I_D

8 A

D

N-Channel MOSFET

 V_{DSS}

650 V

(PG) Lead Free Package and Finish

Applications:

- Adaptor
- Charger
- SMPS Power Supply
- LCD Panel Power

	_		
_	<u>^</u>	Пr	OC:
	Cal	wii	CO.

- RoHS Compliant
- Low ON Resistance
- Low Gate Charge
- Peak Current vs Pulse Width Curve

TO-220F

R_{DS(ON)} (Typ.)

 0.85Ω

Packages Not to Scale

Ordering Information

PART NUMBER	PACKAGE	BRAND
PTP08N65	TO-220	ĭ
PTA08N65	TO-220F	ĭ

Absolute Maximum Ratings T_C=25 °C unless otherwise specified

Symbol	Parameter	PTP08N65	PTA08N65	Units	
V _{DSS}	Drain-to-Source Voltage (NOTE *1)	6	50	V	
I _D	Continuous Drain Current	8.0	8.0*		
I _D @ 100°C	Continuous Drain Current	Fig	ure 3	Α	
I _{DM}	Pulsed Drain Current, V _{GS} @ 10V (NOTE *2)	Fig	ure 6		
D	Power Dissipation	120	42	W	
P_{D}	Derating Factor above 25 °C	0.96	0.34	W/°C	
V _{GS}	Gate-to-Source Voltage	±	30	V	
E _{AS}	Single Pulse Avalanche Engergy L=10 mH	4	mJ		
I _{AS}	Pulsed Avalanche Rating	Fig	Figure 8		
dv/dt	Peak Diode Recovery dv/dt (NOTE *3)	Ę	V/ns		
T _L T _{PKG}	Maximum Temperature for Soldering Leads at 0.063 in (1.6 mm) from Case for 10 seconds Package Body for 10 seconds	1	.00 .60	°C	
T_J and T_STG	Operating Junction and Storage Temperature Range	-55 1	to 150		

^{*} Drain Current Limited by Maximum Junction Temperature

Caution: Stresses greater than those listed in the "Absolute Maximum Ratings" Table may cause permanent damage to the device.

Thermal Resistance

Symbol	Parameter	PTP08N65	PTA08N65	Units	Test Conditions
$R_{\theta JC}$	Junction-to-Case	1.04	2.98	°C/W	Drain lead soldered to water cooled heatsink, P _D adjusted for a peak junction temperature of +150 °C.
$R_{\theta JA}$	Junction-to-Ambient	62	100	C/VV	1 cubic foot chamber, free air.

OFF Characteristics TJ=25 °C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	650			V	V _{GS} =0V, I _D =250μA
$\Delta BV_{DSS}/\Delta T_{J}$	BreakdownVoltage Temperature Coefficient, Figure 11.		0.50		V/°C	Reference to 25 °C, I _D =250μA
I	Drain-to-Source Leakage Current			1.0	. μΑ	V _{DS} =650V, V _{GS} =0V
I _{DSS}	Drain to course Leakage Carrent			250	μ	V _{DS} =520V, V _{GS} =0V T _J =125°C
I _{GSS}	Gate-to-Source Forward Leakage			100	n 1	V _{GS} =+30V
	Gate-to-Source Reverse Leakage			-100	nA -	V _{GS} = -30 V

ON Characteristics T_J=25 °C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{DS(ON)}	Static Drain-to-Source On-Resistance Figure 9 and 10.		0.85	1.3	Ω	V _{GS} =10V, I _D =4.0A (NOTE *4)
V _{GS(TH)}	Gate Threshold Voltage, Figure 12.	2.0		4.0	V	$V_{DS}=V_{GS}$, $I_{D}=250 \mu A$
gfs	Forward Transconductance		10		S	V _{DS} =20V, I _D =8A (NOTE *4)

