C to 85° C. The Q-suffix device is characterized for operation from -40° C to 125° C.

ORDERING INFORMATION(1)

TJ	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
-40°C to 85°C	SOIC - D	Reel of 2500	TL082IDRQ1	TL082I		
-40°C to 125°C	SOIC - D	Reel of 2500	TL082QDRQ1	TL082Q		

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.


(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SYMBOL (EACH AMPLIFIER)

SCHEMATIC (EACH AMPLIFIER)

A. Component values shown are nominal.

V_{CC-}

TL082-Q1 JFET-INPUT OPERATIONAL AMPLIFIER

SLOS548-SEPTEMBER 2007

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		VALUE			
V _{CC+}	Supply voltage, positive ⁽²⁾	18 V			
V _{CC} -	Supply voltage, negative ⁽²⁾		-18 V		
V_{ID}	Differential input voltage (3)		±30 V		
VI	Input voltage (2)(4)	±15 V			
	Duration of output short circuit ⁽⁵⁾	Unlimited			
	Continuous total power dissipation		(6)		
_	On another for a six to many another and	TL082I	-40°C to 85°C		
T _A	Operating free-air temperature range	TL082Q	-40°C to 125°C		
θ_{JA}	Package thermal impedance, junction to free air ⁽⁷⁾	97°C/W			
		Human-Body Model	1.5 kV (H1C)		
	ESD rating ⁽⁸⁾	Charged-Device Model	1.5 kV (C5)		
		Machine Model	200 V (M3)		
	Operating virtual junction temperature	150°C			
T _{stg}	Storage temperature range		−65°C to 150°C		

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values, except differential voltages, are with respect to the midpoint between V_{CC-} and V_{CC-}
- 3) Differential voltages are at IN+ with respect to IN-.
- (4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- (5) The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- (6) Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is PD = $(T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (7) The package thermal impedance is calculated in accordance with JESD 51-7.
- (8) ESD protection level per JEDEC classifications JESD22-A114 (HBM), JESD22-A115 (MM), and JESD22-C101 (CDM).

TL082-Q1 JFET-INPUT OPERATIONAL AMPLIFIER

SLOS548-SEPTEMBER 2007

ELECTRICAL CHARACTERISTICS(1)

 $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽²⁾	MIN	TYP	MAX	UNIT	
\/	Innut offeet veltege	V 0.B 50.0	25°C		3	6	m\/	
V _{IO}	Input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range			9	mV	
α_{VIO}	Temperature coefficient of input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range		18		μV/°C	
	Input offset current ⁽³⁾	V - 0	25°C		5	100	pА	
I _{IO}	input onset current	$V_{O} = 0$	Full range			20	nA	
	Input bias current ⁽³⁾	V 0	25°C		30	200	pА	
I _{IB}	input bias current	V _O = 0	Full range			50	nA	
V _{ICR}	Common-mode input voltage range		25°C	±11	-12 to 15		V	
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		V	
V _{OM}	Maximum peak output voltage swing	R _L ≥ 10 kΩ	Full range	±12				
	vollago ovillig	$R_L \ge 2 k\Omega$	Full range	±10	±12			
۸	Large-signal differential voltage	V .40 V B > 2 kO	25°C	50	200		\//\/	
A _{VD}	amplification	$V_O = \pm 10 \text{ V}, \text{ R}_L \ge 2 \text{ k}\Omega$	Full range	15			V/mV	
B1	Unity-gain bandwidth		25°C		3		MHz	
rį	Input resistance		25°C		10 ¹²		Ω	
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}(min), V_O = 0, R_S = 50 \Omega$	25°C	75	86		dB	
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $V_{O} = 0, R_{S} = 50 \Omega$	25°C	80	86		dB	
I _{CC}	Supply current (per amplifier)	V _O = 0, No load	25°C		1.4	2.8	mA	
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120		dB	

 ⁽¹⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.
 (2) Full range for T_A is -40°C to 85°C for I-suffix devices and -40°C to 125°C for Q-suffix devices.

