

General Purpose Strain Gages—Linear Pattern

GAGE DESIGNATION See Notes 1, 2 RESISTANCE (OHMS) See Note 3 OPTIONS XAILABLE CEA-XX-125UB-350 W2A-XX-015UW-350 350 ±0.3% 350 ±0.6% P2, SP35 CEA-XX-125UB-350 W2A-XX-015UW-350 350 ±0.3% 350 ±0.6% P2, SP35 DESCRIPTION actual size DESCRIPTION General-purpose gage. Exposed solder tab area is 0.10 x 0.07 in (2.5 x 1.8 mm). DESCRIPTION CP = Complete Pattern M = Matrix DESCRIPTION CP = Complete Pattern M = Matrix Text Matrix Gage Length Overall Length Crid Width Overall Width Matrix Length Matrix Width 0.125 0.185 0.160 0.290 0.34 0.39	GAGE PATTERN DATA							
See Notes 1, 2 See Note 3 CEA-XX-125UB-350 W2A-XX-015UW-350 350 ±0.3% 350 ±0.6% P2, SP35 CEA-XX-125UB-350 W2A-XX-015UW-350 350 ±0.6% P2, SP35 DESCRIPTION actual size DESCRIPTION General-purpose gage. Exposed solder tab prose gage. Exposed solder tab prosed solder tab prose gage. Exposed solder tab prosed solder tab prosed sold			1	i	GAC DESIGN	E ATION	RESISTANCE (OHMS)	OPTIONS AVAILABLE
$\begin{tabular}{ c c c c c } \hline CEA-XX-125UB-350\\ W2A-XX-015UW-350\\ \hline S50 \pm 0.6\%\\ \hline S$					See Not	es 1, 2	See Note 3	
$\frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ $					CEA-XX-125 W2A-XX-015	5UB-350 5UW-350	350 ±0.3% 350 ±0.6%	P2, SP35
GAGE DIMENSIONS Legend CP = Complete Pattern inch S = Section (S1 = Section 1) M = Matrix millimeter Gage Length Overall Length Grid Width Overall Width Matrix Length Matrix Width 0.125 0.185 0.160 0.290 0.34 0.39		actual size			DESCRIPT General-pu solder tab a (2.5 x 1.8 n	rpose gage area is 0.10 nm).	e. Exposed x 0.07 in	Pb-free Available RoHS* COMPLIANT
Gage Length Overall Length Grid Width Overall Width Matrix Length Matrix Width 0.125 0.185 0.160 0.290 0.34 0.39	GAGE DIMENSIONS		Legend ES = Each Section CP = Complet S = Section (S1 = Section 1) M = Matrix		- Complete - Matrix	Pattern	inch millimeter	
0.125 0.185 0.160 0.290 0.34 0.39	Gage Length	Overall Length	Grid Width	Over	all Width	Matrix	Length	Matrix Width
	0.125	0.185	0.160	(C).290	0.	34	0.39
3.18 4.70 4.06 7.37 8.6 9.9	3.18	4.70	4.06		7.37	8	.6	9.9

GAGE SERIES DATA — See Gage Series datasheet for complete specifications				
Series	Description	Strain Range	Temperature Range	
CEA	CEA Universal general-purpose strain gages.		–100° to +350°F (–75° to +175°C)	
W2A IPX8S Rated	 For water-exposure applications. Based on the CEA Series with Option P2 pre-attached cables, W2A strain gages are fully enclosed with a silicone rubber coating and tested to 10 GΩ insulation resistance, 1 meter water depth, 30 minutes duration. Other requirements can be addressed on demand. 		–60° to +180°F (–50° to +80°C)	
Example of the W2A construction: IPX8S Rated				

Note 1: Insert desired S-T-C number in spaces marked XX. **Note 2**: W2A leadwires are attached with lead-free solder and are RoHS compliant.

* CEA gages with Option P2 are not RoHS compliant.

Technical Data References: SEARCH our website using the document number. **11506** – Gage Series; **11507** – Optional Features

Stress Analysis Strain Gages

The Strain Gage Designation System described below applies to Micro-Measurements General-Use Strain Gages.

