

SPECIFICATION

Customer: RIC-OPPO		
		Receipt
Item:	Crystal Unit	. Receipt
Type:	NX2520SG	
Nominal Frequency:	26 MHz	
Customer's Spec. No.:		
NDK Spec. No.:	EXS00A-CS11019	

			Revision Record			
Rev.	Date	Items	Contents	Approved	Checked	Drawn
	26. Oct. 2017	Issue		I. Miyahara		K.Tsukumo
А	12. Feb. 2019	Application drawing	Revise: Reliability assurance Item EXS30B-01042 / Shock 1	I. Miyahara	K. Nakashima	Y. Takaki

1. Customer Specifications Number : ---

2. NDK Specification Number : EXS00A-CS11019

3. Type : NX2520SG

4. Electrical Characteristics

r. <u>Lico</u>	ilicai Characteristics		ı				1
	Doronsatara	CVA		Electri	cal Spe	c.	Note -
	Parameters	SYM.	Min	TYP	MAX	Units	Notes
1	Nominal Frequency	fnom		26		MHz	
2	Overtone order	•	Fu	ndamen	tal	-	
3	Frequency tolerance	•	-10	-	+10	ppm	at +25°C+/-2°C
4	Frequency versus temperature characteristics	-	-12	-	+10	ppm	at -30~+85°C The reference temperature shall be+30.5°C
5	Equivalent Resistance	-	-	-	50	Ω	-
6	Load capacitance	CL	-	7	-	pF	IEC π-Network
7	Level of drive	DL	10	50	100	μW	-
8	Temperature coefficient						
8-1	Inflection point	-	29	30.5	32	°C	
8-2	То	-		30.5	-	°C	
8-3	Third-order curve fitting coefficient	-	8.5	-	11.5	x 10 ⁻⁵ ppm/°C ³	The curve can be modeled as a third-order polynomial.
8-4	Second-order curve fitting coefficient	-	-4.5	-	+4.5	x 10 ⁻⁴ ppm/°C ²	polynomial. $f(t) = c_3(t - t_0)^3 + c_2(t - t_0)^2 + c_1(t - t_0)$
8-5	First-order curve fitting coefficient	-	-0.4	-	-0.1	ppm/°C	
9	Temperature Hysteresis			T	1	ı	
9-1	Full cycle temperature hysteresis	-	-0.5	-	+0.5	ppm	Temp. range:-30°C to 85°C for each 1deg.c. Temp. rate: ~1.0°C/min Test flow: 25°C(1)->-30°C->85°C->25°C(2) (25°C(1) freq. drift subtract 25°C(2) freq. drift)
9-2	Small cycle temperature hysteresis	-	-0.05	-	+0.05	ppm	Temp. range: -30°C to 85°C for each 0.5°C Temp. rate: ~1.0°C/min Test flow: any 5°C cycle (ex.25°C (1)->-30->25°C (2), 25°C (1) freq. drift subtract 25°C (2) freq. drift)
10	Full Cycle Frequency stability slope		-50	-	+50	ppb/°C	Condition: Test condition (continuous Temperature rate change of ~ 1.0°C/min) The residual is defined as the difference between the crystal measured FT curve and the 5 th order polynomial fit of the FT curve. Frequency is measured between -30 to +85°C every 1°C.
11	Frequency hysteresis 1 (5°C small cycle)		-50	-	+50	ppb/°C	Condition Test condition(continuous temperature rate change of~ 1.0°C/min) -Measure FT points every 0.5°C while cycling temperature over a 5°C small temperature orbit, an example 5°C small orbit temperature Cycle is +30°C to +35°C to +30°C -During every individual heating/cooling cycle there should be11 points; discard the first point of each heating and cooling cycle; this leaves 10 points for each heating and cooling cycle; this leaves 10 points for each heating and cooling cycle. Subtract the fifth-order polynomial best fit from 1A for each of the 10 points, and then calculate the slope of the lesidual for each of these heating and cooling 10 point curvesThe residual slope should be within +/-50 ppb/°C

