
Single-Chip 3-Axis Accelerometer QMA6981

The QMA6981 is a single chip three-axis accelerometer. This surface-mount, small sized chip has an integrated acceleration transducer with signal conditioning ASIC, sensing tilt, motion, shock and vibration. It is targeted for applications such as screen rotation, step counting, sleep quality, gaming and personal navigation in mobile and wearable smart devices.

The QMA6981 is based on our state-of-the-art, high resolution single crystal silicon MEMS technology. Along with custom-designed 10-bit ADC ASIC, it offers the advantages of low noise, high accuracy, low power consumption, and offset trimming. The I²C serial bus allows for easy interface.

The QMA6981 is in a 2mmx2mmx0.95mm surface mount 12-pin land grid array (LGA) package.

FEATURES

- 3-Axis Accelerometer in a 2x2x0.95 mm³ Land Grid Array Package (LGA), guaranteed to operate over a temperature range of -40 °C to +85 °C.
- 10-Bit ADC with low noise accelerometer sensor
- ▶ I²C Interface with Standard and Fast modes.
- Built-In Self-Test
- Wide range operation voltage (2.4V To 3.6V) and low power consumption (27-50μA low power conversion current)
- Integrated FIFO with a depth of 32 frames
- RoHS compliant , halogen-free
- ▶ Built-in motion algorithm

BENEFIT

- Small size for highly integrated products. Signals have been digitized and factory trimmed.
- High resolution allows for motion and tilt sensing
- High-Speed Interfaces for fast data communications.
- Enables low-cost functionality test after assembly in production
- Automatically maintains sensor's sensitivity under wide operation voltage range and compatible with battery powered applications
- ▶ High Data-Read rate
- Environmental protection and wide applications
- Low power and easy applications including step counting, sleep quality, gaming and personal navigation

Rev: C

CONTENTS

CO	NTEN	TS	2
1	INTE	ERNAL SCHEMATIC DIAGRAM	3
	1.1	Internal Schematic Diagram	3
2	SPEC	CIFICATIONS AND I/O CHARACTERISTICS	
	2.1	Product Specifications	
	2.2	Absolute Maximum Ratings	
	2.3	I/O Characteristics	
3	PAC	KAGE PIN CONFIGURATIONS	5
	3.1	Package 3-D View	
	3.2	Package Outlines	
4	EXT	ERNAL CONNECTION	
	4.1	Dual Supply Connection	
	4.2	Single Supply connection	
5	BAS	IC DEVICE OPERATION	
	5.1	Acceleration Sensors	10
	5.2	Power Management	10
	5.3	Power On/Off Time	10
	5.4	Communication Bus Interface I ² C and Its Addresses	11
6	MOI	DES OF OPERATION	12
	6.1	Modes Transition	12
	6.2	Description of Modes	
7	Func	etions and interrupts	14
	7.1	POL_INT	14
	7.2	FOB_INT	
	7.3	STEP/STEP_QUIT INT	
	7.4	TAP_INT	16
	7.5	LOW-G_INT	18
	7.6	HIGH-G_INT	
	7.7	DRDY_INT	
	7.8	FIFO_INT	
	7.9	Interrupt configuration	
8	I^2C	COMMUNICATION PROTOCOL	
	8.1	I ² C Timings	
	8.2	I ² C R/W Operation	
9	REG	SISTERS	
	9.1	Register Map	
	9.2	Register Definition	25

1 INTERNAL SCHEMATIC DIAGRAM

1.1 Internal Schematic Diagram

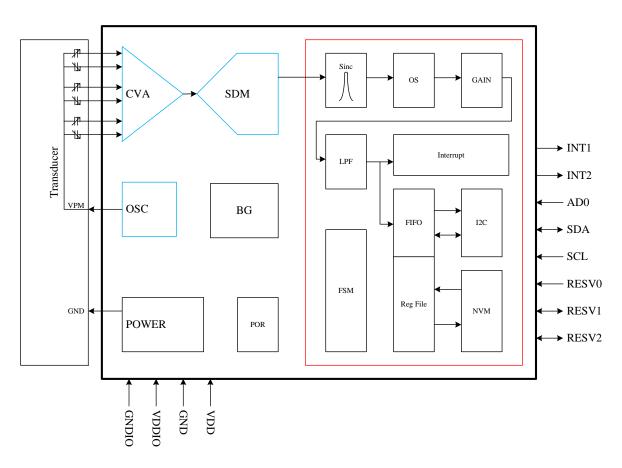
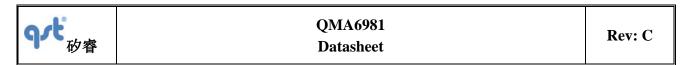



Figure 1. Block Diagram

Table 1. Block Function

Block	Function
Transducer	3-axis acceleration sensor
CVA	Charge-to-Voltage amplifier for sensor signals
Interrupt	Digital interrupt engine, to generate interrupt signal on data conversion, FIFO, and motion function
FIFO	Embedded 32-level FIFO
FSM	Finite state machine, to control device in different mode
I ² C	Interface logic data I/O
OSC	Internal oscillator for internal operation
Power	Power block, including LDO

2 SPECIFICATIONS AND I/O CHARACTERISTICS

2.1 Product Specifications

Table 2. Specifications (* Tested and specified at 25°C and 3.0V VDD except stated otherwise.)

Parameter	Conditions	Min	Тур	Max	Unit
Supply voltage VDD	VDD, for internal blocks	2.4	3.3	3.6	V
I/O voltage VDDIO	VDDIO, for IO only	1.7		VDD	V
Standby current			2		μA
Low power current	er current BW=500 Hz, ODR=1 Hz		27		μA
Low power current	w power current BW=500 Hz, ODR=10 Hz		29		μA
Low power current	BW=500 Hz, ODR=20 Hz		31		μA
Low power current	BW=500 Hz, ODR=40 Hz		37		μA
Low power current	BW=500 Hz, ODR=100 Hz		50		μΑ
Full run current	All blocks on, device in run state		220	300	μA
Sleep current	For analog, AFE is off, BG, Transducer and oscillator are on or in low power mode For digital, only counter and FSM are on		55		μА
Deep sleep current	For analog, only BG and oscillator are on For digital, only counter and FSM are on		26		μА
BW	Programmable bandwidth		3.9~500		Hz
Data output rate (ODR)	4*BW (ODRH=1)		15.6~2000		Samples /sec
Conversion time	in full speed		1/(4*BW)		ms
Startup time	From the time when VDD reaches to 90% of final value to the time when device is ready for conversion		2		ms
Wakeup time	From the time device enters into active mode to the time device is ready for conversion		1		ms
Operating temperature		-40		85	${\mathbb C}$
Acceleration Full Range			±2 ±4 ±8		g
Sensitivity	FS=±2g		256		LSB/g
Sensitivity	FS=±4g		128		LSB/g
Sensitivity	FS=±8g		64		LSB/g
Sensitivity Temperature Drift	FS=±2g, Normal VDD Supplies		±0.02		%/℃
Sensitivity tolerance	Gain accuracy		±5		%
Zero-g offset	FS=±2g, Normal VDD Supplies		±80		mg
Zero-g offset Temperature Drift	FS=±2g, Normal VDD Supplies		±2		mg/℃
Noise density	FS=±2g, run state		600		μg/sqrtHz
Nonlinearity	FS=±2g, Best fit straight line,		±0.5		%FS

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: C

Parameter	Conditions	Min	Тур	Max	Unit
Cross Axis			1		%
Sensitivity			'		70

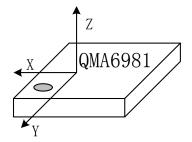
2.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings (Tested at 25°C except stated otherwise.)

Parameters	Condition	Min	Max	Units
VDD		-0.3	5.4	V
VDDIO		-0.3	5.4	V
ESD	HBM		2	kV
Shock Immunity	Duration < 200µS		10000	g
Storage temperature		-50	150	$^{\circ}$

2.3 I/O Characteristics

Table 4. I/O Characteristics


Parameter	Symbol	Pin	Condition	Min.	TYP.	Max.	Unit
Voltage Input	V _{IH} 1	SDA, SCL		0.7*VD		VDDIO+	V
High Level 1				DIO		0.3	
Voltage Input	V _{IL} 1	SDA, SCL		-0.3		0.3*VD	V
Low Level 1						DIO	
Voltage Output	V_{OH}	INT1, INT2	Output Current	0.8*VD			V
High Level			≥-100µA	DIO			
Voltage Output	V_{OL}	INT1, INT2,	Output Current			0.2*VD	V
Low Level		SDA	≤100µA(INT)			DIO	
			Output Current				
			≤1mA (SDA)				

3 PACKAGE PIN CONFIGURATIONS

3.1 Package 3-D View

Arrow indicates direction of g field that generates a positive output reading in normal measurement configuration.