Dynamic Characteristics Essentially independent of operating temperature

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
C _{iss}	Input Capacitance		1240			V _{GS} =0V
C _{oss}	Output Capacitance		110		pF	V _{DS} =25V
C _{rss}	Reverse Transfer Capacitance		14		ρι	f=1.0MHz Figure 14
Qg	Total Gate Charge		28			V _{DD} =325V
Q _{gs}	Gate-to-Source Charge		5.6		nC	I _{D=8A} , Vgs=10V
Q _{gd}	Gate-to-Drain ("Miller") Charge		11.2			Figure 15

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
t _{d(ON)}	Turn-on Delay Time		13			V _{DD} =325V
t _{rise}	Rise Time		15		ns	I _D =8A
t _{d(OFF)}	Turn-Off Delay Time		40			V _{GS} =10V
t _{fall}	Fall Time		22			$R_G=9.1\Omega$

Source-Drain Diode Characteristics T_C=25 °C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
I _S	Continuous Source Current (Body Diode)			8	Α	Integral pn-diode
I _{SM}	Maximum Pulsed Current (Body Diode)			32	Α	in MOSFET
V_{SD}	Diode Forward Voltage			1.5	V	I _S =8A, V _{GS} =0V
t _{rr}	Reverse Recovery Time		555		ns	V _{GS} =0V,VDD=60V
Q _{rr}	Reverse Recovery Charge		3.4		uC	I _F =8A, di/dt=100 A/μs

Notes:

^{*1.} $T_J = +25$ °C to +150 °C.

^{*2.} Repetitive rating; pulse width limited by maximum junction temperature.

^{*3.} I_{SD} = 8 A, di/dt \leq 100 A/ μ s, V_{DD} \leq BV $_{DSS}$, T_{J} =+150 °C.

^{*4.} Pulse width \leq 380 µs; duty cycle \leq 2%.

Typical Characteristics

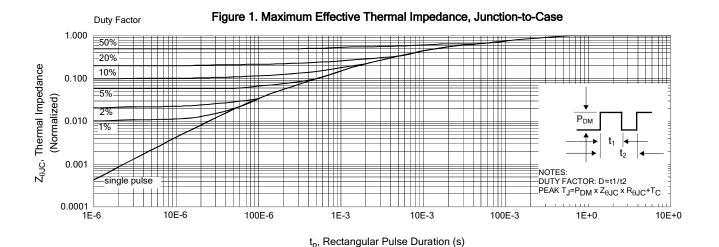


Figure 2. Maximum Power Dissipation vs Case Temperature

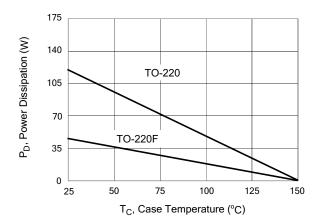


Figure 4. Typical Output Characteristics

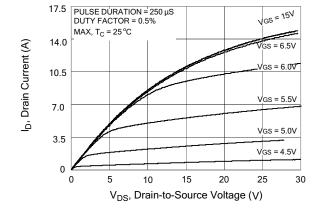


Figure 3. Maximum Continuous Drain Current vs Case Temperature

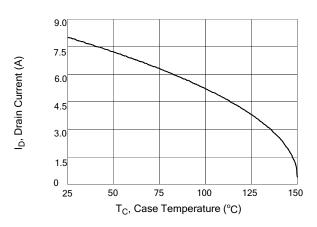


Figure 5. Typical Drain-to-Source ON Resistance vs Gate Voltage and Drain Current