12	Turning Sensitivity	-	-	15	-	ppm/pF	at CL = 7pF
13	Q	-	75000				-
14	Drive level dependency (Drive leve	el: 10nV	V to 100ι	ıW)			-
14-1	DLD2	-	-	-	2.5	Ω	-
14-2	DLDH2	•	-	-	1.5	Ω	-
14-3	FDLD	•	-	-	3.5	ppm	-
14-4	FDLDH	-	-	-	0.7	ppm	-
15	Frequency drift after reflow	-	-2	-	+2	ppm	After two reflows
16	Aging						-
16-1	Aging (1 st year)	-	-0.7	-	+0.7	ppm	-
16-2	Aging (2 nd years)	•	-1.4	-	+1.4	ppm	-
16-3	Aging (5 years)	•	-2.5	-	+2.5	ppm	-
16-4	Aging (10 years)	-	-5	-	+5	ppm	-
17	Spurious mode resistance	-	500	-	-	Ω	F nom within +/-1000KHz
18	Insulation resistance	1	500	-	-	МΩ	Terminal to terminal insulation resistance also terminal to cover insulation resistance when DC100V ±15V is applied.
19	Operating temperature range	1	-30	-	+105	ů	-
20	Storage temperature range	-	-40	-	+105	°C	-
21	Air-tightness	-	-	-	1.1×10 ⁻⁹	Pa m³/s	Helium leak detector
22	MSL	-		Level 1		-	-
23	ESD(HBM)	-	-	-	1000	V	Guarantee voltage
24	ESD(MM)	-	_	-	200	V	Guarantee voltage

Thermistor Characteristics

	Parameters	SYM.		Electri	cal Spe	C.	Notes
	Farameters	STIVI.	Min	TYP	MAX	Units	Notes
1	Size	- 0		0.6 x 0.3 x 0.3 mm			-
2	Room temperature resistance	1	-1%	100	+1%	kΩ	at +25°C
3	B const	-	-1%	4250	+1%	K	Evaluated from 25°C to 50°C
4	Rated power (at 25°C)	-	-	-	100	mW	

5. Examination results document

Since a performance is guaranteed, an examination results document does not submit.

6. Application drawing

6.1. Dimension Drawing : EXD14B-00482

6.2. Taping and Reel figure : EXK17B-00318, EXK17B-00411

6.3. Holder Marking : EXH11B-00319

6.4. Packing : EEK17B-00015, EEK17B-00012

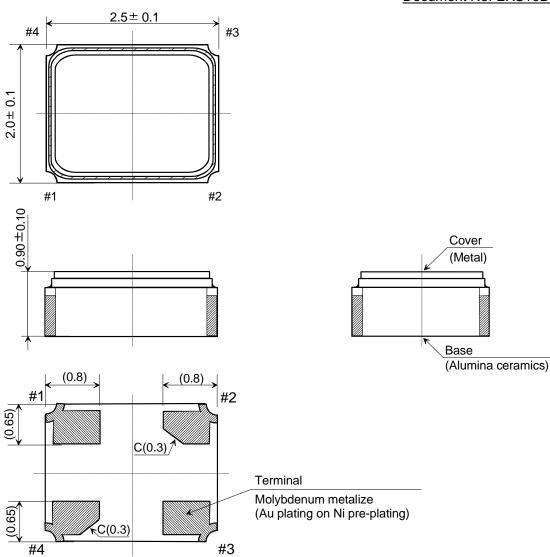
6.5. Packing Label : EXK17B-00422 6.6. Reliability assurance Item : EXS30B-01042

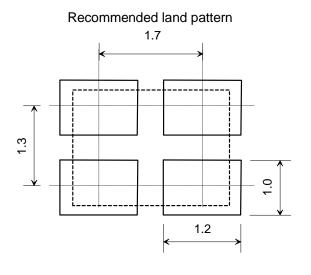
7. Notice

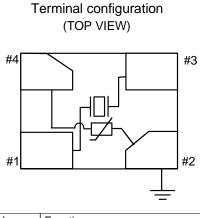
7.1 Order items are manufactured according to specification. As to conditions, which are not indicated in this specification and unpredictable such as applied condition and oscillation margin, please check them beforehand.