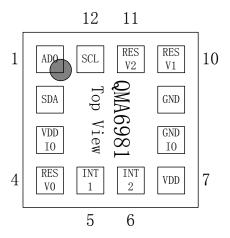


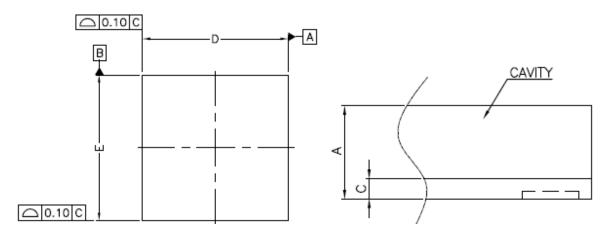
Figure 2. Package View

Table 5. Pin Configurations

PIN	PIN	I/O	Power	TYPE	Function	
No.	NAME		Supply			
1	AD0	I	VDDIO	CMOS	LSB of I ² C address	
2	SDA	10	VDDIO	CMOS	Serial data for I ² C	
3	VDDIO		VDDIO	Power	Power supply to digital interface	
4	RESV0	I	VDDIO	CMOS	Reserved. Float or connect to GND	
5	INT1	0	VDDIO	CMOS	Interrupt 1	
6	INT2	0	VDDIO	CMOS	Interrupt 2	
7	VDD		VDD	Power	Power supply to internal block	
8	GNDIO		GND	Power	Ground to digital interface	
9	GND		GND	Power	Ground to internal block	
10	RESV1	IO	VDDIO	CMOS	Reserved	
11	RESV2	IO	VDDIO	CMOS	Reserved	
12	SCL	I	VDDIO	CMOS	Serial clock for I ² C	

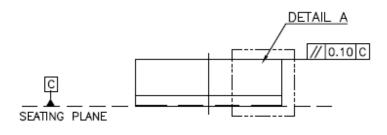
3.2 Package Outlines

3.2.1

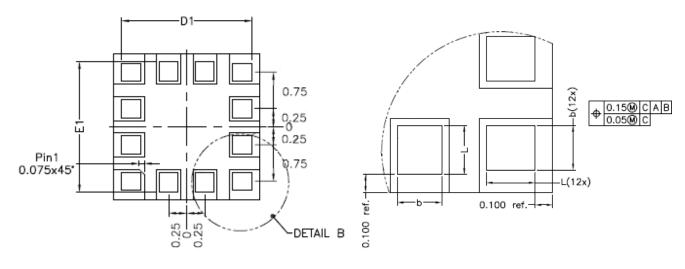

Package Type LGA (Land Grid Array)

3.2.2 **Package Outline Drawing:**

2.0mm (Length)*2.0mm (Width)*0.95mm (Height)



Rev: C



TOP VIEW

DETAIL A

SIDE VIEW

BOTTOM VIEW

DETAIL B

Rev: C

		OIMENSION	V	DIMENSION			
SYMBOL	(MM)			(inch)			
	MIN.	NØM.	MAX.	MIN.	NOM.	MAX.	
Α	0.90	0.95	1.00	0.035	0.037	0.039	
С	0.16	0.20	0.24	0.006	0.008	0.009	
р	0,20	0.25	0.30	0.008	0.010	0.012	
D	1.95	2.00	2.05	0.077	0.079	0.081	
D1		1.80 BSC			.071 BS	С	
Ε	1.95	2.00	2.05	0.077	0.079	0.081	
E1	1.80 BSC		;	C	.071 BS	С	
L	0.225	0.275	0.325	0.010	0.012	0.014	

Figure 3. Package Outline Drawing

3.2.3 Marking:

6981 YCCC • SP

Figure 4. Marking Format

Marking Text	Description	Comments
Line 1	Product Name	"6981" stand for QMA6981
Line 2	Y: the last digital of year	Lot code: 3 alphanumeric digits, variable to generate mass
	CCC: lot code	production trace-code
Line3	P: Part number	P: 1 alphanumeric digit, variable to identify part number
	S: Sub-con ID	S: 1 alphanumeric digit, variable identify sub-con
•	Pin 1 identifier	

Rev: C

4 EXTERNAL CONNECTION

4.1 **Dual Supply Connection**

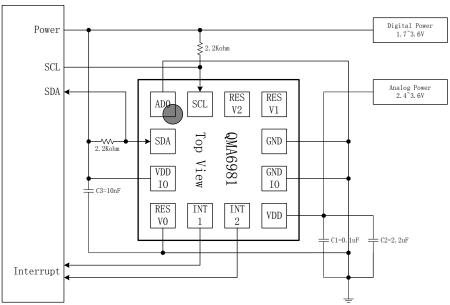


Figure 5. Dual Supply Connection

4.2 Single Supply connection

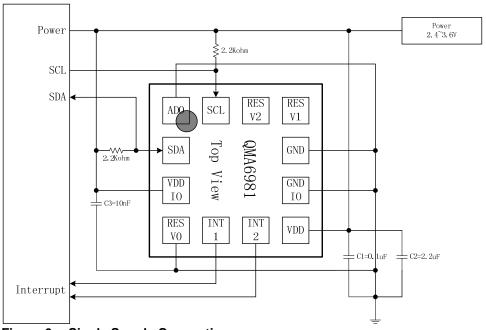
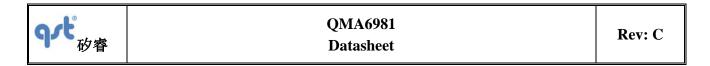



Figure 6. Single Supply Connection

5 BASIC DEVICE OPERATION

5.1 Acceleration Sensors

The QMA6981 acceleration sensor circuit consists of tri-axial sensors and application specific support circuits to measure the acceleration of device. When a DC power supply is applied to the sensor, the sensor converts any accelerating incident in the sensitive axis directions to charge output.

5.2 Power Management

Device has two power supply pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD and VDDIO.

The device should turn-on both power pins in order to operate properly. When the device is powered on, all registers are reset by POR, then the device transits to the standby mode and waits for further commends.

Table 6 provides references for four power states.

Table 6. Power States

Power State	VDD	VDDIO	Power State description
1	0V	0V	Device Off, No Power Consumption
2	0V	1.7v~3.6v	Not allowed. User need to make sure that VDDIO is less than VDD. Otherwise, there will be leakage from VDDIO to VDD through internal ESD devices
3	2.4v~3.6v	0	Device Off, Same Current as Standby Mode
4	2.4v~3.6v	1.7v~VDD	Device On, Normal Operation Mode, Enters Standby Mode after POR

5.3 Power On/Off Time

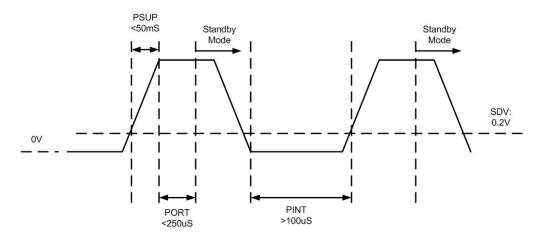

After the device is powered on, some time periods are required for the device fully functional. The external power supply requires a time period for voltage to ramp up (PSUP), typically 50 milli-second. However it isn't controlled by the device. The Power–On–Reset time period (PORT) includes time to reset all the logics, load values in NVM to proper registers, enter the standby mode and get ready for analogy measurements. The power on/off time related to the device is in Table 7

Table 7. Time Required for Power On/Off

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	10 / 34
--	---------

R	6 17		C
- 1/	CV.	•	u

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
POR	PORT	Time Period After VDD and			250	μs
Completion		VDDIO at Operating Voltage to				
Time		Ready for I ² C Commend and				
		Analogy Measurement.				
Power off	SDV	Voltage that Device Considers			0.2	V
Voltage		to be Power Down.				
Power on	PINT	Time Period Required for	100			μs
Interval		Voltage Lower Than SDV to				
		Enable Next POR				
Power on Time	PSUP	Time Period Required for			50	ms
		Voltage from SDV to 90% of				
		final value				

Power On/Off Timing

Figure 7. Power On/Off Timing

5.4 Communication Bus Interface I²C and Its Addresses

This device will be connected to a serial interface bus as a slave device under the control of a master device, such as the processor. Control of this device is carried out via I²C.

This device is compliant with I²C -Bus Specification, document number: 9398 393 40011. As an I²C compatible device, this device has a 7-bit serial address and supports I²C protocols. This device supports standard and fast speed modes, 100 kHz and 400 kHz, respectively. External pull-up resistors are required to support all these modes.

There are two I²C addresses selected by connecting pin 1 (AD0) to GND or VDDIO. The first six MSB are hardware configured to "001001" and the LSB can be configured by AD0.

Table 8. I²C Address Options

AD0 (pin 1)	I ² C Slave Address(HEX)	I ² C Slave Address(BIN)
Connect to GND	12	0010010
Connect to VDDIO	13	0010011

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.
--

Rev: C

6 MODES OF OPERATION

6.1 Modes Transition

QMA6981 has two different operational modes, controlled by register (0x11), MODE_BIT. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below, through I^2C commands. The default mode after power-on is standby mode.

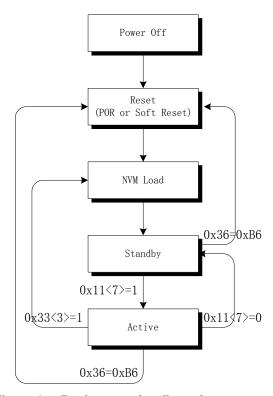
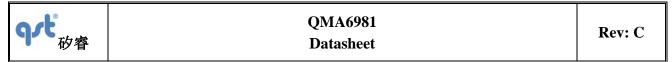



Figure 8. Basic operation flow after power-on

The default mode after power on is standby mode. Through I²C instruction, device can switch between standby mode and active mode. With SOFTRESET by writing 0xB6 into register 0x36, all of the registers will get default values. SOFTRESET can be done both in active mode and in standby mode. Also, by writing 1 in NVM_LOAD (0x33<3>) when device is in active mode, the NVM related image registers will get default value from NVM, however, other registers will keep the values of their own.

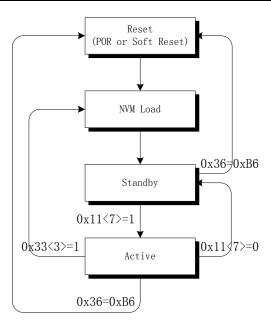


Figure 9. The work mode transferring

6.2 Description of Modes

6.2.1 Active Mode

In active mode, there are two states, run state, and sleep state.

6.2.1.1 Sleep State

In sleep state, whole signal chain is off, including analog and digital signal conditioning, and the rest blocks are on.

6.2.1.2 Run State

In run state, the ADC digitizes the charge signals from transducer, and digital signal processor conditions these signals in digital domain, processes the interrupts, and send data to FIFO (accessible through register 0x3F) and Data registers (0x01~0x06). After the signal conditioning, the signal chain will be off and device enters back into sleep state, leaves timer and FSM on. Also in sleep state, reference and power blocks are on.

