

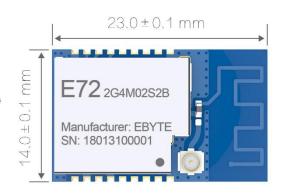
E72-2G4M02S2B 产品规格书

CC2640 2.4GHz BLE4.2 低功耗蓝牙模块

成都亿佰特电子科技有限公司

目录

第一章 概述	2
1.1 简介	2
1.2 特点功能	2
1.3 应用场景	2
第二章 规格参数	3
2.1 极限参数	3
2.2 工作参数	3
第三章 机械尺寸与引脚定义	4
第四章 电路设计图	5
第五章 工作模式	6
第六章 指令操作	7
6.1 指令返回	8
6.2 AT 指令	8
6.3 操作指令,模式切换指令	9
6.4 复位指令	9
6.5 恢复出厂设置	9
6.6 查询版本号	9
6.7 查询模块 MAC 地址	9
6.8 查询设置模块 NAME	10
6.9 查询设置串口波特率	10
6.10 查询设置角色配置	10
6.11 查询设置广播间隙	10
6.12 查询设置连接间隙	11
6.13 打开广播	11
6.14 关闭广播	11
6.15 查询设置模块发射功率	11
6.16 获取已连接设备 RSSI	12
6.17 断开已连接设备	12
6.18 查询设置 UUID	12
6.19 查询设置广播数据	12
6.20 查询设置 IBEACON 数据	13
6.21 扫描当前在进行广播的设备	13
6.22 指定连接设备	13
第七章 基本操作	14
第八章 常见问题	15
第九章 焊接作业指导	16
第十章 相关型号	17
第十一章 天线指南	17
修订历史	18
关于我们	18


第一章 概述

1.1 简介

E72-2G4M02S2B 是基于美国德州仪器 (TI) 生产的 CC2640 为核心自 主研发的小体积贴片型 BLE4.2 蓝牙转串口模块,内置双核 ARM 处理器, 采用 24MHz 工业级高精度低温漂有源晶振。

CC2640 芯片内部集成有 128KB 系统内可编程闪存和 8KB 缓存静态 RAM(SRAM)与 BLE 4.2 无线通信协议,由于其内部具有独特的超低功耗传 感器控制器, 因此非常适合连接外部传感器, 还适合于系统其余部分处 于睡眠模式的情况下自主收集模拟和数字数据。由于其内置了双核低功 耗处理器,用户可以根据自行依托模块为核心建立完成的系统。

该模块已内置低功耗蓝牙固件,用户亦可根据自身需求二次发开。

1.2 特点功能

- 超低功耗,休眠电流低至 0.2 µA;
- 多角色功能,支持主机模式/从机模式同时存在;
- 最大支持 19200 波特率下高速透明连续传输;
- 内置 BLE 4.2 协议栈;
- 内置 32.768kHz 时钟晶体振荡器;
- 支持全球免许可 ISM 2.4GHz 频段;
- 内置高性能低功耗 Cortex-M3 与 Cortex-M0 双核处理器;
- 丰富的资源, 128KB FLASH, 28KB RAM;
- 支持 1.8~3.8V 供电,大于 3.3V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- 双天线可选 (PCB/IPEX), 用户可根据自身需求选择使用。

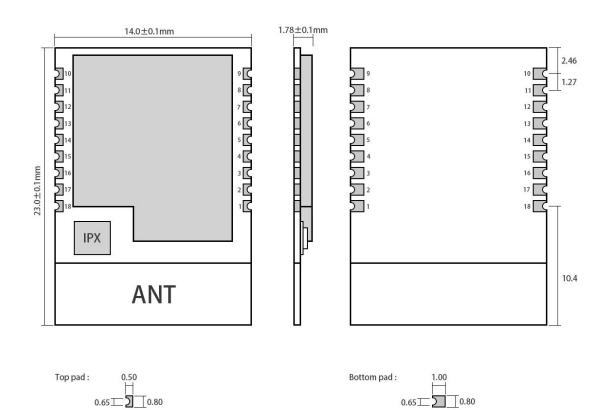
1.3 应用场景

- 智能家居以及工业传感器等;
- 安防系统、定位系统;
- 无线遥控, 无人机;
- 无线游戏遥控器;
- 医疗保健产品;
- 无线语音,无线耳机;
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