- 7.2 Unless we receive request for modification within 3 weeks from the issue date of this NDK specification sheet, we will supply products according to this specification. Also, if you'd like to modify specification of order, which has been placed with delivery request within 3 weeks from the issue data of this specification sheet, we would like to discuss with you separately.
- 7.3 In no event shall the company be liable for any product failure resulting from an inappropriate handling or operation of the product beyond the scope of its guarantee.
- 7.4 Where any change to the process condition is made due to the change(s) in the production line, inform personnel of the specifications.
- 7.5 Should this specification data give rise to any disputes relating to any intellectual property rights or any other rights of a third person, the company shall not indemnify anyone for any damage. Their disclosure must not be construed as the grant of a license to use any of the intellectual property rights owned by the company.
- 7.6 If you intend to use products listed on this specification for applications that may result in loss of life or assets (controls relating to safety, medical equipment, aeronautical equipment, space equipment, etc.), please do not fail to advise us of your intention beforehand.
- 7.7 In the company's production process whatever amount of ozone depleting substances (ODS) as specified in the Montreal protocol is not used.
- 7.8 Information contained in this specification must not be quoted, reproduced or used for other purposes including processing either in part or in full without obtaining prior approval from the company.
- 7.9 Crystal units will be damaged by ultrasonic welding process due to resonance of crystal wafer itself. NDK does not recommend using ultrasonic welding. If Ultra Sonic welding used, NDK strongly recommend verifying crystal unit damage by ultrasonic weld.
- 7.10 The appearance color has a different case by purchasing it more than 2 suppliers of the component, but characteristic and reliability are guaranteed.
- 7.11 In case of the product long time keep at high temperature and humidity, may affect product characteristic (solder ability) and a packing condition.
 - Please keep at storage condition of temperature +5°C ~+35°C, humidity ~85%RH.

8. Prohibited items

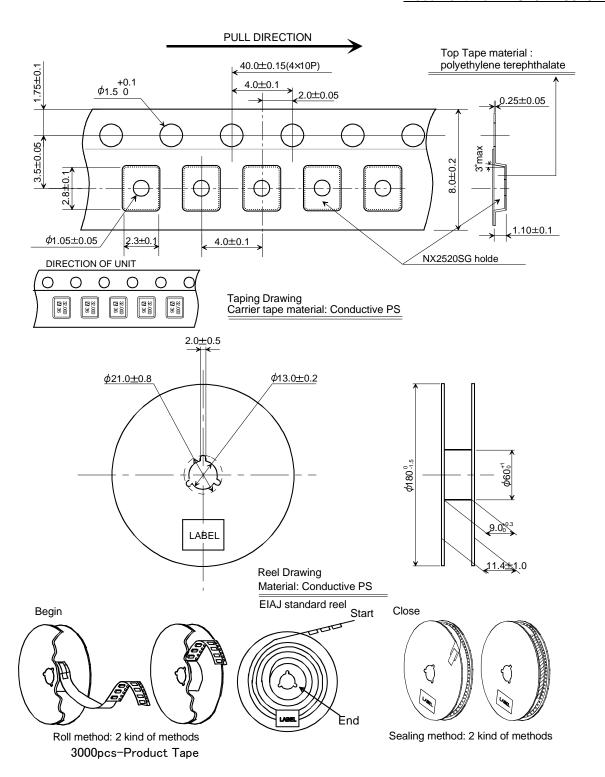

Be sure to use the product under the following conditions. Otherwise, the characteristics deterioration or destruction of the product may result.