This mode can also be called as power cycling. The power cycling duty is configurable through state registers SLEEP_DUR (0x11<3:0>). Device can enter into active mode by setting MODE_BIT (0x11<7>) to logic 1. Besides the power cycling, device can also be configured as FULLRUN, by setting SLEEP_DUR=0000b. In this setting, no sleep state in the active mode, and device consumes most power, deliver the data most frequently.

6.2.2 Standby Mode

In standby mode, most of the blocks are off, while device is ready for access through I^2C . Standby mode is the default mode after power on or soft reset. Device can enter into this mode by set the soft reset register (0x36) to 0xB6 or set the MODE_BIT (0x11<7>) to logic 0.

Besides the above two modes, the device also contains NVM loading state. This state is used to reset the value of the NVM related image registers. There are two bits related to this state. When NVM_LOAD (0x33<3>) is set to 1, NVM loading starts. When the device is in NVM loading state, NVM_RDY (0x33<2>) is set to logic 0 by device. After NVM loading is finished, NVM_RDY (0x33<2>) is set back to logic 1 by device, and NVM_LOAD is reset to 0 by device automatically. NVM loading can only happen when NVM_LOAD is set to 1 in active mode. If the user sets this NVM_LOAD bit to 1 in standby mode, the device will not take the action until it enters into active state by setting MODE_BIT (0x11<7>) to logic 1.

After loading NVM, the device will enter into standby mode directly.

The loading time for NVM is about 100uS.

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: C

7 Functions and interrupts

ASIC support interrupts, such as POL_INT, FOB_INT, STEP_INT, TAP_INT, LOW-G, HIGH-G, DRDY_INT, and FIFO_INT.

QMA6981

Datasheet

7.1 POL INT

The POL_INT stands for Portrait or Landscape interrupt. It responds to the device in portrait direction or landscape direction. It includes 4 different event types, left, right, up and down events. The different type event stored and can be read from register ORIENT (0x0D<2:0>).

POLA(0x0D<2:0>)	Left	Right	Down	Up	comments
000	0	0	0	0	unknown
001	1	0	0	0	Left/Landscape
010	0	1	0	0	Right/Landscape
101	0	0	1	0	Down/portrait
110	0	0	0	1	Up/portrait

All different events can be detected by comparing the threshold set by register $UD_X_TH(0x2D)$, $RL_Y_TH(0x2F)$ with the sensor data , also have dependency on comparing result between the Z sensor readings and the register $UD_Z_TH(0x2C)$ and $RL_Z_TH(0x2E)$. Hysteresis can be introduced to the angle by decreasing a small offset for the threshold registers. All angle data inside the Hysteresis area will be regarded as unknown status in the orient status register (0x0D<2:0>).

Below Table shows the condition four kinds of orient events generation, the default threshold for X, Y is set to 40 degrees

Event	X		Υ		Z
Up	X >UD_X_TH	X <0			Z <ud_z_th< th=""></ud_z_th<>
Down	X >UD_X_TH	X >0			Z <ud_z_th< th=""></ud_z_th<>
Right			Y >RL_Y_TH	Y <0	Z <rl_z_th< th=""></rl_z_th<>
Left			Y >RL_Y_TH	Y >0	Z <rl_z_th< th=""></rl_z_th<>

For the registers settings, all the orient events threshold 1 LSB bit stand for 3.9mg. For Z axis, it is 8-bit signed 2's complement number ranged from 0.3g to 1.29g, default value 0 as stands for 0.8g. X, Y axis are unsigned data, default value A4 stands for 640mg which angel be regards as 40 degree, there will be around 10 degree dead band left. The degree value for event can be calculated by the equal asin(0.0039*UD_X_TH) or asin(0.0039*RL_Y_TH).

The related interrupt status bit is $ORIENT_INT$ (0x0A<6>). When the POL status changes the value of $ORIENT_INT$ will be set to logic 1, and this will be cleared after the interrupt status register is read by user. $ORIENT_EN$ (0x16<6>) is the enable bit for the POL_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_ORIENT (0x19<6>) or INT2_ORIENT (0x1B<6>) to logic 1, to map the internal interrupt to the interrupt PINs.

7.2 FOB INT

The Front/back event can be detected by comparing Z axis data with a low g value, ranged from 0.1g to 0.6g, which is defined by FB $\,$ Z $\,$ TH(0x30<6:0>). The comparing condition shows below:

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	14 / 34
--	---------

Rev: C

Event	Χ	Y	Z
Front			Z >FB_TH Z>0
Back			Z >FB_TH Z<0

The 2 different type events are stored and can be read from register ORIENT (0x0D<4:3>)

FOB(0x0D<4:3>)	status
00	unknown
01	Front
10	Back
11	Reserved

Angle between the Z-axis and g can have the relationship:

 $Acc_Z=1g * cos(theta).$

Each threshold will introduce a dark area, which the Front/Back status cannot be recognized, the dark area angel is +/- (90-theta).

When the threshold register value is 0x00, the default value stands for 0.1g, and 1 LSB is 3.91mg. The minimum angel between sensor and g direction should be 84 degree, so the dark area should be +/-6 degree. When the value is 0x7F, the dark area should be +/-37 degree.

The related interrupt status bit is FOB_INT (0x0A<7>). When the FOB status changed, the value of FOB_INT will be set to logic 1, and this will be cleared after the interrupt status register is read by user. FOB_EN (0x16<7>) is the enable bit for the FOB_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_FOB (0x19<7>) or INT2_FOB (0x19<7>) to logic 1, to map the interrupt to the interrupt PINs.

7.3 STEP/STEP_QUIT INT

The STEP/STEP_QUIT detect that the user is entering/exiting step mode. When the user enter into step mode, at least one axis sensor data will vary periodically, by numbering the variation periods the step counter can be calculated.

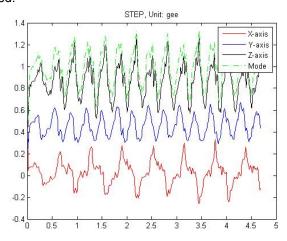


Figure 10. STEP/STEP_QUIT

Median data (max+min) /2 is called dynamic threshold, the max and min data can be updated by certainly samples, the sample number can be set by register STEP_SAMPLE_CNT (0x12<4:0>). When the sensor data decreasing (or increasing) through the dynamic threshold, a user run step is detected.

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: C

Register STEP PRECISION (0x13<6:0>) is used as threshold when updating the new collected sensor data. Sensor data below the threshold will be discarded, this helps removing unstable variations causing failed detection. The run step event happened at certain interval timing. All of the events outside the timing window will not be regarded as a run step and the step counter will not counted. The timing window can be set by register STEP_TIME_UP(0x15) and STEP_TIME_LOW(0x14), the conversion ODR numbers ranged from STEP_TIME_LOW *ODR to 8* STEP_TIME_UP*ODR. Also if no new run step event detected until the up limited timing threshold, STEP_QUIT INT will generation.

To remove unstable variation which will cause false STEP event detection, the step counter considers steps as valid step events only after 4 continuous steps detected. Also, the step counter register STEP_CNT_/ STEP CNT MSB (0x07,0x08) will be updated immediately by value 4, and interrupt STEP is also generated.

The related interrupt status bit is STEP INT (0x0A<3>) and STEP QUIT INT (0x0A<2>). When the interrupt is generated, the value of STEP_INT/ STEP_QUIT_INT will be set to logic 1, which will be cleared after the interrupt status register is read by user. STEP_EN/STEP_QUIT_EN (0x16<3>/0x16<2>) is the enable bit for the STEP_INT/STEP_QUIT_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_STEP (0x19<3>)/INT1_STEP_QUIT (0x19<2>) or INT2_STEP (0x18<3>) /INT2_STEP_QUIT (0x18<2>) to logic 1, to map the internal interrupt to the interrupt PINs.

7.4 TAP INT

Tap detection allows the device to detect events such as the clicking or double clicking of a touch-pad. A tap event is detected if a pre-defined slope (absolute value of acceleration difference) with acceleration of at least one axis is exceeded. The tap detection includes single tap (TAPS) and double tap (TAPD). A 'Single tap' is a single event within a certain time, followed by a certain quiet time. A 'double tap' consists of a first such event followed by a second event within a defined time frame.

Single tap interrupt can be enabled (disabled) by setting '1' ('0') to bit S TAP EN (0x16<5>). The double tap

detection can be enabled (disabled) by setting '1' ('0') to (0x16) D_TAP_EN (0x16<4>).

The status of single tap interrupt is stored in S_TAP_INT (0x0A<5>), and the status of double tap interrupt is stored in D_TAP_INT (0x0A<4>).

The slope threshold for detecting a tap event is set by register TAP_TH (0x2B<4:0>). The meaning of an LSB of TAP_TH (0x2B<4:0>) depends on the selected g-range: 1 LSB of the TAP_TH is 62.5mg in 2g-range, 125mg in 4g-range, and 250mg in 8g-range.

In figure 11 the timing for single tap and double tap is visualized:

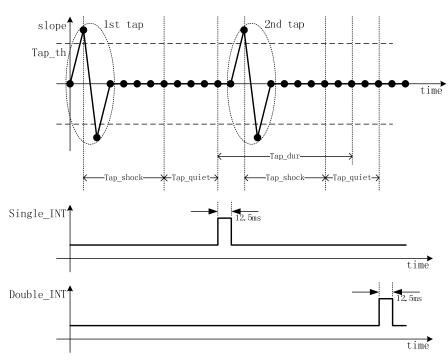


Figure 11. Timing of tap detection

The parameters TAP_SHOCK (0x2A<6>) and TAP_QUIET (0x2A<7>) are affected in both single tap and double tap detection, while TAP_DUR (0x2A<2:0>) is affected in double tap detection only. Within the duration of TAP_SHOCK, any slope exceeding TAP_TH (0x2B<4:0>) after the first event will be ignored. Contrary to this, within duration of TAP_QUIET, no slope exceeding TAP_TH must occur; otherwise the first event will be cancelled. A single tap interrupt is generated after the combined duration of TAP_SHOCK and TAP_QUIET. The interrupt is cleared after a delay of 12.5ms.