OPERATING CHARACTERISTICS

 $V_{CC\pm} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST COI	MIN	TYP	MAX	UNIT	
SR	Slew rate at unity gain	$V_I = 10 \text{ V}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}, \text{See Figure 1}$			13		V/µs
t _r	Rise time	$V_I = 20 \text{ mV}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}, \text{See Figure 1}$			0.05		μs
	Overshoot factor	$V_I = 20 \text{ mV}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}, \text{ See Figure 1}$			20		%
V	Envisable tion of pains college	D 20 O	f = 1 kHz		18		nV/√ Hz
V _n	Equivalent input noise voltage	$R_S = 20 \Omega$		4		μV	
In	Equivalent input noise current	$R_S = 20 \Omega$, $f = 1 \text{ kHz}$		0.01		pA/√ Hz	
THD	Total harmonic distortion	$V_{Irms} = 6 \text{ V}, f = 1 \text{ kHz}, \text{AVD} = 1, R_{S} \le 1 \text{ k}\Omega, R_{L} \ge 2 \text{ k}\Omega$			0.003		%

Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 14. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

PARAMETER MEASUREMENT INFORMATION

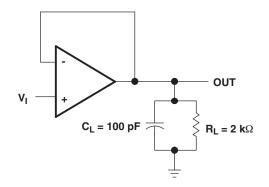


Figure 1.

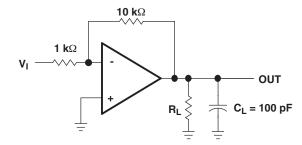
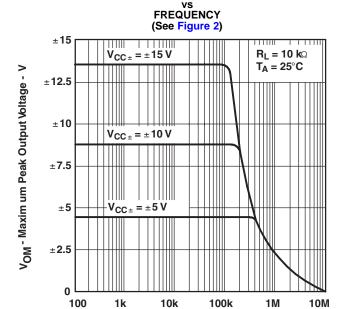


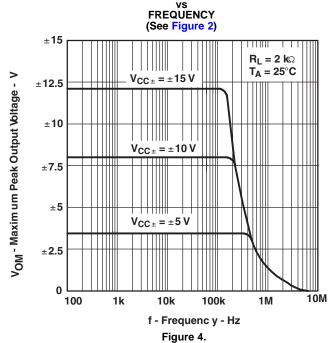
Figure 2.


TYPICAL CHARACTERISTICS

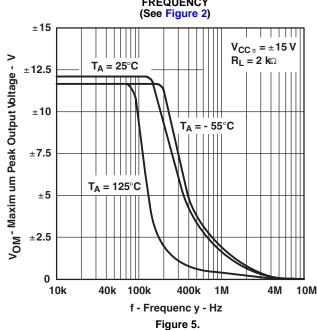
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the devices.

Table of Graphs

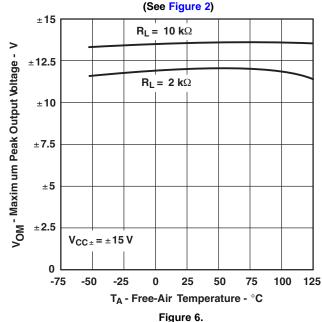
			FIGURE
		vs Frequency	3, 4, 5
\ /	Maximum made autout valtana	vs Free-air temperature	6
V_{OM}	Maximum peak output voltage	vs Load resistance	7
		vs Supply voltage	8
^		vs Free-air temperature	9
A_{VD}	Large-signal differential voltage amplification	vs Frequency	10
P _D	Total power dissipation	vs Free-air temperature	11
	Complex sourcest	vs Free-air temperature	12
I _{CC}	Supply current	vs Supply voltage	13
I _{IB}	Input bias current	vs Free-air temperature	14
	Large-signal pulse response	vs Time	15
Vo	Output voltage	vs Elapsed time	16
CMRR	Common-mode rejection ratio	vs Free-air temperature	17
V _n	Equivalent input noise voltage	vs Frequency	18
THD	Total harmonic distortion	vs Frequency	19