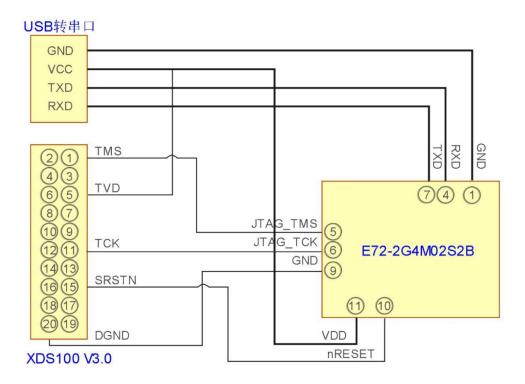
主要参数	性能		A7 33+
土安参数	最小值	最大值	备注
电源电压 (V)	0	3.8	超过 3.8V 永久烧毁模块
阻塞功率 (dBm)	_	10	近距离使用烧毁概率较小
工作温度(℃)	-40	+85	工业级


2.2 工作参数

主要参数		性能			备注
	工安少数	最小值	典型值	最大值	任
	工作电压 (V)	1.8	3.3	3.8	≥3.3V 可保证输出功率
	通信电平 (V)		3.3		使用 5V TTL 有风险烧毁
	工作温度(℃)	-40	_	85	工业级设计
	工作频段 (MHz)	2402	_	2480	支持 ISM 频段
功	发射电流(mA)		11		瞬时功耗
邦	接收电流(mA)		2.0		
和出	休眠电流 (μ A)		0.2		软件关断
	最大发射功率(dBm)	1.6	2.0	2.5	
	接收灵敏度 (dBm)	-96.5	-97	-97. 5	空中速率为 1Mbps
	空中速率(bps)	_	1M	_	用户编程控制

主要参数	描述	备注
参考距离	250m	晴朗空旷,天线增益 5dBi,天线高度 2.5米,空中速率 1Mbps
晶振频率	24MHz/32.768KHz	
支持协议	BLE4. 2	
封装方式	贴片式	
接口方式	UART 串口	1.27mm
IC 全称	CC2640F128RSMR	
FLASH	128KB	
RAM	28KB	
内核	Cortex-M3+Cortex-M0	双核 ARM
外形尺寸	14*23mm	
天线接口	PCB/IPEX	默认 PCB 板载天线, 等效阻抗约 50 Ω

第三章 机械尺寸与引脚定义



Pad quantity: 18 Unit: mm

引脚序号	引脚名称	引脚方向	引脚用途
1	GND		地线,连接到电源参考地
2	DIO_0	输入/输出	高驱动力 IO 口,传感器控制器(详见 CC2640 手册)
3	DIO_1	输入/输出	高驱动力 IO 口,传感器控制器(详见 CC2640 手册)
4	RXD	输入/输出	串口接收引脚
5	JTAG_TMS	输入/输出	JTAG_TMSC (详见 CC2640 手册)
6	JTAG_TCK	输入/输出	JTAG_TCKC (详见 CC2640 手册)
7	TXD	输入/输出	串口发送引脚
8	DIO_4	输入/输出	高驱动力 IO 口,JTAG_TDI(详见 CC2640 手册)
9	GND		地线,连接到电源参考地
10	nRESET	输入	复位脚,内部有上拉(详见 CC2640 手册)
11	VCC		电源, 1.8~3.8V
12	DIO_5	输入/输出	SLEEP 引脚,休眠模式的触发与唤醒
13	GND		地线,连接到电源参考地
14	DIO_6	输入/输出	MRDY 引脚,用于触发模块的串口接收功能
15	DIO_7	输入/输出	SRDY 引脚,用于唤醒外部单片机
16	DIO_8	输入/输出	连接指示,当模块建立连接后输出低电平
17	DIO_9	输入/输出	通用 IO 口,传感器控制器,模数(详见 CC2640 手册)
18	GND		地线,连接到电源参考地