A double tap interrupt is generated if an event fulfilling the conditions for a single tap occurs within the duration defined by TAP_DUR after the completion of the first tap event. The interrupt is cleared after a delay of 12.5ms. For each of parameter TAP_SHOCK and TAP_QUIET two values are selectable. By writing '0' ('1') to bit TAP_SHOCK, the duration of TAP_SHOCK is set to 50ms (75ms). By writing '0' ('1') to bit TAP_QUIET, the duration of TAP_QUIET is set to 30ms (20ms).

The duration of TAP DUR can be set by TAP DUR bits:

TAP_DUR	Duration of TAP_DUR
000	50ms
001	100ms
010	150ms
011	200ms
100	250ms
101	375ms
110	500ms
111	700ms

The axis which triggered the interrupt is indicated by bits TAP_FIRST_X (0x0C<4>), TAP_FIRST_Y (0x0C<5>), and HIGH_FIRST_Z (0x0C<6>). The bit corresponding to the triggering axis contains a '1' while the other bits hold a '0'. These bits hold until new interrupt is triggered.

The sign of the triggering acceleration is stored in bit TAP_SIGN (0x0C<7>). If the (0x0C) HIGH_SIGN = '0' ('1'), the sign is positive (negative). This bit holds until a new interrupt is triggered.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	17 / 34
--	---------

Rev: C

7.5 LOW-G INT

The low-g interrupt is based on the comparison of acceleration data against a low-g threshold for the detection of free-fall.

The low-g interrupt is enabled (disabled) by writing logic '1' ('0') to bits LOW_EN (0x17<3>). There are two modes available, 'single' mode and 'sum' mode. In 'single' mode, the acceleration of each axis is compared with the threshold; in 'sum' mode, the sum of absolute value of all accelerations $|acc_x| + |acc_y| + |acc_z|$ is compared with the threshold. The mode is selected by the contents of the LOW_MODE bit (0x24<2>): '0' means 'single' mode, '1' means 'sum' mode.

The low-g threshold is set through the LOW_TH (0x23<7:0>) register. 1 LSB of LOW_TH always corresponds to an acceleration of 7.8mg (increment is independent from g-range setting).

A hysteresis can be set with the LOW_HYST bits (0x24<1:0>). 1 LSB of LOW_HYST always corresponds to an acceleration of 125mg (as well, increment is independent from g-range setting).

The low-g interrupt is generated if the absolute values of the acceleration of all axes ('and' relation, in case of 'single' mode) or their sum (in case of 'sum' mode) are lower than the threshold for at least the time defined by the LOW_DUR (0x22<7:0>) register. The interrupt is reset if the absolute value of the acceleration of at least one axis ('or' relation, in case of 'single' mode) or the sum of absolute values (in case of 'sum' mode) is higher than the threshold plus the hysteresis for at least one data acquisition. The relation between the content of LOW_DUR and the actual delay of the interrupt generation is delay = [LOW_DUR+1]*2ms. The interrupt status is stored in bit LOW_INT (0x0B<3>).

7.6 HIGH-G_INT

The high-g interrupt is based on the comparison of acceleration data against a high-g threshold for the detection of shock or other high-acceleration events.

The high-g interrupt is enabled (disabled) per axis by writing logic '1' ('0') to bits HIGH_EN_X (0x17<0>), HIGH_EN_Y (0x17<1>), and HIGH_EN_Z (0x17<2>), respectively. The high-g threshold is set through the HIGH_TH (0x26<7:0>) register. The meaning of an LSB of HIGH_TH depends on the selected g-range: it corresponds to 7.8mg in 2g-range (15.6mg in 4g-range, 31.2mg in 8g-range).

A hysteresis can be set with the HIGH_HYST bits (0x24<7:6>). Analogously to the HIGH_TH, the meaning of an LSB of HIGH_HYST depends on the selected g-range: it corresponds to 125mg in 2g-range (250mg in 4g-range, 500mg in 8g-range).

The high-g interrupt is generated if the absolute value of the acceleration data of at least one of the enabled axes ('or' relation) is higher than the threshold for at least the time defined by the HIGH_DUR register (0x25<7:0>). The interrupt is reset if the absolute value of the acceleration of all enabled axes ('and' relation) is lower than the threshold minus the hysteresis. The relation between the content of HIGH_DUR and the actual delay of the interrupt generation is delay = [HIGH_DUR+1]*2ms.

The interrupt status is stored in bit HIGH_INT (0x0B<2>). The axis which triggered the interrupt is indicated by bits HIGH_FIRST_X (0x0C<0>), HIGH_FIRST_Y (0x0C<1>), and HIGH_FIRST_Z (0x0C<2>). The bit corresponding to the triggering axis contains a '1' while the other bits hold a '0'. These bits hold until new interrupt is triggered. The sign of the triggering acceleration is stored in bit HIGH_SIGN (0x0C<3>). If the (0x0C) HIGH_SIGN = '0' ('1'), the sign is positive (negative). This bit holds until new interrupt is triggered.

7.7 DRDY INT

The width of the acceleration data is 10 bits, in two's complement representation. The data of each axis is split into 2 parts, the MSB part (one byte contains bit 9 to bit 2) and the LSB part (one byte contains bit 1 to bit 0). Reading data should start with LSB part. When user is reading the LSB byte of data, to ensure the integrity of the acceleration data, the content of MSB can be locked, by setting SHADOW_DIS (0x21<6>) to logic 0. This lock function can be disabled by setting SHADOW_DIS to logic 1. Without lock, the MSB and LSB content will be updated by new value immediately. The bit NEW_DATA in the LSB byte is the flag of the new data. If new data is updated, this NEW_DATA flag will be 1, and will be cleared when corresponding MSB or LSB is read by user.

Rev: C

Also, the user should note that even with SHADOW_DIS=0, the data of 3 axes are not guaranteed from the same time point. If the user need all of the 3 axes data from the same time point, please use FIFO. For detailed information, the user can refer to 6.8.

If SLEEP_DUR is set to be 0000, then the data can be filtered by low-pass filter, with bandwidth is set by BW (0x10<4:0>). If SLEEP_DUR is set to be other values, the data also can be averaged in different way (set by BW). In any conditions, the data stored in data registers are offset-compensated.

The device supports four different acceleration measurement ranges. The range is setting through RANGE

(0x0F<3:0>), and the details as following:

RANGE	Acceleration range	Resolution
0001	2g	3.9mg/LSB
0010	4g	7.8mg/LSB
0100	8g	15.6mg/LSB
Others	2g	3.9mg/LSB

The interrupt for the new data serves for the synchronous data reading for the host. It is generated after storing a new value of z-axis acceleration data into data register. This interrupt will be cleared automatically when the next data conversion cycle starts, when SLEEP_DUR is not set to 0000b. When device is in full run (SLEEP_DUR=0000), the interrupt will be effective about 128us, and automatically cleared. The interrupt mode for the new data is fixed to be non-latched.

7.8 FIFO INT

The device has integrated FIFO memory, capable of storing up to 32 frames, with each frame contains three 10 bits words, for acceleration data of x, y, and z axis. All of the 3 axes' acceleration is sampled at same point in time line

The FIFO can be configured as three modes, FIFO mode, STREAM mode, and BYPASS mode. FIFO mode.

In FIFO mode, the acceleration data of selected axes are stored in the buffer memory. If enabled, a watermark interrupt can be triggered when the buffer filled up to the defined level. The buffer will continuously be filled until the fill level reaches to 32. When the buffer is full, data collection stops, and the new data will be ignored. Also, FIFO_FULL interrupt will be triggered when enabled.

STREAM mode

In STREAM mode, the acceleration data of selected axes will be stored into the buffer until the buffer is full. The buffer's depth is 31 now. When the buffer is full, data collection continues, and the oldest data is discarded. If enabled, a watermark interrupt will be triggered when the fill level reached to the defined level. Also, when buffer is full, FIFO_FULL interrupt will be triggered if enabled. If any old data is discarded, the FIFO_OR (0x0E<7>) will be set to be logic 1.

BYPASS mode

In BYPASS mode, only the current acceleration data of selected axes can be read out from the FIFO. The FIFO acts like the STREAM mode with a depth of 1. Compare to reading directly from data register, this mode has the advantage of ensuring the package of xyz data are from same point of time line. The data registers are updated sequentially and have chance for the xyz data sampled in different time. Also, if any old data is discarded, the FIFO OR will be set to be logic 1, similar as that in stream mode.

The FIFO mode can be configured by setting FIFO_MODE (0x3E<7:6>).

FIFO_MODE	Mode
00	BYPASS
01	FIFO
10	STREAM
11	FIFO

Rev: C

User can select the acceleration data of which axes to be stored in the FIFO. This configuration can be done by setting FIFO_CH (0x3E<1:0>), where '00b' for x-, y-, and z-axis, '01b' for x-axis only, '10b' for y-axis only, '11b' for z-axis only.

If all the 3 axes data are selected, the format of data read from 0x3F is as follows

XLSB XMSB YLSB YMSB ZLSB ZMSE						
	I XLSB	XMSB	YI SB	YMSB	/ / SB	I ZMSB

These comprise one frame

If only one axis is enabled, the format of data read from 0x3F is as follows

These comprise one frame

If the frame is not read completely, the remaining parts of the frame will be discarded.

If the FIFO is read beyond the FIFO fill level, all zeroes will be read out.

FIFO_FRAME_COUNTER (0x0E<6:0>) reflects the current fill level of the buffer. If additional data frames are written into the buffer when the FIFO is full (in Stream mode or Bypass mode), then, FIFO_OR (0x0E<7>) is set to 1. This FIFO_OR can be considered as flag of discarding old data.