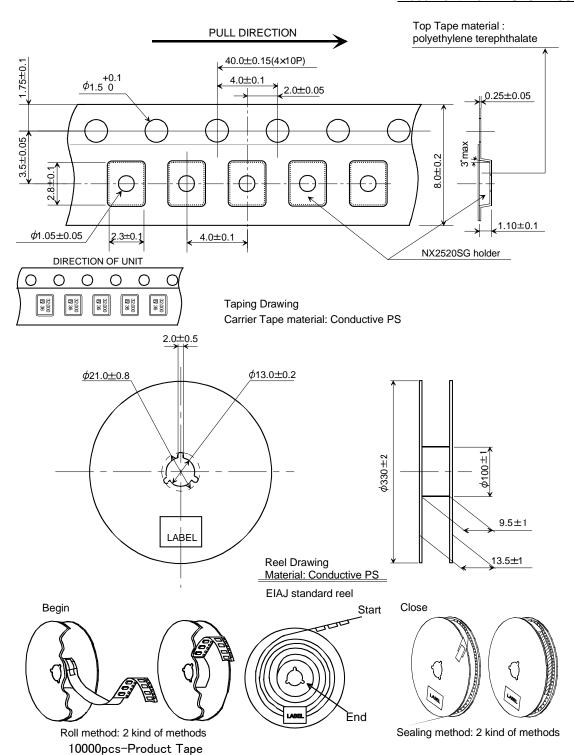

(1) Reflow soldering heat resistance


Peak temperature: 265°C, 10 sec Heating: 230°C or higher, 40 sec Preheating: 150°C to 180°C, 120 sec Reflow passage times: three times

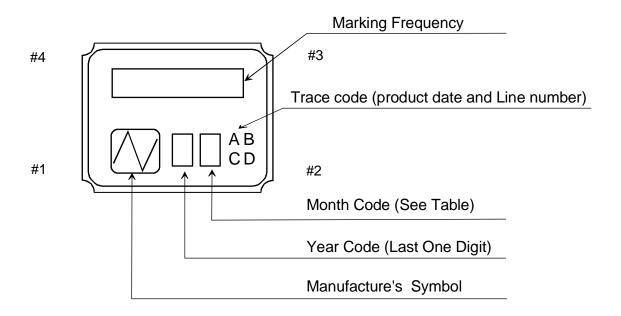
(2) Manual soldering heat resistance

Pressing a soldering iron of 400°C on the terminal electrode for four seconds (twice).





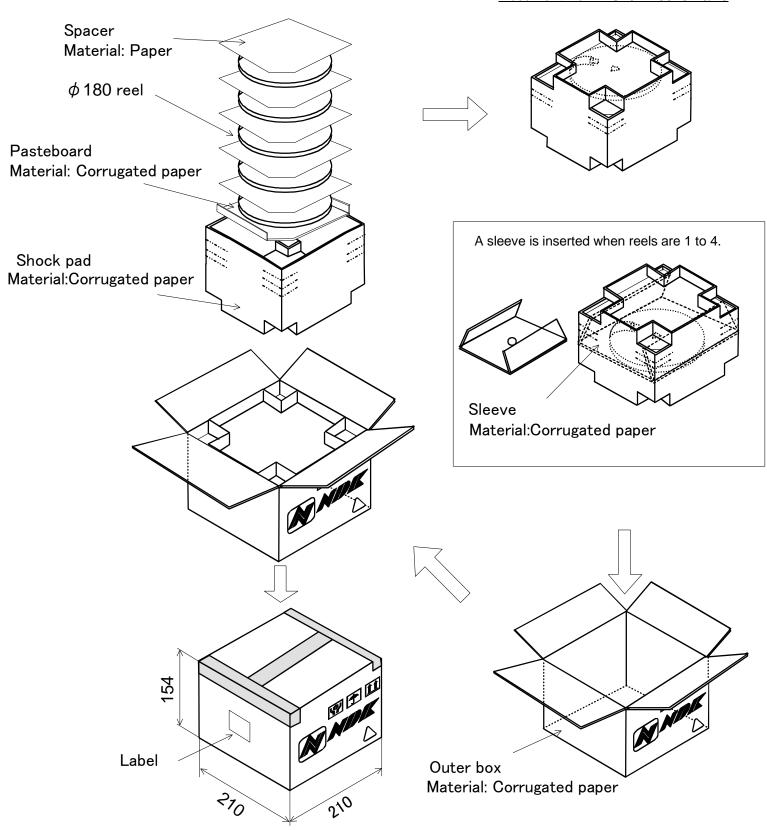
Terminal	Function
#1, #3	XTAL IN-OUT
#4	THERMISTOR IN
#2	THERMISTOR OUT
#2	GND (Connected with cover)