Standard Stress Analysis Strain Gages

GAGE	DESCRIPTION AND	TEMPERATURE	STRAIN	FATIGUE LIFE	
SERIES	PRIMARY APPLIATION	RANGE	RANGE	STRAIN LEVEL IN με	NUMBER 0F CYCLES
EA	Constantan foil in combination with a tough, flexible, polyimide backing. Wide range of options available. Primarily intended for general-purpose static and dynamic stress analysis. Not recommended for highest accuracy transducers.	Normal: –100° to +350°F (–75° to +175°C) Special or short term: –320° to +400°F (–195° to +205°C)	±3% for gage lengths under 1/8 in (3.2 mm) ±5% for 1/8 in and over	±1800 ±1500 ±1200	10 ⁵ 10 ⁶ 10 ⁸
CEA	Universal general-purpose strain gages. Constantan grid completely encapsulated in polyimide, with large, rugged copper-	Normal: –100° to +350°F (–75° to +175°C)	±3% for gage lengths under 1/8 in (3.2 mm)	±1500 ±1500	10 ⁵ 10 ^{6*}
	coated tabs. Primarily used for general- purpose static and dynamic stress analysis.	Stacked rosettes limited to +150°F (+65°C)	±5% for 1/8 in and over	*Fatigue life improved using low-modulus solder.	
C2A	General-purpose stress analysis strain gages. Supplied with preattached cables for direct connection to instrumentation.	–60° to +180°F (–50° to +80°C)	±3%	±1700 ±1500	10⁵ 10 ⁶
L2A	General-purpose stress analysis strain gages. Supplied with preattached leadwire ribbons.	–100° to +250°F (–75° to +120°C)	±3%	±1700 ±1500	10⁵ 10 ⁶
N2A	Open-faced constantan foil gages with a thin, laminated, polyimide-film backing. Primarily recommended for use in precision transducers, the N2A Series is characterized by low and repeatable creep performance. Also recommended for stress analysis applications employing large gage patterns, where the especially flat matrix eases gage installation.	Normal static transducer service: –100° to +200°F (–75° to +95°C)	±3%	±1700 ±1500	10 ⁶ 10 ⁷
WA	Fully encapsulated constantan gages with high-endurance leadwires. Useful over wider temperature ranges and in more extreme environments than EA Series. Option W available on some patterns, but restricts fatigue life to some extent.	Normal: –100° to +400°F (–75° to +205°C) Special or short term: –320° to +500°F (–195° to +260°C)	±2%	±2000 ±1800 ±1500	10 ⁵ 10 ⁶ 10 ⁷
SA	Fully encapsulated constantan gages with solder dots. Same matrix as WA Series. Same uses as WA Series but derated somewhat in maximum temperature and operating environment because of solder dots.	Normal: -100° to +400°F (-75° to +205°C) Special or short-term: -320° to +450°F (-195° to +230°C)	±2%	±1800 ±1500	10 ⁶ 10 ⁷
ED	Specially annealed constantan foil with tough, high-elongation polyimide backing. Used primarily for measurements of large	–100° to +400°F	±10% for gage lengths under 1/8 in (3.2 mm)	±1000	104
	post-yield strains. Available with Options E, L, and LE (may restrict elongation capability).	(–75° to +205°C)	±20% for 1/8 in and over	EP gages sho under high-cy	w zero shift clic strains.
ED	Isoelastic foil in combination with tough, flexible polyimide film. High gage factor and extended fatigue life excellent for dynamic measurements. Not normally used in static measurements due to very high thermal- output characteristics.	Dynamic: -320° to +400°F (-195° to +205°C)	±2% Nonlinear at strain levels over ±0.5%	±2500 ±2200	10 ⁶ 10 ⁷