When a write access to one of the FIFO configuration registers (0x3E) or (0x31) occurs, the FIFO buffer will be cleared, the FIFO fill level indication register FIFO_FRAME_COUNTER (0x0E<6:0>) will be cleared, and the FIFO_OR (0x0E<7>) will be cleared.

As mentioned, FIFO controller contains two interrupts, FIFO_FULL interrupt, and watermark interrupt. These two interrupts are functional in all the FIFO operating modes.

The watermark interrupt is triggered when the fill level of buffer reached to the level that is defined by register FIFO_WM_TRIGGER (0x31<5:0>), if the interrupt is enabled by setting INT_FWM_EN (0x17<6>) to logic 1 and INT1 FWM (0x1A<1>) or INT2 FWM (0x1A<6>) is set.

The FIFO_FULL interrupt is triggered when the buffer has been fully filled. In FIFO mode, the fill level is 32, and in STREAM mode the fill level is 31, in BYPASS mode the fill level is 1. To enable the FIFO_FULL interrupt, INT_FFULL (0x17<5>) should be set to 1, and INT1_FFULL (0x1A<2>) or INT2_FFULL (0x1A<7>) should be set to 1.

The status of watermark interrupt and FIFO full interrupt can be read through INT_STAT (0x0A). After soft-reset, the watermark interrupt and FIFO full interrupt are disabled.

For the FIFO to recollect the data, user should reconfigure the register FIFO MODE.

7.9 Interrupt configuration

The device has the above 8 interrupt engines. Each of the interrupts can be enabled and configured independently. If the trigger condition of the enabled interrupt fulfilled, the corresponding interrupt status bit will be set to logic 1, and the mapped interrupt pin will be activated. The device has two interrupt PINs, INT1 and INT2. Each of the interrupts can be mapped to either PIN or both PINs.

The interrupt status registers update when a new data word is written into the data registers. If an interrupt is disabled, the related active interrupt status bit is disabled immediately.

Device supports 2 interrupt modes, non-latched, and latched mode. The interrupt modes are set through LATCH_INT (0x21<0>).

In non-latched mode, the interrupt status bit and the mapped interrupt pin are cleared as soon as the associated conditions are no more valid, or read operation to the INT_STAT (0x09~0x0b). Exceptions to this are the new data, orientation, and flat interrupts, which are automatically reset after a fixed time.

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: C

In latched mode, the clearings of the interrupt status and selected pin are determined by INT_RD_CLR (0x21<7>). If INT_RD_CLR=0, read operation to the INT_STAT will clear the interrupt and the selected pin. If INT_RD_CLR=1, any read operation to the device will clear the interrupt and the selected pin.

If the condition for trigging the interrupt still holds, the interrupt status will be set again with the next change of the data registers.

Mapping the interrupt pins can be set by INT_MAP ($0x19\sim0x1B$). The electrical interrupt pins can be set in INT_PIN_CONF (0x20<3:0>). The active logic level can be set to 1 or 0, and the interrupt pin can be set to open-drain or push-pull.

If the interrupt mode is configured as latched mode, the interrupt can also be cleared by I²C reading any of the interrupt status register ($0x09 \sim 0x0c$).

8 I2C COMMUNICATION PROTOCOL

8.1 I²C Timings

Table 9 and Figure 12 describe the I²C communication protocol times

Table 9. I²C Timings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL Clock	f _{scl}		0		400	kHz
SCL Low Period	t _{low}		1			μs
SCL High Period	t_{high}		1			μs
SDA Setup Time	t _{sudat}		0.1			μs
SDA Hold Time	t _{hddat}		0		0.9	μs
Start Hold Time	t _{hdsta}		0.6			μs
Start Setup Time	t _{susta}		0.6			μs
Stop Setup Time	t _{susto}		0.6			μs
New Transmission Time	t _{buf}		1.3			μs
Rise Time	t _r					μs
Fall Time	t _f					μs

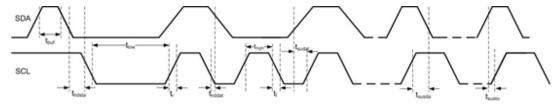


Figure 12. I²C Timing Diagram

8.2 I²C R/W Operation

8.2.1 Abbreviation

Table 10. Abbreviation

SACK	Acknowledged by slave
MACK	Acknowledged by master
NACK	Not acknowledged by master
RW	Read/Write

8.2.2 Start/Stop/Ack

START: Data transmission begins with a high to transition on SDA while SCL is held high. Once I²C transmission starts, the bus is considered busy.

STOP: STOP condition is a low to high transition on SDA line while SCL is held high.

ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the acknowledge pulse while the receiver mush then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	22 / 34
--	---------

Rev: C

NACK: If the receiver doesn't pull down the SDA line during the high period of the acknowledge clock cycle, it's recognized as NACK by the transmitter.

8.2.3 I²C Write

I²C write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit (R/W=0). The slave sends an acknowledge bit (ACK=0) and releases the bus. The master sends the one byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Table 11. I²C Write

ST	Slave Address	R W	ςA	Reg	gister (0x		Iress		SΑ			Da (0x	ata 80)	ı			S,	S
ART	0 0 1 0 0 1 0	0	ζ.	0 0	0 1	0	0 0	1	Š	1 (0	0	0	0	0	0	CK	ГОР

8.2.4 I²C Read

 I^2C write sequence consists of a one-byte I^2C write phase followed by the I^2C read phase. A start condition must be generated between two phase. The I^2C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (R/W=1). Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer. A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.

The register address is automatically incremented and more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the current I²C write command.

Table 12. I²C Read

ST		SI	ave	e A	ddre	ess		R W	S/		Re	egis		Ad (00)		SS		s,										
TART	0	0	1	0	0	1	0	0	SACK	0	0	0	0	0	0	0	0	SACK										
ST		SI	ave	e A	ddre	ess	ı	R W	S,					ata (00)				M				Da (0x	ata 01)					
TART	0	0	1	0	0	1	0	1	SACK	0	0	0	0	0	0	1	0	MACK	0	0	0	0	0	0	0	0		
×.			ı		Data 0x02				×								•••	M				Da (0x					Z,	S
MACK	0	0	0	0	0	0	1	0	MACK									MACK	0	0	0	0	0	0	0	0	NACK	STOP

9 REGISTERS

9.1 Register Map

The table below provides a list of the 8-bit registers embedded in the device and their respective function and addresses

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	23 / 34
--	---------

Rev: C

Table 13. Register Map

0x3F		FIFO DATA<7:	۸۱							D	00
		FIFO MODE<1:					ı	FIFO CH<1:0>	•	RW	00
			U/	L	L		l .	F1FU_CH(1:U/		•	
0x3D		GAIN_Z<7:0>							•	RW	NVM
0x3C		GAIN_Y<7:0>								RW	NVM
0x3B		GAIN_X<7:0>								RW	NVM
0x3A		OFFSET_Z<7:0								RW	NVM
0x39		OFFSET_Y<7:0	>							RW	NVM
0x38		OFFSET_X<7:0	>							RW	NVM
0x37	IMAGE	OFFSET_X<10:	8>		GAI	N_Z<9:8>	0	FFSET_Y<10:8>		RW	NVM
0x36	SOFT RESET	SOFTRESET: 0:	xB6							RW	00
0x35										RW	00
0x34										RW	00
	NVM CFG					NVM LOAD	NVM RDY	NVM PROG		RW	04
0x32		SELFTEST BIT				SingleEn_Step	SELFTEST SIGN		<1·0>	RW	00
	FIFO WM	ODDITEOT_DIT		FIFO WTMK LVL<5:	.0>	DINGIODN_DUOP	TODDI TODI_DIGN	DDD1 1DD1_HX10	(110)	RW	00
0x30		ORIENT_DB_DI		<u> </u>	. 07	FB_Z_TH<6:0>				RW	00
0x2F		OKIENI_DD_DI			DI V	TH<7:0>				RW	A 4
0x2F 0x2E						TH<7:0>				RW	00
0x2D										RW	00 A 4
	AD /CD					TH(7:0)					00
	4D/6D					_TH<7:0>				RW	00 0A
0x2B	TAD	TAD OUTDO	TAD CHACE	Ι	TAP_TH<4:0>		TAD DUD (O. O.)			RW	0A 04
0x2A	TAP	TAP_QUIET	TAP_SHOCK	L	00.00	CT 7/7.0\	TAP_DUR<2:0>			RW	
0x29						ST_Z<7:0>				RW	00
0x28	00 01107					ST_Y<7:0>				RW	00
	OS_CUST				US_CU	ST_X<7:0>				RW	00
0x26		HIGH_TH<7:0>								RW	C0
0x25		HIGH_DUR<7:0				ı	1	1		RW	0F
0x24		HIGH_HYST<1:	0>				LOW_MODE	LOW HYST<1:0>		RW	81
0x23		LOW_TH<7:0>								RW	30
0x22		LOW_DUR<7:0>								RW	09
0x21	INT LATCH	INT_RD_CLR	SHADOW DIS	INT_PULSE					LATCH INT	RW	00
0x20	INT PIN CONF					INT2_OD	INT2_LVL	INT1_OD	INT1_LVL	RW	05
0x1F				PEAI	K_B<5:0>			STEP_MISMATCH	_B<1:0>	RW	00
0x1E				VALLI	EY_B<5:0>					RW	00
0x1D										RW	FF
0x1C			INT2_FWM	INT2_FFULL	INT2_DATA	INT2_LOW	INT2_HIGH			RW	00
0x1B		INT2 FOB	INT2 ORIENT	INT2 S TAP	INT2 D TAP	INT2 STEP	INT2 STEP QUIT	INT2 STEP UNS	IMIL	RW	00
0x1A			INT1 FWM	INT1 FFULL	INT1 DATA	INT1 LOW	INT1 HIGH			RW	00
0x19	INT MAP	INT1 FOB	INT1_ORIENT	INT1_S_TAP	INT1_D_TAP	INT1 STEP	INT1_STEP_QUIT	INT1 STEP UNS	IMIL	RW	00
0x18	INT SRC		INT SRC STEP	INT SRC DATA	INT SRC TAP	_				RW	00
0x17			INT_FWM_EN	INT_FFULL_EN	DATA EN	LOW EN	HIGH EN Z	HIGH EN Y	HIGH_EN_X	RW	00
0x16	INT EN	FOB EN	ORIENT EN	S TAP EN	D TAP EN	STEP EN		STEP UNSIMILA		RW	00
0x15						IME UP<7:0>			_	RW	00
0x14						ME LOW<7:0>				RW	00
	STEP CONF	STEP CLR				TEP PRECISION<6:0>				RW	00
0x12		STEP_START			STEP SAMPLE C					RW	0C
			RESV	PRESET		SLEEP_DUR<3:0>			,	RW	00
	BW			ODRH			BW<4:0>		,	RW	00
0x0F	FULL SCALE			1	1	RANGE<3:0>	3/		,	RW	00
		FIFO OR	FIFO FRAME CO	DUNTER<6:0>	•	,				R	00
0x0D		STEP CNT OVE			R	0B<1:0>		ORIENT<2:0>		R	00
0x0C		TAP SIGN	TAP FIRST Z	TAP FIRST Y		HIGH SIGN	HIGH FIRST Z	HIGH FIRST Y	HICH FIRST Y	R	00
0x0B		01011	FIFO WM INT	FIFO_FULL_INT	DATA INT	LOW INT	HIGH INT			R	00
	INT STATUS	FOB INT	ORIENT_INT	S TAP INT	D TAP INT	STEP INT	STEP QUIT INT	STED HINGINII A	R	R	00
0x0A = 0x0A	INI SINIUS	1 01 1111	OWIDMI_IMI	D_IMI_IMI	ואו_ואו	01D1 THI	PIDI MOII THI	OIDI ONOIMIDU		R	FF
0x09			1	<u> </u>	CTPD	CNT<15:8>	1	<u> </u>	l .	R	00
	STEP CNT					CNT<7:0>				R	00
0x07 0x06		ACC 7/0.2\			SIEF	_UN1 / 1: U/				D IV	00
0x06 0x05		ACC_Z<9:2>				ı	1		NEW DATA Z	I/	00
		ACC Z<1:0>		I .	L	l .	l	l .	INEW DAIA Z	IV.	00
$0x04 \\ 0x03$		ACC_Y<9:2>		1	1	1	1	1	NEW DATE V	N N	
1112/112		ACC_Y<1:0> ACC_X<9:2>		<u> </u>	<u> </u>		<u> </u>		NEW_DATA_Y	R	00
		IAI'I' YZQ+95								K	00
0x02	DATA								NEW DAMA V	D	
0x02 0x01	DATA CHIP ID	ACC_X<1:0>		0777	TD 4	te the product ver			NEW_DATA_X	R RW	00 BX

