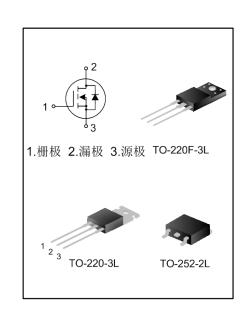


18A、200V N沟道增强型场效应管

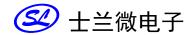

描述

SVD640T/D/F N 沟道增强型功率 MOS 场效应晶体管采用士兰微 电子的 S-RinTM 平面中低压 VDMOS 工艺技术制造。先进的工艺及条状 的原胞设计结构使得该产品具有较低的导通电阻、优越的开关性能及很 高的雪崩击穿耐量。

该产品可广泛应用于 AC-DC 开关电源, DC-DC 电源转换器, 高压 H桥 PWM 马达驱动。

特点

- 18A,200V, $R_{DS(on)}$ (典型值) =0.12 Ω @ V_{GS} =10V
- 低栅极电荷量
- 低反向传输电容
- 开关速度快
- 提升了 dv/dt 能力


产品规格分类

产品名称	封装形式	打印名称	材料	包 装
SVD640T	TO-220-3L	SVD640T	无铅	料管
SVD640D	TO-252-2L	SVD640D	无卤	料管
SVD640DTR	TO-252-2L	SVD640D	无卤	编带
SVD640F	TO-220F-3L	SVD640F	无铅	料管

极限参数(除非特殊说明, T_c=25°C)

<u>م</u> الله	U. 1-7-	符号		参数范围		24 /2
参数	参数名称		SVD640T	SVD640D	SVD640F	单位
漏源电压		V _{DS}		V		
栅源电压		V _{GS}		±20		V
足扭击冻	T _C =25°C			18		
漏极电流	T _C =100°C	I _D		А		
漏极脉冲电流		I _{DM}		А		
耗散功率 (T _C =25°C)		5	150	110	35	W
- 大于 25℃ 每摄氏度减少		P _D	1.2	0.88	0.28	W/°C
单脉冲雪崩能量(注 1)		E _{AS}	635			mJ
工作结温范围		TJ	150			°C
贮存温度范围		T _{stg}		-65~+150		°C

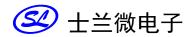
版本号: 1.1

热阻特性

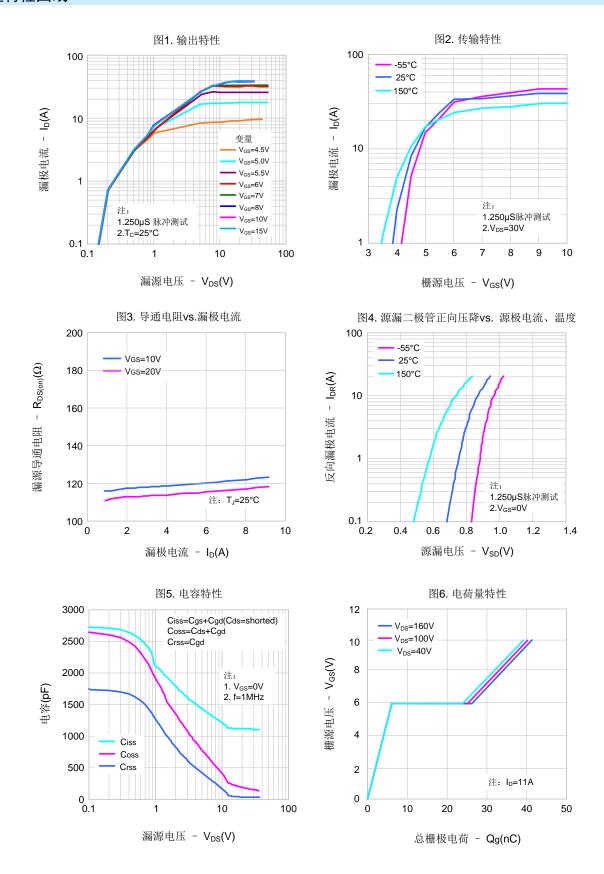
6 ¥L 67 Th	/r/r 🖂		典型值		24 /2
参数名称	符号	SVD640T	SVD640D	SVD640F	单位
芯片对管壳热阻	R _{θJC}	0.83	1.14	3.57	°C/W
芯片对环境的热阻	$R_{ hetaJA}$	62.5	62.0	62.5	°C/W