Gage Series Selection Chart

Standard Stress Analysis Strain Gages

CACE		TEMPEDATURE	STRAIN	FATIGUE LIFE	
SERIES	PRIMARY APPLIATION	RANGE	RANGE	STRAIN LEVEL IN με	NUMBER 0F CYCLES
WD	Fully encapsulated isoelastic gages with high-endurance leadwires. Used in wide-range dynamic strain measurement applications in severe environments.	Dynamic: -320° to +500°F (-195° to +260°C)	±1.5% Nonlinear at strain levels over ±0.5%	±3000 ±2500 ±2200	10 ⁵ 10 ⁷ 10 ⁸
SD	Equivalent to WD Series, but with solder dots instead of leadwires.	Dynamic: -320° to +400°F (-195° to +205°C)	±1.5% Nonlinear at strain levels over ±0.5%	±2500 ±2200	10 ⁶ 10 ⁷
ЕК	K-alloy foil in combination with a tough, flexible polyimide backing. Primarily used where a combination of higher grid resistances, stability at elevated temperature, and greatest backing flexibility are required. Supplied with Option DP.	Normal: -320° to +350°F (-195° to +175°C) Special or short term: -452° to +400°F (-269° to +205°C)	±1.5%	±1800	107
wĸ	Fully encapsulated K-alloy gages with high endurance leadwires. Widest temperature range and most extreme environmental capability of any general-purpose gage when self-temperature compensation is required. Option W available on some patterns, but restricts both fatigue life and maximum operating temperature.	Normal:	±1.5%	±2200 ±2000	10 ⁶ 10 ⁷
SK	Fully encapsulated K-alloy gages with solder dots. Same uses as WK Series, but derated in maximum temperature and operating environment because of solder dots.	Normal:	±1.5%	±2200 ±2000	10 ⁶ 10 ⁷
S2K	K-alloy foil laminated to 0.001 in (0.025 mm) thick, high-performance polyimide backing, with a laminated polyimide overlay fully encapsulating the grid and solder tabs. Provided with large solder dots for ease of leadwire attachment.	Normal: -100° to +250°F (-75° to +120°C) Special or short term: -300° to +300°F (-185° to +150°C)	±1.5%	±1800 ±1500	10 ⁶ 10 ⁷

Notes:

The performance data given here are nominal, and apply primarily to gages of 0.125-in (3-mm) gage length or larger. Refer to Gage Series/Optional Feature data sheet for more detailed description and performance specifications.

Stress Analysis Strain Gages

GAGE SELECTION

Many factors, such as test duration, strain range required, and operating temperature, must be considered in selecting the best strain gage/adhesive combination for a given test profile. These factors and others are addressed in Tech Note TN-505, "Strain Gage Selection—Criteria, Procedures, Recommendations."

SELF-TEMPERATURE COMPENSATION (S-T-C)

All gages with XX as the second code group in the gage designation are self-temperature-compensated for use on structural materials with specific thermal expansion

S-T-C	EXPANSION COEFFICIENTS**		COMMON MATERIAL		
NO.	per °F	per °C			
00	0.8 0.3 0.017	1.4 0.5 0.03	Invar, Fe-Ni alloy Quartz, fused Titanium Silicate*, polycrystalline		
03	3.0 2.7 2.4 3.1	5.4 4.9 4.3 5.6	Alumina, fired Molybdenum*, pure Tungsten, pure Zirconium, pure		
05	5.1 5.5 4.8 4.9	9.2 9.9 8.6 8.8	Glass, Soda-Lime-Silica Stainless Steel, Ferritic (410) Titanium, pure Titanium Alloy, 6AI-4V*		
06	6.4 6.0 7.0 6.7 7.5 6.6 6.3 6.7 6.0 5.7 5.0	11.5 10.8 12.6 12.1 13.5 11.9 11.3 12.1 10.8 10.3 9.0	Beryllium, pure Cast Iron, grey Inconel, Ni-Cr-Fe alloy Inconel X, Ni-Cr-Fe alloy Monel, Ni-Cu alloy Nickel-A, Cu-Zn-Ni alloy Steel alloy, 4340 Steel, Carbon, 1008, 1018* Steel, Carbon, 1008, 1018* Steel, Stainless, Age Hardenable (17-4PH) Steel, Stainless, Age Hardenable (PH15-7Mo)		
09	9.3 16.7 Ber 10.2 18.4 Bro 9.2 16.5 Cop 9.6 17.3 Ste 8.0 14.4 Ste 8.9 16.0 Ste		Beryllium Copper, Cu 75, BE 25 Bronze, Phosphor, Cu 90, Sn 10 Copper, pure Steel, Stainless, Austenitic (304*) Steel, Stainless, Austenitic (310) Steel, Stainless, Austenitic (316)		
13	12.9 11.1 13.0	23.2 20.0 23.4	Aluminum Alloy, 2024-T4*, 7075 T6 Brass, Cartridge, Cu 70-Zn 30 Tin, pure		
15	15 14.5 26.1 Magnesium Alloy*, AZ-318				
 * Indicates type of material used in determining thermal output curves supplied with Micro-Measurements strain gages. ** Nominal values at or near room temperature for temperature coefficient of expansion values. 					