第四章 电路设计图

- 仿真器与模块之间需要连接 TMS、TCK、复位和地,并且需要为仿真器额外供应 3.3V 电源;
- 使用 USB 转串口模块与模块相连接,模块串口与 IO 口复用,客户可以根据需要自行设定;
- 注意接地良好,有大面积的铺地,电源纹波小,应增加滤波电容并尽量靠近模块 VCC 与 GND 引脚。

第五章 工作模式

序号	工作模式	功能说明
		模块上电后自动进入此模式。在此模式下模块一直处于广播状态,此时串口停止接受任何数据,
1	低功耗	但是模块蓝牙透传输出功能不受影响,也就是说, 在低功耗模式下串口输出功能仍然有效,蓝牙
		接收到的数据可通过串口输出。
		在低功耗模式下,通过拉低 DIO_6 引脚后模块进入串口接收状态。
		当蓝牙未连接,此时蓝牙处于指令接收状态;当建立连接后,此时蓝牙处于透传模式,串口发送
2	透传	给蓝牙模块的数据可通过蓝牙发送出去。通过输入字符"+++",模块进入指令配置模式,并回显
		"CMD IN", 代表进入命令模式, 再次输入字符"+++", 模块将回到指令输入模式, 并回显"CMD OUT"。
0	0 115.115	通过给 DIO_5 引脚至少 300MS 的一个低电平以后,模块进入睡眠模式,再次触发此引脚模块则回
3	睡眠	到低功耗模式。

5.1 多角色

此模块可以通过指令 AT+ROLE=1 配置为多角色模式。

在此模式下每个模块都处于主从一体,即能连接其他模块也可以被其他模块连接;一个设备最多支持3个连接状态。

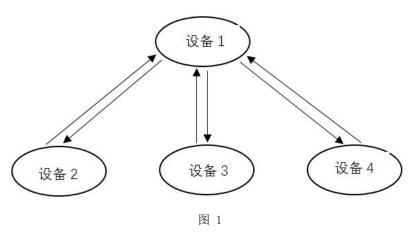


图 1 指的是一主多从,即设备 1 可同时连接设备 2、设备 3 和设备 4;设备 1 发送的数据能被另外三个设备同时接收。

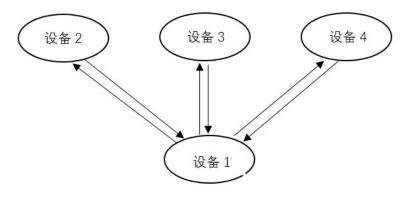


图 2

图 2 指的是多主一从,即设备 1 可同时连接设备 2、设备 3 和设备 4;

设备1发送的数据能被另外三个设备同时接收,设备2、设备3和设备4发送的数据能被设备1接收。

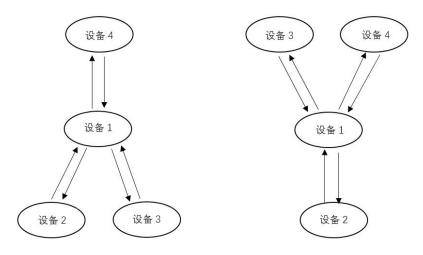


图 3

图 3 指的是一主多从和多主一从的拓扑结构。

图 3 左边, 即设备 1 同时连接设备 2、设备 3 后,能被设备 4 扫描到,并建立连接;设备 1 发送的数据能被另外三个设 备同时接收,设备2、设备3和设备4发送的数据能被设备1接收。