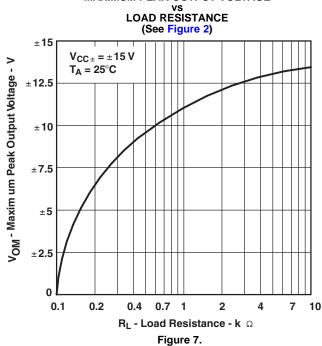

MAXIMUM PEAK OUTPUT VOLTAGE

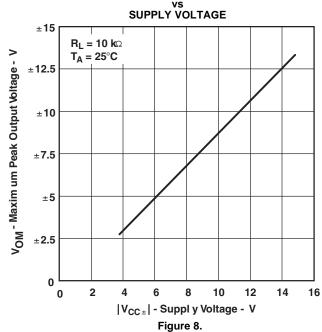
f - Frequenc y - Hz


Figure 3.

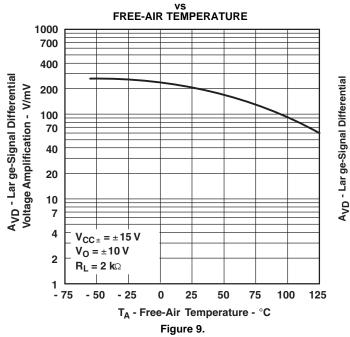
MAXIMUM PEAK OUTPUT VOLTAGE



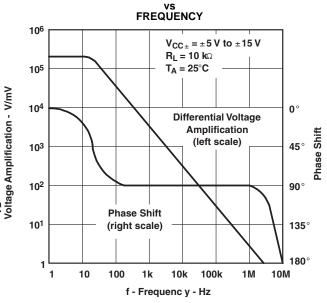

MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY


MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

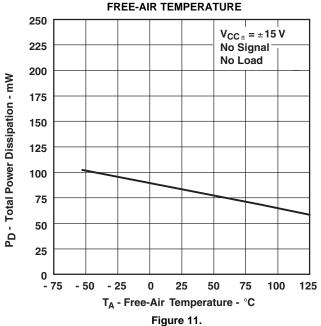
MAXIMUM PEAK OUTPUT VOLTAGE



MAXIMUM PEAK OUTPUT VOLTAGE vs



LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION



LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

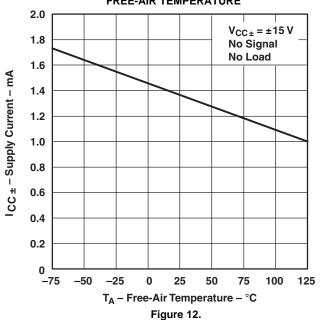
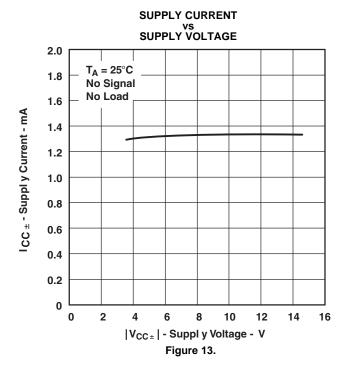
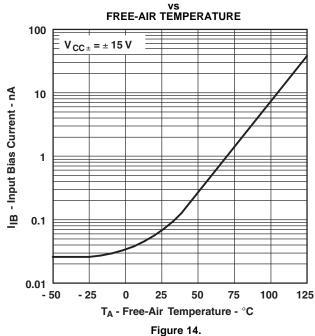
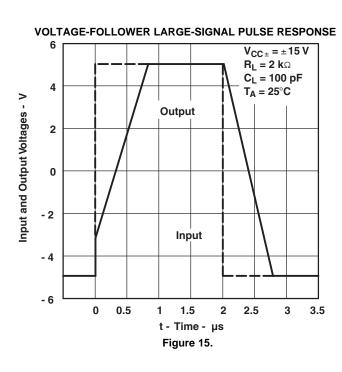
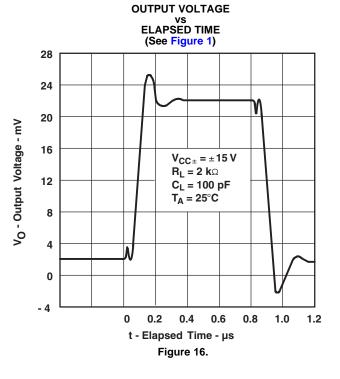