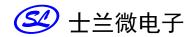
关键特性参数(除非特殊说明, T_c=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	B _{VDSS}	V _{GS} =0V, I _D =250μA	200			V
漏源漏电流	I _{DSS}	V _{DS} =200V, V _{GS} =0V			1	μA
栅源漏电流	I_{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2.0	3.0	4.0	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =9A	-	0.12	0.15	Ω
输入电容	C_{iss}	.,	1	1108		
输出电容	C_{oss}	V _{DS} =25V, V _{GS} =0V,	1	160		pF
反向传输电容	C_{rss}	f=1.0MHZ		34		
开启延迟时间	t _{d(on)}			15		
开启上升时间	t _r	V _{DD} =100V, V _{GS} =10V,		47		
关断延迟时间	t _{d(off)}	$R_G=2.5\Omega$, $I_D=11A$		110		ns
关断下降时间	t _f			36		
栅极电荷量	Q_g			41		
栅极-源极电荷量	Q_{gs}	$V_{DD}=160V$, $V_{GS}=10V$,		6.0		nC
栅极-漏极电荷量	Q_{gd}	I _D =11A		20		

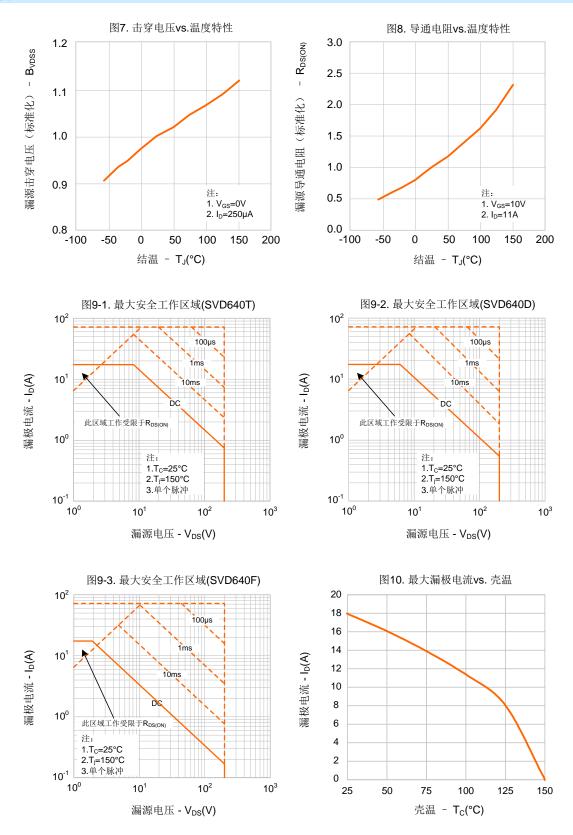

源-漏二极管特性参数

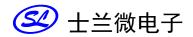
参 数	符 号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的反偏			18	
源极脉冲电流	I _{SM}	P-N 结			72	Α
源-漏二极管压降	V_{SD}	I _S =11A, V _{GS} =0V			1.5	V
反向恢复时间	T _{rr}	V _{DD} =50V,di/dt=100A/μS,		160		ns
反向恢复电荷	Qrr	I _F =11A(注 2)		0.98		μC

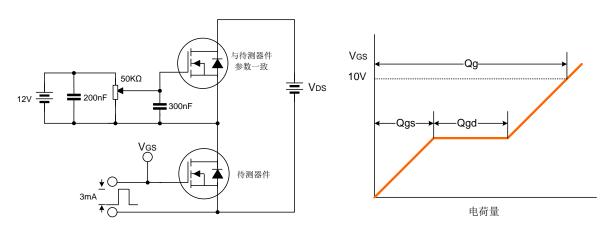

注:


- 1. L=30mH, I_{AS} =5.0A, V_{DD} =100V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300µs, 占空比≤2%;
- 3. 基本上不受工作温度的影响。

版本号: 1.1

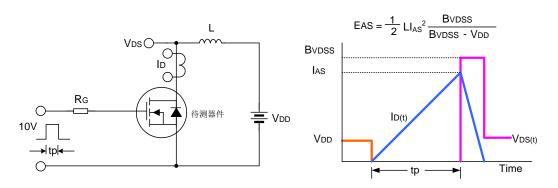


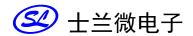

典型特性曲线


典型特性曲线(续)



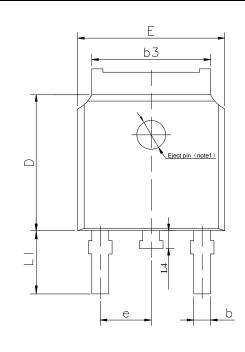
典型测试电路

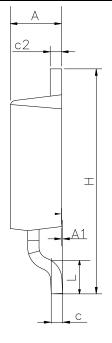

栅极电荷量测试电路及波形图



开关时间测试电路及波形图

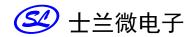
EAS测试电路及波形图

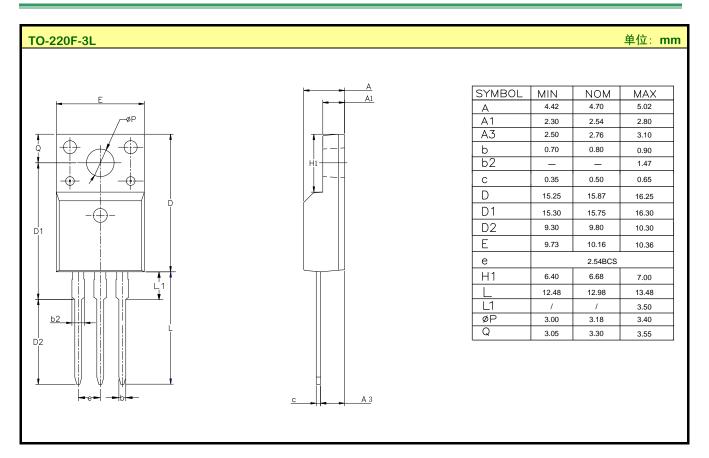




封装外形图

TO-220-3L 单位: mm ØP. SYMBOL MIN NOM MAX †Q † A A1 4.30 4.50 4.70 1.00 1.30 Α2 2.80 H₁ 1.80 2.40 0.60 0.80 b1 1.00 1.60 c D 15. 10 15. 70 16. 10 Ď D1 8. 10 9.20 10.00 9. 60 9. 90 10.40 е Н1 2.54BS D1 6. 10 6. 50 7.00 12.60 13.08 13.60 3. 95 ΦP 3.40 3.70 3.90 2.60 3. 20

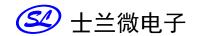




SYMBOL	MIN	NOM	MAX
A	2. 10	2. 30	2. 50
A1	0		0. 127
b	0.66	0.76	0.89
b3	5. 10	5. 33	5. 46
С	0. 45		0.65
c2	0. 45		0. 65
D	5. 80	6. 10	6. 40
E	6. 30	6. 60	6. 90
е		2. 30TYP	
Н	9. 60	10. 10	10.60
L	1. 40	1.50	1. 70
L1		2. 90REF	
L4	0.60	0.80	1.00

NOTE1 : There are two conditions for this position:has an eject pin or has no eject pin

http://www.silan.com.cn



声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

产品名	添:	SVD640T/D/F	文档类型:	说明	书		
版 权:		杭州士兰微电子股份有限公司	公司主页:	http://www.silan.com.cn			
版	本:	1.1		作	者:	殷资	
修改证	□录:						
1.	修改	₹ T0-220F-3L 封装信息					
2.	修改	(TO-252-2L 封装信息					
3.	修改	てT0−220−3L 封装信息					
版	本:	1.0		作	者:	殷资	
修改记	□录:						
1.	正式	发布版本					