coefficients. The table below lists S-T-C numbers and test specimen materials to which gages are thermally matched.

When ordering, replace the XX code group with the desired S-T-C number, which is the approximate thermal expansion coefficient of the structural material in ppm/°F. The Gage Designation System lists the available S-T-C numbers for specific grid alloys. The 06 and 13 values, available in A and K alloys, are most common and more likely to be in stock. When not otherwise specified, the 06 compensation is shipped.

GAGE RESISTANCE

Micro-Measurements strain gages are available in various resistance values that range from 30 to 5000 ohms.

Strain gages with resistances of 120 and 350 ohms are commonly used in experimental stress analysis testing. For the majority of applications, 120-ohm gages are usually suitable; 350-ohm gages would be preferred to reduce heat generation (for the same applied voltage across the gage), to decrease leadwire effects, or to improve signal-to-noise ratios in the gage circuit. Higher resistance gages are typically used in transducer applications and on composite materials.

GAGE FACTOR

Gage Factor (GF) is the measure of sensitivity, or *output*, produced by a resistance strain gage. Gage factor is determined through calibration of the specific gage type, and is the ratio between $\Delta R/R_o$ and $\Delta L/L$ (strain), where R_o is the initial unstrained resistance of the gage. It is affected somewhat by pattern size, geometry, S-T-C number, and temperature. Each gage package is supplied with the GF as well as its tolerance and temperature sensitivity. Nominal gage factors for various alloys are: A = 2.05; K = 2.1; D = 3.2; P = 2.00.

TRANSVERSE SENSITIVITY

All gages are sensitive, to some degree, to strains transverse to the grid direction. The transverse sensitivity factor (K_t) is given with the engineering data supplied with all gage types for which the data is relevant.

STRAIN GAGE ADHESIVE SELECTION

When selecting a strain gage, it is most important to consider the adhesive that will be used to bond the gage, since the adhesive becomes part of the gage system and correspondingly affects the performance of the gage. However, when the interaction of test characteristics becomes too complex for selecting the gage/adhesive combination in a straight forward manner, contact our Applications Engineering Department for recommendations.

Selection Criteria

Stress Analysis Strain Gages

CUSTOM GAGES

Unusual applications occasionally require a strain gage which is neither listed in the catalog nor available by adding special optional features. Often a custom product can be designed to fit such needs.

Careful consideration is given to the backing, foil, S-T-C, gage length, pattern, resistance and resistance tolerance, operating temperature range, test duration, maximum strain, cyclic endurance, leads, encapsulation, and trim so that the custom gage is designed to properly meet the user's needs. Examples of custom gages include such features as unusual patterns, special trim dimensions, and nonstandard lead materials or length.

A special part number is normally assigned to each custom gage. Doing so ensures that the correct gage is produced each time it is ordered. A set-up charge and a minimum order will normally apply. For further information contact our Applications Engineering Department.

Strain Gage Dimensions

Gage length is an important consideration in strain gage selection, and is usually the first parameter to be defined.

Dimensions listed for gage length (as measured inside the grid endloops) and grid width refer to active grid dimensions. Overall length and width refer to the actual foil pattern, not including alignment marks or backing.

The matrix size represents the approximate dimensions of the backing/matrix of the gage as shipped. Matrix dimensions are nominal, with a usual tolerance of ± 0.015 in (± 0.4 mm). If the gages are encapsulated, the matrix may be smaller by as much as 0.01 in (0.25 mm). Most patterns also include trim marks, and, for use in a restricted area, the backing/matrix may be field-trimmed on all sides to within 0.01 in (0.25 mm) of the foil pattern without affecting gage performance.