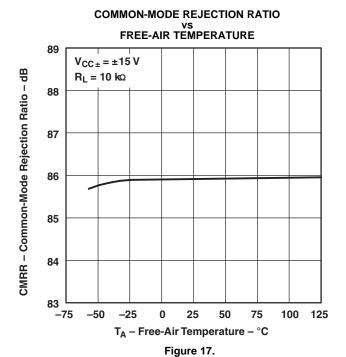
Figure 10.

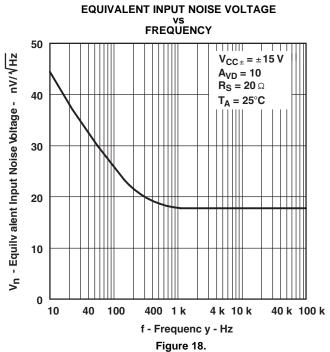


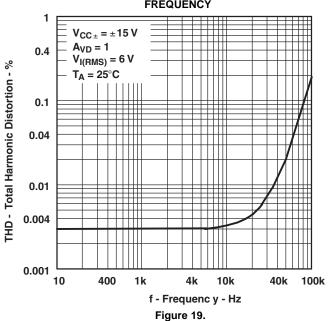

SUPPLY CURRENT vs FREE-AIR TEMPERATURE




INPUT BIAS CURRENT







TOTAL HARMONIC DISTORTION VS FREQUENCY

APPLICATION INFORMATION

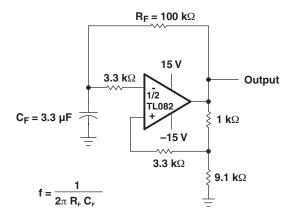


Figure 20.

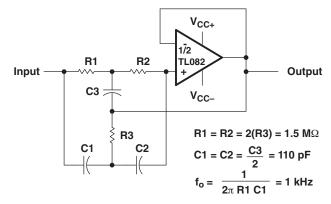


Figure 21.

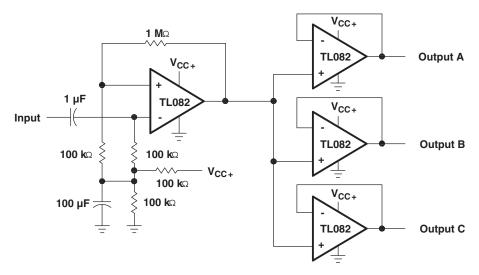
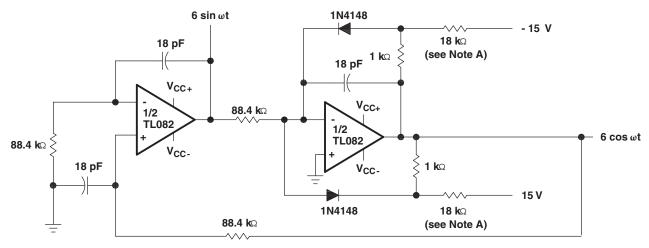