图 3 右边, 即设备 1 连接设备 2 后, 能被设备 3 和设备 4 扫描到, 并建立连接; 设备 1 发送的数据能被另外三个设备同 时接收,设备2、设备3和设备4发送的数据能被设备1接收。

5.2 透明连传

模块支持透明连续发送,连续发送下设置的波特率最高可达 19200bps;

也就是说发送方的波特率在不高于 19200bps,接收方波特率不低于接收方所设置的波特率的情况下,无论串口收到的数 据包有多大,甚至连续不断的数据流,都不会出现丢包的现象,实现了真正意义上的透明连传。

第六章 指令操作

序号	指令	描述		
1	出厂参数配置	详见资料集		
2	AT 指令集	详见资料集		
3	指令格式	全部操作指令格式都是在正常字符串输入方式,无换行符、无回车符、非 16 进制如,查询波特率,其格式为 AT+UART 设置波特率,其格式为 AT+UART=115200,8,1,0		

6.1 指令返回

返回值	说明
OK—AT+指令:	代表查询指令返回
PARA SET:	代表设置指令返回
CMD ERROR	指令错误
RANG ERR	配置长度超标
PARA ERR	参数配置错误
PARITY ERR	串口校验位错误
STOP ERR	串口停止位错误
DATA ERR	串口数据位错误
BAUD ERR	串口波特率错误

6.2 AT 指令

指令	说明
+++	模式切换指令
AT+RESET	复位指令
AT+FACTORY	恢复出厂设置
AT+VER	查询版本号
AT+MAC	查询模块 MAC 地址
AT+NAME	查询设置模块 NAME
AT+UART	查询设置串口波特率
AT+ROLE	查询设置模块角色
AT+ADVIN	查询设置模块广播间隙
AT+CONIN	查询设置模块连接间隙
AT+ADVON	打开模块广播功能
AT+ADVOFF	关闭模块广播功能
AT+TXPWR	查询设置模块发射功率
AT+RSSI	获取已连接设备 RSSI
AT+DISCONN	断开已连接的设备
AT+UUID	查询设置设备 UUID
AT+ADVDATA	查询设置广播数据
AT+IBEACON	查询设置 IBEACON 数据
AT+SCAN	扫描当前在广播的设备
AT+CONNECT	指定连接设备

6.3 操作指令,模式切换指令

指令	说明	回显	
+++	模式切换	CMD IN, CMD OUT	

此指令用于在已经连接设备后切换至指令模式,或者从指令模式进入透传;

从透传模式进入指令模式产生回显 CMD IN, 从指令模式进入透传模式产生回显 CMD OUT。

6.4 复位指令

指令	说明	回显	
AT+RESET	模块复位	无	
执行此指令后,模块产生一个复位操作			

6.5 恢复出厂设置

指令	说明	回显
AT+ FACTORY	模块恢复出厂设置	OKAT+FACTORY: Factory Mode SUCCESS
执行此指令后,模块将恢复出	厂设置,复位后有效。	

6.6 查询版本号

指令	说明	回显
AT+ VER	查询当前软硬件版本号	OKAT+VER: HV: V1.0, SV: V1.0
执行此指令后,模块将回显当前软硬件版本号。		

6.7 查询模块 MAC 地址

指令	说明	回显
AT+ MAC	查询模块 MAC 地址	如: OKAT+MAC: Ox98072D8E79DE
执行此指令后,模块将返回显示 MAC 地址。		

6.8 查询设置模块 NAME

指令	说明	回亚
AT+ NAME	查询模块当前名字	如: OKAT+NAME: CdEbyte_MultiRole

执行指令 AT+NAME=CdEbyte_MultiRole 设置当前模块名字,不超过 20 个字符;

成功后返回 PARA SET: CdEbyte MultiRole。

6.9 查询设置串口波特率

指令	说明	回显
AT+UART	查询模块串口参数	如: OKAT+UART: 115200, 8, 1, 0

执行指令 AT+UART=115200, 8, 1, 0 设置当前模块名字,成功后返回 PARA SET: 115200, 8, 1, 0;