Rev: C

9.2 Register Definition

Register 0x00 (CHIP ID)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
Device ID								RW	0xBX

This register is used to identify the device

Register 0x01 ~ 0x02 (DXL, DXM)

		·-, -, ····,							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DX<1:0>							NEWDAT	R	0x00
							A_X		
DX<9:2>		•	•	•				R	0x00

DX: 10bits acceleration data of x-channel. This data is in two's complement.

NEWDATA_X: 1, acceleration data of x-channel has been updated since last reading 0, acceleration data of x-channel has not been updated since last reading

Register 0x03 ~ 0x04 (DYL, DYM)

		-, ,							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DY<1:0>							NEWDAT	R	0x00
							A_Y		
DY<9:2>								R	0x00

DY: 10bits acceleration data of y-channel. This data is in two's complement.

NEWDATA_Y: 1, acceleration data of y-channel has been updated since last reading 0, acceleration data of y-channel has not been updated since last reading

Register 0x05 ~ 0x06 (DZL, DZM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DZ<1:0>							NEWDAT	R	0x00
DZ<9:2>		1					A_Z	R	0x00

DZ: 10bits acceleration data of z-channel. This data is in two's complement.

NEWDATA_Z: 1, acceleration data of z-channel has been updated since last reading 0, acceleration data of z-channel has not been updated since last reading

Register 0x07 ~ 0x08 (ID)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_CNT	R	0x00							
STEP_CNT<15:8>									0x00

STEP_CNT<7:0> The least significant 8 bits of step count STEP_CNT<15:8>: The most significant 8 bits of step count

Register 0x0a (INT_STAT0)

ORIENT_INT:

S_TAP_INT:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FOB_INT	ORIENT_I	S_TAP_I	D_TAP_I	STEP_IN	STEP_Q	STEP_UN		R	0x00
	NT _	l n T	NT _	l T	UIT INT	SIMILAR			

FOB_INT: 1, front-back interrupt active

front-back interrupt inactive
 norient interrupt active
 orient interrupt inactive
 single tap interrupt active
 single tap interrupt inactive
 single tap interrupt inactive

D_TAP_INT:

1, double tap interrupt active
0, double tap interrupt inactive
STEP_INT:

1, step valid interrupt is active
0, step valid interrupt is inactive

O, step valid interrupt is inactive

STEP_QUIT_INT:

1, step quit interrupt is active
0, step quit interrupt is inactive

STEP_UNSIMILAR: 1, step unsimilar interrupt is active 0, step unsimilar interrupt is inactive

Register 0x0b (INT STAT1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	FIFO_WM	FIFO_FU	DATA_IIN	LOW_INT	HIGH-INT			R	0x00
	_INT	LL_INT	TT						

This register indicates interrupt status related to data ready, FIFO watermark, and FIFO full.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	25 / 34
--	---------

Rev: C

FIFO_WM_INT: 1, FIFO watermark interrupt active

O, FIFO watermark interrupt inactive
FIFO_FULL_INT:
1, FIFO full interrupt active
0, FIFO full interrupt inactive
DATA_INT:
1, data ready interrupt active

O, data ready interrupt inactive
LOW_INT: 1, low-g interrupt active

O, low-g interrupt inactive
HIGH_INT:
1, high-g interrupt active
0, high-g interrupt inactive

Register 0x0c (INT_STAT2)

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
Ī	TAP_SIG N	TAP_FIR ST 7	TAP_FIR ST_Y	TAP_FIR ST X	HIGH_SI GN	HIGH_FI RST Z	HIGH_FI RST_Y	HIGH_FI RST_X	R	0x00

TAP_SIGN: 1, sign of tap triggering is negative

O, sign of tap triggering signal is positive
TAP_FIRST_Z:

1, tap interrupt is triggered by Z axis
0, tap interrupt is not triggered by Z axis
TAP_FIRST_Y:

1, tap interrupt is triggered by Y axis
0, tap interrupt is not triggered by Y axis
TAP_FIRST_X:

1, tap interrupt is triggered by X axis
0, tap interrupt is not triggered by X axis
0, tap interrupt is not triggered by X axis

HIGH_SIGN: 1, sign of high-g triggering signal is negative 0, sign of high-g triggering signal is positive

HIGH_FIRST_Z: 1, high-g interrupt is triggered by Z axis 0, high-g interrupt is not triggered by Z axis HIGH_FIRST_Y: 1, high-g interrupt is triggered by Y axis

0, high-g interrupt is not triggered by Y axis HIGH_FIRST_X: 1, high-g interrupt is triggered by X axis

0, high-g interrupt is not triggered by X axis

Register 0x0d (INT STAT3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_CN T_OVFL			FOB<1:0>		ORIENT<2:	0>		R	0x00

STEP_CNT_OVFL: 1, step counter is over-flowed

0, step counter is not over-flowed

FOB<1:0>: 00, device is in unknown orientation

01, device is in front orientation 10, device is in back orientation

11, reserved

ORIENT<2:0>: 000. device is in unknown orientation

001, device is in left orientation 010, device is in right orientation

011, reserved 100, reserved

101, device is in down orientation 110, device is in up orientation

111, reserved

Register 0x0e (FIFO_STATE)

E	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
F	FIFO_OR	FIFO_FRAN	FIFO_FRAME_COUNT<6:0>							
F	IFO_OR:	1,	1, FIFO over run occurred							

0, FIFO over run

0, FIFO over run not occurred

FIFO_FRAME_COUNT<6:0>:

Fill level of FIFO buffer. An empty FIFO corresponds to 0x00. The frame counter can be cleared by reading out all of the frames, or by writing register 0x3e (FIFO_CFG1) or 0x31.

Register 0x0f (RANGE)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
				RANGE<3:0	RANGE<3:0>				0x00

RANGE<3:0>: set the full scale of the accelerometer. Setting as following

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	26 / 34
--	---------

Rev: C

RANGE<3:0>	Acceleration range	Resolution
0001	2g	3.9mg/LSB
0010	4g	7.8mg/LSB
0100	8g	15.6mg/LSB
Others	2g	3.9mg/LSB

Register 0x10 (BW)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
		ODRH	BW<4:0>					RW	0x00

ODRH:

1, higher output data rate, ODR = 4*F_BW 0, lower output data rate, ODR = 2*F_BW

BW<4:0>:

bandwidth setting, as following

BW<4:0>	F_BW (Bandwidth)	ODR (0x10<5>=0)	ODR (0x10<5>=1)
xx000	3.9Hz	7.8Hz	15.6Hz
xx001	7.8Hz	15.6Hz	31.2Hz
xx010	15.6Hz	31.2Hz	62.5Hz
xx011	31.2Hz	62.5Hz	125Hz
xx100	62.5Hz	125Hz	250Hz
xx101	125Hz	250Hz	500Hz
xx110	250Hz	500Hz	1000Hz
xx111	500Hz	1000Hz	2000Hz

Register 0x11 (POWER)

1103.010.01	(
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
MODE_BI	RESV	PRESET<1:	:0>	SLEEP_DU	SLEEP DUR<3:0>				0x00

MODE_BIT:

1, set device into active mode 0, set device into standby mode

RESV:

User should set this bit to 1.