	Dat	e of Revise	Charge	Approved	Reaso	Reason			
С	C 21. Apr. 2016		T. Asamizu	T. Miyahara	Changed to terminal size				
		Date	Name	Third Angle Proje	Projection Tolerance		olerance	ance Sca	
Drav	wn	17. Dec. 2010	T. Asamizu	Dimension: m	ion: mm				-
Des	signed	17. Dec. 2010	T. Asamizu	Title			Drawing No.		Rev.
Che	ecked	17. Dec. 2010	I. Miyahara	NX252	NX2520SG		EXD14B-	00402	2
Approved 17. Dec. 2010 K		K. Ueki	Dimension	Drawi	ing	EAU14B	-00462	٥	

	Dat	te of Revise	Charge	Approved	Reason			
Α	A 7 Oct. 2016 H. Ohkubo			H. Murakoshi	lurakoshi Addition of roll method and sealing method.			
	Date		Name	Third Angle Projection T		Tolerance	Sc	ale
Drav	wn	06. Jan. 2011	T.Asamizu	Dimension: m	on: mm		-	/ -
Des	signed	06. Jan. 2011	T.Asamizu	Title		Drawing No.		Rev.
Che	ecked 06. Jan. 2011 I.Miyahara NX2520S		20SG EXK17B-00318		Α			
Approved 06. Jan. 2011 K		K.Ueki	Taping and F	Reel Sp	oec.	D-00210	^	

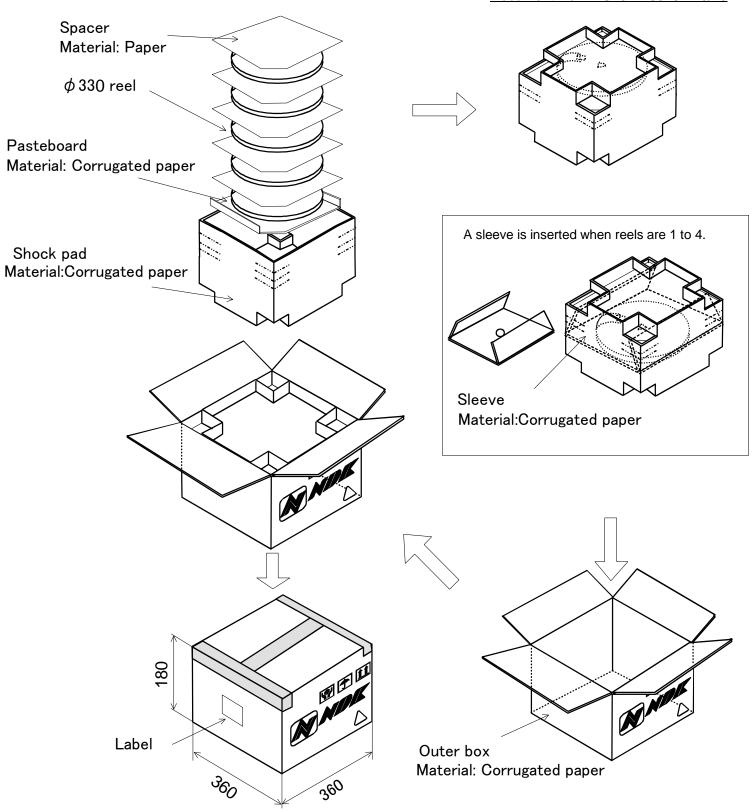
	Dat	te of Revise	Charge	Approved	proved Reason				
Α	7	Oct. 2016	H. Ohkubo	H. Murakoshi	Addition	n of roll method and sea	oll method and sealing method.		
		Date	Name	Third Angle Proje	Third Angle Projection Tol		Sc	ale	
Dra	ıwn	2 Sep. 2016	H. Ohkubo	Dimension: m	: mm		- ,	/ -	
Des	signed	2 Sep. 2016	H. Ohkubo	Title		Drawing No.		Rev.	
Che	ecked			NX2520SG		EXK17B-	00444	۸	
App	oroved	2 Sep. 2016	H. Ohkubo	Taping and Reel Spec.		ec.	-00411	A	