第一个数据代表波特率: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 128000, 230400, 256000, 460800, 921600:

第二个数据代表数据位: 5,6,7,8;

第三个数据代表停止位: 0,1;

第四个数据代表校验位: 0(none), 1(even), 2(odd))。

6.10 查询设置角色配置

指令	说明	回显
AT+ROLE	查询设置模块角色	如: OKAT+ROLE: Normal

执行指令 AT+ROLE=0 设置当前模块角色为普通模式,成功后返回 PARA SET: Normal;

执行指令 AT+ROLE=1 设置当前模块角色为多角色模式,成功后返回 PARA SET: MultiRole。

6.11 查询设置广播间隙

指令	说明	回显
AT+ADVIN	查询设置模块广播间隙	如: OKAT+ADVIN: 160

执行 AT+ADVIN=160 指令后,成功后返回 PARA SET: AT+ADVIN=160;

其中,广播时间 = 设置参数 * 0625ms,如设置 160,则广播间隙为 160*0625ms=100ms;

设置范围: 12~16000。

6.12 查询设置连接间隙

指令	说明	回显
AT+CONIN	查询设置模块连接间隙	如: OKAT+CONIN: 200, 200, 0, 1000

执行指令 AT+CONIN=200, 200, 0, 1000 设置当前模块名字,成功后返回 PARA SET: 200, 200, 0, 1000;

第一个数据代表最小连接间隙: 6~3200,连接间隙时间 = 设置参数 *1.25ms,如设置参数为 200,则连接间隙时间 = 200 * 1.25 ms = 250 ms;

第二个数据代表最大连接间隙:6~3200,与最小连接间隙设置一样;

第三个数据代表延迟事件: 0~499;

第四个数据代表连接超时时间: 10~3200。

6.13 打开广播

指令	说明	回显
AT+ADVON	打开模块广播功能	如: OKAT+ADVON: Advertising

执行此指令后,模块将打开广播。在 Normal 模式下,如果此设备已经被连接,执行此命令后将不会执行广播; 在 MultiRole 模式下,如果此设备连接设备数达到 3 个,执行此命令后将不会执行广播;

6.14 关闭广播

指令	说明	回亚
AT+ADVOFF	关闭模块广播功能	如: OKAT+ADVOFF: Advert closeing

执行此指令后,模块将关闭广播。

6.15 查询设置模块发射功率

指令	说明	回亚
AT+TXPWR	查询设置模块发射功率	如: OKAT+TXPWR: OdBm

执行指令 AT+TXPWR=2dbm 设置当前模块发射功率,成功后返回 PARA SET: AT+TXPWR=2dbm; 其中,设置的功率范围为: 2dbm, 1dbm, 0dbm, -3dbm, -6dbm, -9dbm, -12dbm, -15dbm, -18dbm, -21dbm。

6.16 获取已连接设备 RSSI

指令	说明	回显
AT+RSSI	获取已连接设备 RSSI	如: OKAT+RSSI: -64dBm

执行此指令后,模块将返回已连接设备 RSSI; 此指令在已经连接设备后才有效。

6.17 断开已连接设备

指令	说明	回显
AT+DISCONN	断开已连接的设备	如: PARA SET: Connected to: 0 Disconnected!