PRESET<1:0>:

Preset time setting. The preset time is reserved for CIC filter in digital

11, Tpreset=2048us 10, Tpreset=768us 01, Tpreset=96us 00, Tpreset=12us

SLEEP_DUR<3:0>:

Set the sleep time, when device is in power cycling power saving.

SLEEP_DUR<3:0>	Sleep time Tsl
0000	No power cycling / full speed
0001~0101	0.5ms
0110	1ms
0111	2ms
1000	4ms
1001	6ms
1010	10ms
1011	25ms
1100	50ms
1101	100ms
1110	500ms
1111	1s

Register 0x12 (STEP CONF0)

1 togister or	register 6x12 (GTEI _GGTI 0)										
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default		
STEP_ST			STEP_SAM	IPLE_COUN	RW	0x0C					
ART											

STEP_START:

start step counter, this bit should be set when using step counter

STEP_SAMPLE_COUNT<4:0>:

sample count setting for dynamic threshold calculation. The actual value is STEP_SAMPLE_COUNT<4:0>*4, default is 0xC, 48 sample count

Register 0x13 (STEP_CONF1)

i togictor ox	region on o (ore: _oom r)											
Bit7	Bit6	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0										
STEP_CL R	STEP_PRE	CISION<6:0>						RW	0x00			

STEP_CLR:

clear step count in register 0x7 and 0x8

STEP_PRECISION<6:0>:

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	27 / 34
--	---------

Rev: C

threshold for acceleration change of two successive sample which is used to update sample_new register in step counter, the actual g value is TEP_PRECISION<6:0>*3.9mg

Register 0x14 (STEP CONF2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_TIME_LOW<7:0>								RW	0x00

STEP_TIME_LOW<7:0>: the short time window for a valid step, the actual time is STEP_TIME_LOW<7:0>*(1/ODR)

Register 0x15 (STEP_CONF3)

		/							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP TIME UP<7:0>							RW	0x00	

STEP_TIME_UP<7:0>: time window for quitting step counter, the actual time is STEP_TIME_UP<7:0>*8*(1/ODR)

Register 0x16 (INT_EN0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FOB_EN	ORIENT_	S_TAP_E	D_TAP_E	STEP_EN	STEP_Q	STEP_UN		RW	0x00
	EN	N	N		UIT_EN	SIMILAR_			
						l FN			

FOB_EN: 1, enable front-and-back orientation interrupt

ORIENT_EN:

0, disable front-and-back orientation interrupt
1, enable 4D orientation interrupt

0, disable 4D orientation interrupt
S_TAP_EN: 1, enable single tap interrupt
0, disable single tap interrupt
D_TAP_EN: 1, enable double tap interrupt

STEP_EN:

0, disable double tap interrupt
1, enable step valid interrupt
0, disable step valid interrupt
STEP QUIT EN:
1, enable step valid interrupt
1, enable step quit interrupt

STEP_QUIT_EN: 1, enable step quit interrupt 0, disable step quit interrupt

STEP_UNSIMILAR_EN:

enable step unsimilar interrupt
 disable step unsimilar interrupt

Register 0x17 (INT_EN1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	INT_FWM	INT_FFU	DATA_EN	LOW_EN	HIGH_EN	HIGH_EN	HIGH_EN	RW	0x00
	_EN	LL_EN			_Z	_Y	_X		

INT_FWM_EN: 1, enable FIFO watermark interrupt

0, disable FIFO watermark interrupt
INT_FFULL_EN: 1, enable FIFO full interrupt
0, disable FIFO full interrupt
DATA_EN: 1, enable data ready interrupt
0, disable data ready interrupt

0, disable data ready interrupt
LOW_EN: 1, enable low-g interrupt
0, disable low-g interrupt
HIGH_EN_Z: 1, enable high-g interrupt on Z axis

0, disable high-g interrupt on Z axis
HIGH_EN_Y:
1, enable high-g interrupt on Y axis
0, disable high-g interrupt on Y axis
HIGH_EN_X:
1, enable high-g interrupt on X axis

0, disable high-g interrupt on X axis

Register 0x18 (INT_SRC)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	INT_SRC	INT_SRC	INT_SRC					RW	0x00
	STEP	DATA	TAP						

INT_SRC_STEP: 1, select unfiltered data for step counter

0, select filtered data for step counter
INT_SRC_DATA: 1, select unfiltered data for new data interrupt and FIFO

0, select filtered data for new data interrupt and FIFO

INT_SRC_TAP: 1, select unfiltered data for TAP interrupt 0, select filtered data for TAP interrupt

Register 0x19 (INT_MAP0)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	28 / 34
--	---------

Rev: C

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT1_FO	INT1_ORI	INT1_S_T	INT1_D_T	INT1_ST	INT1_ST	INT1_ST		RW	0x00
В	ENT	AP	AP	EP	EP_QUIT	EP_UNSI			
						MILAR			

INT1 FOB: 1, map FOB interrupt to INT1 pin 0, not map FOB interrupt to INT1 pin

1, map ORIENT interrupt to INT1 pin INT1_ORIENT:

0, not map ORIENT interrupt to INT1 pin INT1_S_TAP: 1, map single tap interrupt to INT1 pin 0, not map single tap interrupt to INT1 pin

1, map double tap interrupt to INT1 pin INT1_D_TAP: 0, not map double tap interrupt to INT1 pin 1, map step valid interrupt to INT1 pin INT1_STEP:

0, not map step valid interrupt to INT1 pin INT1_STEP_QUIT: 1, map step quit interrupt to INT1 pin 0, not map step quit interrupt to INT1 pin

INT1_STEP_UNSIMILAR:

1, map step unsimilar interrupt to INT1 pin

0, not map step unsimilar interrupt to INT1 pin

Register 0x1a (INT_MAP1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	INT1_FW	INT1_FF	INT1_DA	INT1_LO	INT1_HIG			RW	0x00
	М _	LILL _	TA _	w _	Hs				

INT1_FWM: 1, map FIFO watermark interrupt to INT1 pin

0, not map FIFO watermark interrupt to INT1 pin

INT1_FFULL: 1, map FIFO full interrupt to INT1 pin 0, not map FIFO full interrupt to INT1 pin INT1_DATA: 1, map data ready interrupt to INT1 pin 0, not map data ready interrupt to INT1 pin INT1_LOW: 1, map low-g interrupt to INT1 pin

0, not map low-g interrupt to INT1 pin INT1 HIGH: 1, map high-g interrupt to INT1 pin 0, not map high-g interrupt to INT1 pin

Register 0x1B (INT_MAP2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT2_FOB	INT2_	INT2_S	INT2_D_	INT2_	INT2_STEP	INT2_STEP_		RW	0x00
_	ORIENT	TAP	TAP	STEP	QUIT	UNSIMII AR			

INT2 FOB: 1, map FOB interrupt to INT2 pin

0, not map FOB interrupt to INT2 pin 1, map ORIENT interrupt to INT2 pin INT2_ORIENT: 0, not map ORIENT interrupt to INT2 pin INT2_S_TAP: 1, map single tap interrupt to INT2 pin

0, not map single tap interrupt to INT2 pin 1, map double tap interrupt to INT2 pin INT2_D_TAP: 0, not map double tap interrupt to INT2 pin

INT2_STEP: 1, map step valid interrupt to INT2 pin 0, not map step valid interrupt to INT2 pin INT2_STEP_QUIT: 1, map step quit interrupt to INT2 pin

0, not map step guit interrupt to INT2 pin

INT2_STEP_UNSIMILAR:

1, map step unsimilar interrupt to INT2 pin 0, not map step unsimilar interrupt to INT2 pin

Register 0x1c (INT_MAP3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	INT2_FW	INT2_FUL	INT2_DA	INT1_ST	INT2_LO	INT2_HIG		RW	0x00
	M	L	TA	EP	W	Н			

INT2_FWM: 1, map FIFO watermark interrupt to INT2 pin

0, not map FIFO watermark interrupt to INT2 pin

INT2_FULL: 1, map FIFO full interrupt to INT2 pin 0, not map FIFO full interrupt to INT2 pin

INT2_DATA: 1, map data ready interrupt to INT2 pin

0, not map data ready interrupt to INT2 pin

INT2_LOW: 1, map low-g interrupt to INT2 pin

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of QST.	

Rev: C

INT2_HIGH:

0, not map low-g interrupt to INT2 pin 1, map high-g interrupt to INT2 pin

0, not map high-g interrupt to INT2 pin

Register 0x20 (INTPIN_CFG)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
				INT2_OD	INT2_LVL	INT1_OD	INT1_LVL	RW	0x05

INT2_OD:

1, open-drain for INT2 pin

INT2_LVL:

0, push-pull for INT2 pin 1, logic high as active level for INT2 pin 0, logic low as active level for INT2 pin

INT1_OD:

1, open-drain for INT1 pin 0, push-pull for INT1 pin

INT1_LVL:

1, logic high as active level for INT1 pin 0, logic low as active level for INT1 pin

Register 0x21 (INT CFG)

1 togictor ox	register oxer (irri_er e)								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT_RD_	SHADOW	INT_PUL					LATCH_I	RW	0x00
CLR	DIS	SF					NT		

INT_RD_CLR:

1, clear all the interrupts in latched-mode, when any read operation to this device

0, clear all the interrupts, only when read the register INT_STAT (0x0A~0x0B), no matter the interrupts in latched-mode, or in

non-latched-mode

SHADOW_DIS:

1, disable the shadowing function for the acceleration data

0, enable the shadowing function for the acceleration data. When shadowing is enabled, the MSB of the acceleration data is locked, when corresponding LSB of the data is reading. This can ensure the integrity of the acceleration data during the reading.