NOTE

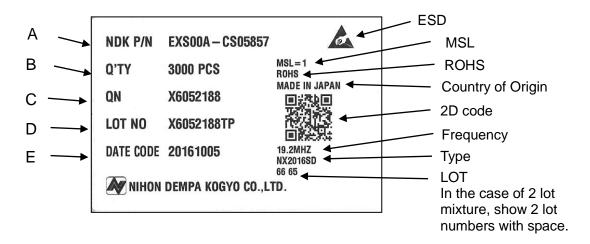

1. Month Code Table

Month	1	2	3	4	5	6	7	8	9	10	11	12
	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Month Code	1	2	3	4	5	6	7	8	9	Х	Υ	Z

^{*}Marking digits are not include a decimal point and dot mark.


	Dat	te of Revise	Charge	Approved Reason				
Α	10). Jul. 2008	T.Asamizu	K.Kubota	Delete application period.			
		Date	Name	Third Angle Proje	Third Angle Projection To		Sc	ale
Drav	wn	14. Feb. 2006	T.Asamizu	Dimension:m	m		,	1
Des	signed	14. Feb. 2006	T.Asamizu	Title		Drawing No.		Rev.
Che	Checked 14. Feb. 2006		I.Miyahara	Consetal Halder Marking		EVU11D	00240	Α
Арр	Approved 14. Feb. 2006 K.Okamoto		Crysiai noid	Crystal Holder Marking		g EXH11B-00319		

Document No. EXS10B-28019A 9/13


	Date of Revise Charge Approved		Reaso	n					
С	4	Jul. 2012	2 H.Ohkubo K.Oguri Addition of condition when reels are 1				to 4.		
	Date		Name	Third Angle Proje	Third Angle Projection Tolerance		Tolerance	Sca	ale
Drav	Drawn 26 Feb. 2010		H. Ohkubo	Dimension:m	m				
Des	signed	26 Feb. 2010	K.Oguri	Title			Drawing No.		Rev.
Che	ecked	26 Feb. 2010	K.Oguri	180 dia. Reel packa			EEK17B-	00045	(
Арр	Approved 26 Feb. 2010 J. Nakamura		Tiou dia. Ree	n pack	age	EEN1/B	-000 15	С	

NIHON DEMPA KOGYO CO., LTD.