Figure 22. Audio-Distribution Amplifier

A. These resistor values may be adjusted for a symmetrical output.

Figure 23. 100-kHz Quadrature Oscillator

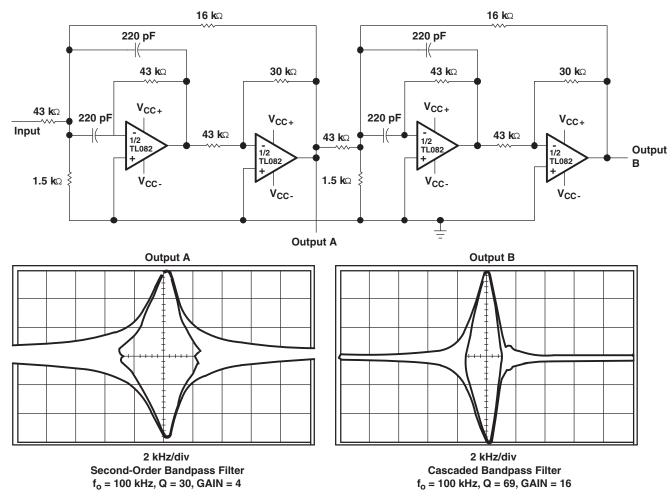


Figure 24. Positive-Feedback Bandpass Filter

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
TL082IDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL082I	Samples
TL082QDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TL082Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

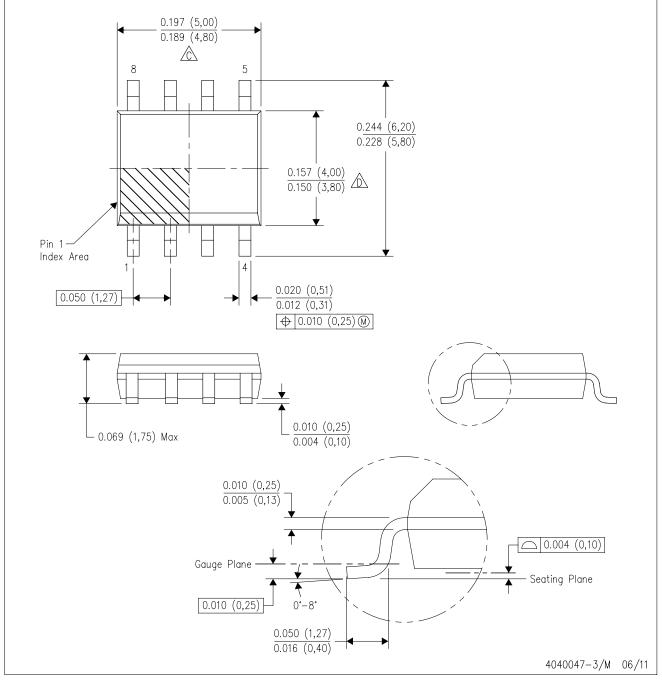
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL082-Q1:

PACKAGE OPTION ADDENDUM

11-Apr-2013

Military: TL082M

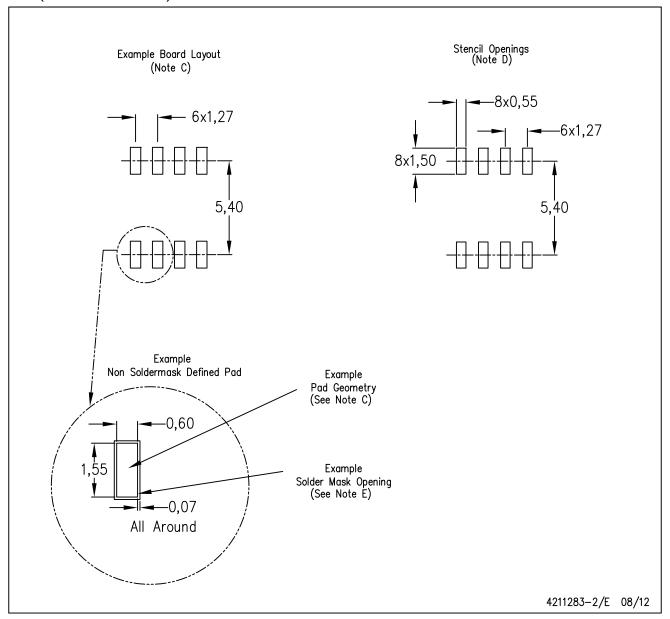

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>