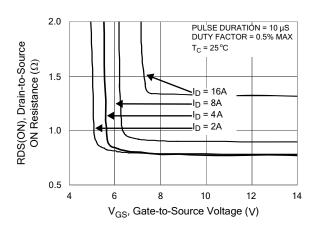


Figure 6. Maximum Peak Current Capability

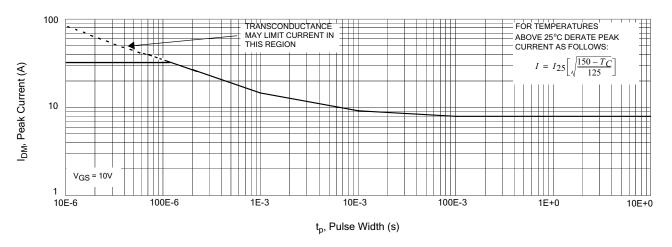


Figure 7. Typical Transfer Characteristics

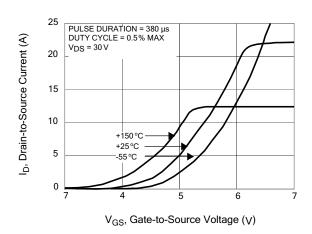


Figure 8. Unclamped Inductive Switching Capability

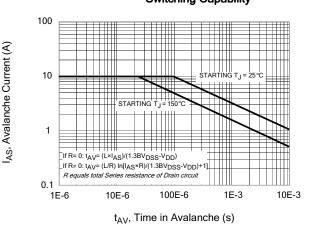


Figure 9. Typical Drain-to-Source ON Resistance vs Drain Current

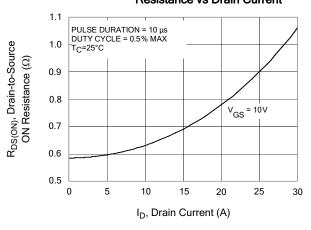


Figure 10. Typical Drain-to-Source ON Resistance vs Junction Temperature

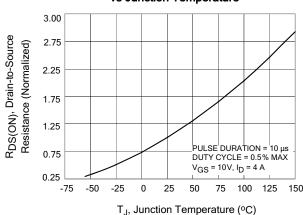


Figure 11. Typical Breakdown Voltage vs Junction Temperature

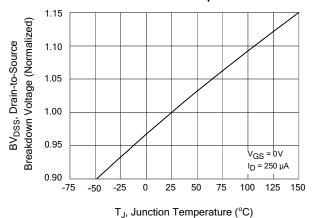


Figure 12. Typical Threshold Voltage vs Junction Temperature

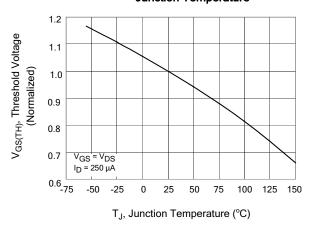
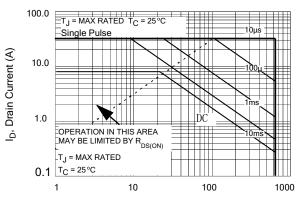



Figure 13. Maximum Forward Bias Safe Operating Area

V_{DS}, Drain-to-Source Voltage (V)

Figure 14. Typical Capacitance vs Drain-to-Source Voltage

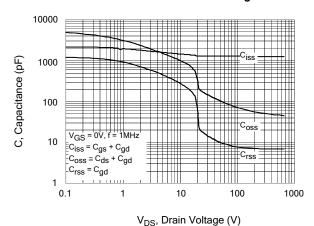


Figure 15. Typical Gate Charge

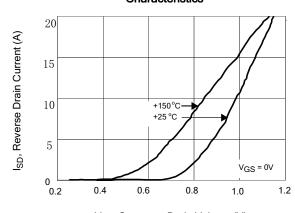



Figure 16. Typical Body Diode Transfer Characteristics

 V_{SD} , Source-to-Drain Voltage (V)