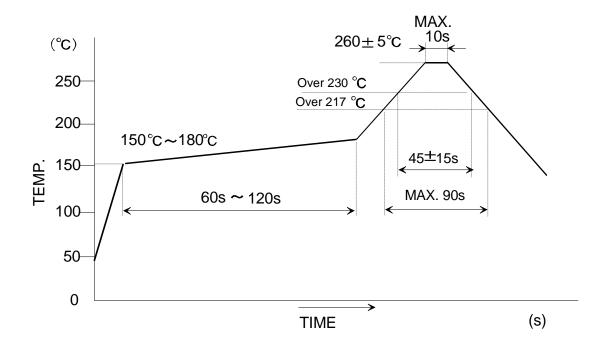
	Dat	e of Revise	Charge	Approved	Reaso	n			
B 18 Nov. 2016		Nov. 2016	H.Ohkubo	H. Murakoshi	Addition of condition when reels are 1 to 4.			to 4.	
Dat		Date	Name	Third Angle Proje	ection Tolerance		Scale		
Drawn		26 Feb. 2010	H. Ohkubo	Dimension:m	n				
Des	signed	26 Feb. 2010	K.Oguri	Title		Drawing No.		Rev.	
Che	ecked	26 Feb. 2010	K.Oguri	220 dia Baal paol		kage EEK17B-0001		00012	Б
Approved		26 Feb. 2010	J. Nakamura	330 dia. Reel packa		age CENI/D-		-00012	В

LABEL SIZE: 76×50mm

No.	Marking Item	Marking Contents
Α	NDK P/N	NDK Part Number
B Q'TY		Total quantity
C QN		Serial Number
D	LOT NO.	Serial Number + TP
E DATA CODE		Date of making label

	改訂日	/ Date of Revise	担当/ Charge	承認/ Approved	理由/ Reason					
		Date	Name	三角法/ Third Angle Projection		公	差/ Tolerance	尺度/	尺度/ Scale	
Drawn		27. Mar. 2017	Y. Takaki	単位:mm						
Designed		27. Mar. 2017	Y. Takaki	名称/Title			図番/ Drawing No.		改訂/ Rev.	
Checked				Do akin a	_abel EXK1		EXK17B-00422			
Approved 27		27. Mar. 2017	I. Miyahara	Packing			EXK1/B	-00422		

Reliability assurance item (1/2)


(page: 1/2)

				(page: 1/2)	
No.	Test Item	Test Item Test Methods			
1	High temperature	Temperature: +125 °C Test time: 1000 Hr.	C, D		
2	Cold resistance Temperature: -40 °C Test time: 1000 Hr.				
3	Humidity at +85 °C with 85 % RH for 1000 hr.				
4	Thermal shock (TS)	-55 +/- 3°C / +125 +/- 3°C 300 cycles/1H per cycles	C, D		
		Frequency Range	10 to 2000Hz		
		Amplitude or Acceleration	1.52 mm or 10G]	
5	Vibration	1 cycle	20 minutes	A, D	
		Test time	Three mutually perpendicular axes each 6 times.	, 	
6	Bending	Push the center of the substrated bends, 5 mm, the state is held	A, D		
	Shock 1	Shock	Device are put on the weight of 200 g onto marble.	B, D	
7		Height	1.8 m		
'		Drop times	1 time for each 6 side direct 1 time 4 corners Totally 10 drops.		
	Shock 2	Shock	PCB (36mm '90mm)attached by 6 screws to a housing of 150g.	B, D	
8		Height	1.0 m onto concrete		
		Equipment	1.0mm +/- 0.1mm thick		
		Drop times	300 drops . 12 rotation / min.		
9	Reflow resistance	Temperature cycle as shown in (Fig2.) for 3 cycle.			
10	Air Tightness	Helium leak test.	Е		

Specification code	Specification		
А	Δ F/F \leq ±1.0 ppm Δ Cl \leq ±15 % or ±2 Ω greater value		
В	Δ F/F \leq \pm 2.0 ppm Δ Cl \leq \pm 25 % or \pm 2 Ω greater value		
С	Δ F/F \leq \pm 5.0 ppm Δ Cl \leq \pm 15 % or \pm 2 Ω greater value		
D	Thermistor resistance: $\Delta R/R \le 5\%$		
Е	No leak		

Reliability assurance item(2/2)

Recommended reflow profile

A: 150 to 180 °C (90 ± 30 sec.) B: 230°C min. (30 sec. max.)

C: Peak temperature. 260°C ± 5 °C (10sec. max.)

D: 217 °C Min. (90 sec. max.)