The MSB will be unlocked when the MSB is read.

INT PULSE:

1, data ready interrupt is kept until next conversion starts, in power cycling

0, pulse of data ready interrupt is fixed to be 128us

LATCH_INT:

1, interrupt is in latch mode

0, interrupt is in non-latch mode

Register 0x22 (LOW_HIGH_G_0)

Bit/	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default	ı
LOW_DUR	<7:0>							RW	0x09	l
I OW DUR	<7·0>·	low-a inte	rrunt triagere	d delay the a	ctual time is (I	OW DUR<7	·0>+1)*2ms· t	he default	delay time is 20	me

Register 0x23 (LOW HIGH G 1)

1 109.010. 071	<u>== (==::=:::=:</u> ::::=	···							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
LOW_TH<7	7:0>							RW	0x30

LOW_TH<7:0>:

low-g interrupt threshold, the actual g value is (LOW_TH<7:0>)*7.8mg; the default value is 375mg

Register 0x24 (LOW_HIGH_G_2)												
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default			
HIGH_HYS	ST<1:0>				LOW_MO	LOW_HYS1	T<1:0>	RW	0x81			

HIGH_HYST<1:0>:

 $hysteres is of high-g interrupt \ , the actual g value is (HIGH_HYST<1:0>)*125mg(2g \ range), (HIGH_HYST<1:0>)*250mg \ range), (HI$

(4g range),(HIGH_HYST<1:0>)*500mg(8g range)

LOW_MODE:

low-g interrupt mode 1: sum mode

0: single-axis mode,

LOW_HYST<1:0>:

hysteresis of low-g interrupt, the actual g value is (LOW_HYST<1:0>)*125mg, independent of the selected g range

Register 0x25 (LOW_HIGH_G_3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
HIGH_DUR	<7:0>							RW	0x0F

 $HIGH_DUR<7:0>: \qquad \text{high-g interrupt triggered delay, the actual time is (HIGH_DUR<7:0>+1)*2ms; the default \quad delay time is 32ms}$

Register 0x26 (LOW HIGH G 4)

. tog.oto. t	<u> </u>	<u>,,,,,</u>							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
HIGH TE	l<7·∩>							RW	0xC0

HIGH_TH<7:0>:

high-g interrupt threshold, the actual g value is (HIGH_TH<7:0>)*7.8mg(2g range), (HIGH_TH<7:0>)*15.6mg(4g range), (HIGH_TH<7:0>)*31.2mg(8g range)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	30 / 34
--	---------

Rev: C

Register 0x27 (OS_CUST_X)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS_CUST_	X<7:0>							RW	0x00

OS_CUST_X<7:0>: offset calibration of X axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range

Register 0x28 (OS_CUST_Y)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS_CUST_	Y<7:0>							RW	0x00

OS_CUST_Y<7:0>: offset calibration of Y axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range

Register 0x29 (OS CUST Z)

	(· <u>_</u> /							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS CUST	Z<7:0>							RW	0x00

OS_CUST_Z<7:0>: offset calibration of Z axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range

Register 0x2a (TAP CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
TAP_QUI	TAP_SH				TAP_DUR<	2:0>		RW	0x04

TAP_QUIET: tap quiet time, 1: 30ms, 0: 20ms TAP_SHOCK: tap shock time, 1: 50ms, 0: 75ms

TAP_DUR<2:0>: the time window of the second tap event for double tap

TAP_DUR<2:0>	Duration of TAP_DUR
000	50ms
001	100ms
010	150ms
011	200ms
100	250ms
101	375ms
110	500ms
111	700ms

Register 0x2b (TAP_CONF1)

TAP TH<4:0>

TAP_TH<4:0>: threshold of single/double tap interrupt, the actual g value is TAP_TH<4:0>*62.5mg (2g range), TAP_TH<4:0>*125mg(4g range), TAP_TH<4:0>*250mg(8g range)

Register 0x2c (4D6D_CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
UD Z TH<	7:0>							RW	0x00

UD_Z_TH<7:0>: Up/down z axis threshold, the actual g value is UD_Z_TH<7:0>*3.91mg+0.8g, independent of the selected g range Note that UD_Z_TH is in two's complement representation, and the range of threshold is from 0.3g to 1.29g

Register 0x2d (4D6D_CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
UD_X_TH<	7:0>							RW	0xA4

UD_X_TH<7:0>: Up/down x axis threshold, the actual g value is UD_X_TH<7:0>*3.91mg, independent of the selected g range, the default value is 0.64g, corresponding to 40 degree

Register 0x2e (4D6D CONF2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RI 7 TH<7	7:0>							RW	0x00

RL_Z_TH<7:0>: Right/left z axis threshold, the actual g value is RL_Z_TH<7:0>*3.91mg+0.8g, independent of the selected g range Note that RL_Z_TH is in two's complement representation, and the range of threshold is from 0.3g to 1.29g

Register 0x2f (4D6D_CONF3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RL Y TH<7:0>							RW	0xA4	

RL_Y_TH<7:0>: Up/down x axis threshold, the actual g value is RL_Y_TH<7:0>*3.91mg, independent of the selected g range, the default value is 0.64g, corresponding to 40 degree

Register 0x30 (4D6D_CONF4)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	31 / 34
--	---------

QMA6981

Datasheet

Rev: C

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
ORIENT_	I FB Z IH<6:0>								0x00
DB DIS									

ORIENT_DB_DIS: 1: disable orient denounce time 0: enable orient denounce time

Front/back z axis threshold, the actual g value is FB_Z_TH<7:0>*3.91mg+0.1g, independent of the selected g range Range of threshold of FB_Z_TH is from 0.1g to 0.6g FB_Z_TH<6:0>:

Register 0x31 (FIFO WTMK)

 r togiotor ont									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
		FIFO_WTM	II O VV IIVIN LVL\J.U^						0x00

FIFO_WTMK_LVL<5:0>:

defines FIFO water mark level. Interrupt will be generated, when the number of entries in the FIFO exceeds FIFO_WTMK_LVL<5:0>. When the value of this register is changed, the FIFO_FRAME_COUNTER is reset to 0.

Register 0x32 (ST_CONF)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default	
SELFTES				SingleEn_	SELFTES	SELFTEST	_AXIS<1:0>	RW	0x00	ì
T BIT				Step	T SIGN					

1, self-test enabled. When self-test enabled, a delay of 3ms is necessary for the value settling. SELFTEST_BIT:

normal SingleEn_Step:

1, enable single axis mode in step counter

0, disable single axis mode in step counter

SELFTEST_SIGN: 1, set self-test excitation positive

0, set self-test excitation negative

SELFTEST_AXIS<1:0>:

These two bits are used to select axis for selftest or step counter

When SELFTEST_BIT (0x32<7>) is enabled:

00, x axis 01, y axis 10, z axis 11, z axis

When STEP_EN (0x16<3>) is enabled,

00, x and y axis 01, y and z axis 10, x and z axis 11, x and z axis

When STEP_EN (0x16<3>) and SingleEn_Step (0x32<3>) is enabled,

00, x axis 01, y axis 10, z axis 11, z axis

Register 0x33 (NVM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default

NVM_LOAD:

NVM RDY:

1, trigger loading register from NVM

0, not trigger loading register form NVM

This bit is cleared when NVM loading is done

1, NVM is ready, loading or programing NVM is done

0, NVM is not ready, loading or programming NVM is in progress.

NVM_RDY is read-only to customer.

NVM_PROG:

1, trigger programing NVM 0, not trigger programming NVM

This bit is cleared when NVM programming is done

Register 0x36 (SR)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
SOFT RES								RW	0x00

SOFT RESET: 0xB6, reset all of the registers

Register 0x3e (FIFO_CFG)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	32 / 34
--	---------

Rev: C

I	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	FIFO MOD	E<1:0>					FIFO CH<1	:0>	RW	0x00

FIFO_MODE<1:0>:

FIFO_MODE defines FIFO mode of the device. Settings as following

FIFO MODE<1:0>	Mode
11	FIFO
10	STREAM
01	FIFO
00	BYPASS

FIFO_CH<1:0>:

FIFO_CH defines which channel data be stored in FIFO buffer. Setting as following

11, only z axis data be stored in FIFO buffer 10, only y axis data be stored in FIFO buffer 01, only x axis data be stored in FIFO buffer 00, all axes data be stored in FIFO buffer

Register 0x3f (FIFO DATA)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
FIFO DATA							R	0x00	

FIFO DATA:

FIFO read out data. User can read out FIFO data through this register. Data format depends on the setting of FIFO_CH (0x3e<1:0>).

When the FIFO data is the LSB part of acceleration data, and if FIFO is empty, then FIFO_DATA<0> is 0. Otherwise if FIFO is not empty and the data is effective, FIFO_DATA<0> is 1 when reading LSB of acceleration.

Rev: C

ORDERING INFORMATION

Ordering Number	Temperature Range	Package	Packaging
QMA6981-TR	-40℃~85℃	LGA-12	Tape and Reel: 5k pieces/reel

Caution

This part is sensitive to damage by electrostatic discharge. Use ESD precautionary procedures when touching, removing or inserting.

CAUTION: ESDS CAT. 1B

FIND OUT MORE

For more information on QST's Accelerometer Sensors contact us at 86-21-50497300.

The application circuits herein constitute typical usage and interface of QST product. QST does not provide warranty or assume liability of customer-designed circuits derived from this description or depiction.

QST reserves the right to make changes to improve reliability, function or design. QST does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

ISO9001: 2008

China Patents 201510000399.8, 201510000425.7, 201310426346.3, 201310426677.7, 201310426729.0, 201210585811.3 and 201210553014.7 apply to the technology described.

Document # 13-52-03 Rev C QST Corporation

QST First Floor, Building No.2, Chengbei Road 235, Shanghai Tel: 86-21-69517300