TEST CIRCUITS AND WAVEFORMS

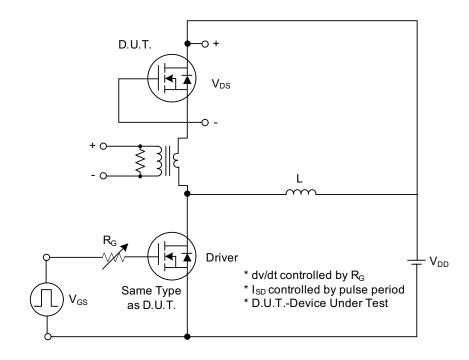


Fig. 1.1 Peak Diode Recovery dv/dt Test Circuit

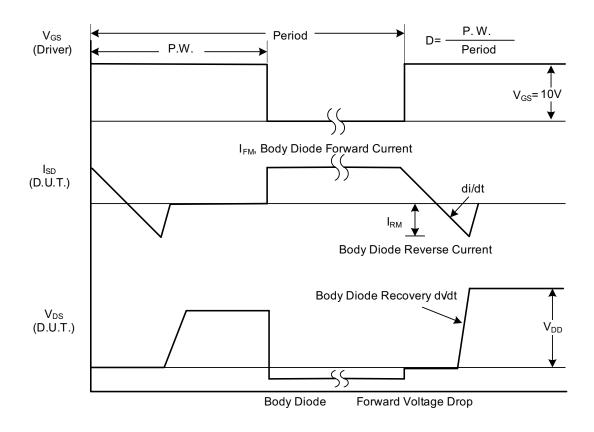


Fig. 1.2 Peak Diode Recovery dv/dt Waveforms

TEST CIRCUITS AND WAVEFORMS (Cont.)

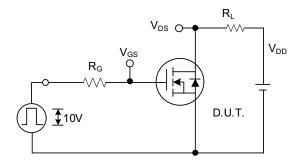


Fig. 2.1 Switching Test Circuit

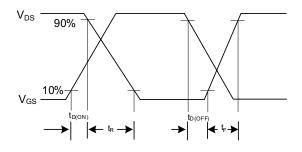


Fig. 2.2 Switching Waveforms

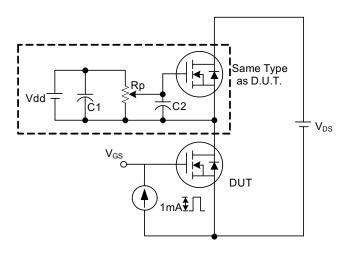


Fig. 3 . 1 Gate Charge Test Circuit

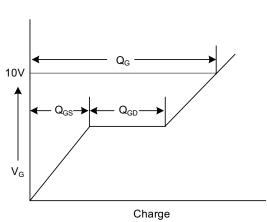


Fig. 3 . 2 Gate Charge Waveform

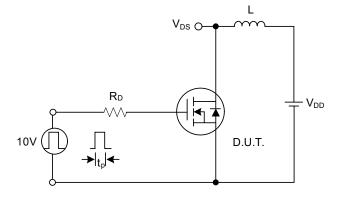


Fig. 4.1 Unclamped Inductive Switching Test Circuit

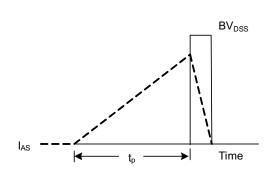


Fig. 4.2 Unclamped Inductive Switching Waveforms

Disclaimers:

Perfect Intelligent Power Semiconductor Co., Ltd (PIP) reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to PIP's terms and conditions supplied at the time of order acknowledgement.

Perfect Intelligent Power Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent PIP deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

Perfect Intelligent Power Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using PIP's components. To minimize risk, customers must provide adequate design and operating safeguards.

Perfect Intelligent Power Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in PIP's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. Perfect Intelligent Power Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of PIP's products with statements different from or beyond the parameters stated by Perfect Intelligent Power Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated PIP's product or service and is unfair and deceptive business practice. Perfect Intelligent Power Semiconductor Co., Ltd is not responsible or liable for any such statements.

The device is electrostatic sensitive. Proper electrostatic discharge (ESD) protection shall be implemented to avoid damaging the device.

Life Support Policy:

Perfect Intelligent Power Semiconductor Co., Ltd's products are not authorized for use as critical components in life support devices or systems without the expressed written approval of Perfect Intelligent Power Semiconductor Co., Ltd.

As used herein:

- 1. Life support devices or systems are devices or systems which:
 - a. are intended for surgical implant into the human body,
 - b. support or sustain life,
 - c. whose failure to perform when properly used in accordance with instructions for used provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.