

PRODUCTS

Semiconductor IC

TYPE

BU52031NVX

PAGE

1/4

STRUCTURE

Silicon Monolithic Integrated Circuit

TYPE

BU52031NVX

PRODUCT

Hall effect Switch

FEATURES

1) Bipolar detection(S-pole and N-pole)

2) High sensitivity (B_{OP} TYP +/-3.0mT)

3) Low supply current(TYP 5 μ A)

4) Small package

5) CMOS output type

●ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETERS	SYMBOL	LIMIT	UNIT
Power Supply Voltage	V _{DD}	-0.1~+4.5 *1	V
Output Current	I _{out}	±0.5	mA
Power Dissipation	Pd	2049 *2	mW
Operating Temperature Range	T _{opr}	-40 ~ +85	°C
Storage Temperature Range	T _{stg}	-40 ~ +125	°C

^{※1.} Not to exceed Pd

●OPERATING CONDITIONS (Ta=-40~+85°C)

PARAMETERS	SYMBOL	MIN	TYP	MAX	UNIT
Power Supply Voltage	V _{DD}	1.65	1.80	3.30	٧

Radiation hardiness is not designed.

·Status of this document

The Japanese version of this document is the formal specification. A customer may use this translation version only for a reference to help reading the formal version. If there are any difference in translation version of this document, formal version takes priority.

Application example

ROHM cannot provide adequate confirmation of patents.

The product described in this specification is designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys).

Should you intend to use this product with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

ROHM assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representations that the circuits are free from patent infringement.

DESIGN CHECK APPROVAL DATE : JUL. /2/2009 SPECIFICATION No. : TSZ02201-BU52031NVX-1-2

REV. B ROHM Co., Ltd.

^{※2.} Reduced by 20.49mW for each increase in Ta of 1°C over 25°C (mounted on 70mm × 70mm × 1.6mm Glass-epoxy PCB)

●MAGNETIC, ELECTRICAL CHARACTERISTICS (Unless otherwise specified, V_{DD}=1.80V, Ta=25°C)

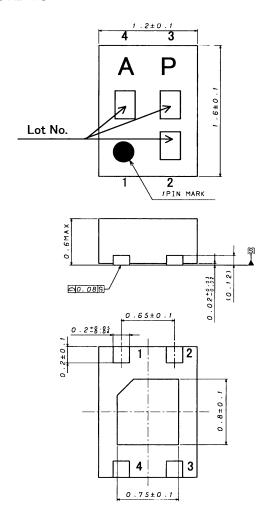
TYPE

PARAMETERS	SYMBOL	LIMIT		LINIT	CONDITIONS		
FARAIVIETERS	STMBUL	MIN	TYP	MAX	UNIT	CONDITIONS	
Operate Point	B _{opS}	_	3.0	5.0			
	B _{opN}	-5.0	-3.0	-	mT		
Release Point	B _{rpS}	0.6	2.1	_	- mT		
Troicese i Ulit	B _{rpN}	_	-2.1	-0.6			
Period	Т _р	_	50	100	ms		
Output High Voltage	V _{oн}	V _{DD} -0.2	· <u>-</u>	_	V	B _{rpN} <b<b<sub>rpS *3 I_{OUT}=-0.5mA</b<b<sub>	
Output Low Voltage	V _{oL}	_	-	0.2	٧	B <b<sub>opN, B_{opS}<b *3="" i<sub="">OUT=+0.5mA</b<sub>	
Supply Current1	I _{DD1(AVG)}	_	5	8	μΑ	V _{DD} =1.8V,Average	
Supply Current2	I _{DD2(AVG)}	_	8	12	μΑ	V _{DD} =2.7V,Average	

¾3. B = Magnetic Flux Density

1mT=10Gauss

Positive ("+") polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.


After applying power supply, it takes one cycle of period (Tp) to become definite output.

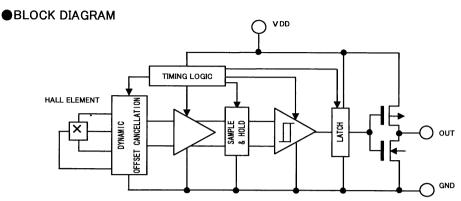
ROHM Co., Ltd. REV. :

В

SPECIFICATION No. : TSZ02201-BU52031NVX-1-2

●PACKAGE OUTLINES

SSON004X1216(UNIT:mm)


●PIN No. • PIN NAME

PIN No.	PIN NAME	FUNCTION	COMMENT
1	OUT	OUTPUT	
2	GND	GROUND	
3	N.C.		OPEN or Short to GND.
4	VDD	POWER SUPPLY	

ROHM Co., Ltd. REV. :

В

SPECIFICATION No. : TSZ02201-BU52031NVX-1-2

CAUTIONS ON USE

1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions. etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.

2) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.

3) Thermal design

Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use.

4) Pin short and mistake fitting

When mounting the IC on the PCB, pay attention to the orientation of the IC. If there is a placement mistake, the IC may be burned up.

5) Operation in strong electric field

Be noted that using ICs in the strong electric field can malfunction them.

6) Mutual impedance

Use short and wide wiring tracks for the power supply and ground to keep the mutual impedance as small as possible. Use a capacitor to keep ripple to a minimum.

7) Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.

8) Power source design

Since the IC performs intermittent operation, it has peak current when it's ON. Please taking that into account and under examine adequate evaluations when designing the power source.

Please avoid having potential overstress from PCB material, strength, mounting positions. If you had any further questions or concerns, please contact your Rohm sales and affiliate.

ROHM Co., Ltd. REV. :

В

SPECIFICATION No. : TSZ02201-BU52031NVX-1-2