执行此指令后, 模块将断开已连接设备。

6.18 查询设置 UUID

指令	说明	回显		
		如: OKAT+UUID:		
		0, 0xFFF0		
AT+UUID	查询设置设备 UUID	1, 0xFFF1		
		2, 0xFFF2		
		3, 0xFFF3		

执行指令 AT+UUID=0, FFFO 设置当前模块名字,成功后返回 PARA SET: AT+UUID=0, FFFO;

第一个参数设置第几个 UUID, 其范围 0~3;

第二个参数为设置的 UUID 号,请参考蓝牙规范协议设置相应的 UUID 号。

6.19 查询设置广播数据

指令	说明	回显
AT+ADVDATA	查询设置广播数据	如: OKAT+ADVDATA: 0x0A00010203040506070809

执行 AT+ADVDATA=0A00010203040506070809 后,模块将返回 PARA SET: 0x0A00010203040506070809;

其中上面的参数 0A 代表要输入的数据长度,00010203040506070809 代表徐要输入的数据;

输入数据按十六进制格式输入,如 00 代表 0x00,01 代表 0x01,02 代表 0x02;

数据长度不超过23字节。

6.20 查询设置 IBEACON 数据

指令 说明		回显		
AT+IBEACON	查询设置 IBEACON 数据	如: OKAT+ADVOFF: Advert closeing		

执行 AT+IBEACON=后,模块将返回 PARA SET: 0x020106061AFF4C000215B9407F30F5F8466EAFF925556B57FE6D0049000AC5; 字符长度不超过 31 字节;

此命令下的参数请按照苹果官方给定的 IBEACON 协议规定格式。

6.21 扫描当前在进行广播的设备

指令	说明	回显				
AT+SCAN	 扫描当前在广播的设备	如: OKAT+SCAN: Discovering with AT_SCAN				
	13抽当制任/推的以舍	Device 1: 0xDE798E2D0798				

如果有设备在广播,将会打印出一扫描到设备的 MAC 地址。此指令扫描的广播必须是和设备服务好相同类型的广播;如模块出厂的的服务号为 FFF0,那么只有服务号为 FFF0 的设备才能被扫描到,其他的服务号不能被扫描到。

6.22 指定连接设备

指令	说明	回显
AT+CONNECT=1	指定连接设备	显示连接成功信息

执行此指令后,模块将返回显示连接成功信息 CONNECT OK;

当成功建立连接, IOID_8 引脚将拉低, 当断开连接, DIO_8 将置高。

第七章 基本操作

7.1 硬件设计

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer,在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的,会在不同程度影响模块的杂散以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平,必须串联 1k-5.1k 电阻(不推荐,仍有损坏风险);
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议, 例如: USB3.0:
- 天线安装结构对模块性能有较大影响,务必保证天线外露,最好垂直向上。当模块安装于机壳内部时,可使用优质的天 线延长线,将天线延伸至机壳外部:
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。

7.2 软件编写

- 此模块核心为 CC2630, 其驱动方式完全等同于 CC2630, 用户可以完全按照 CC2630 芯片手册进行操作(详见 CC2630 手册):
- 推荐使用适用于无线连接的 Code Composer Studio (CCS) 集成开发环境 (IDE)。

第八章 常见问题

8.1 传输距离不理想

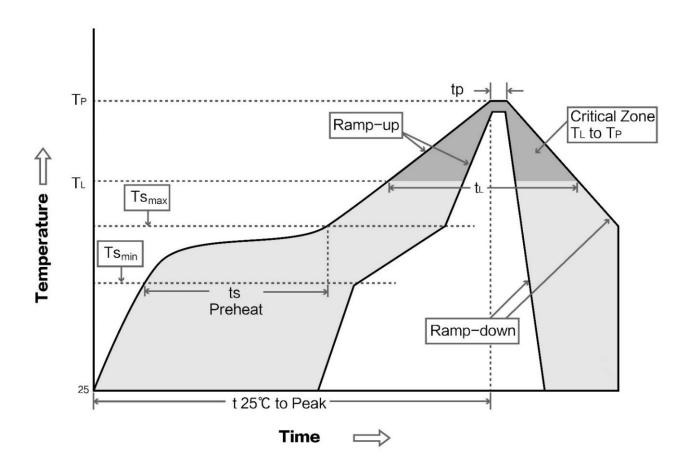
- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力, 故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值, 电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

8.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作, 高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

8.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 电源不理想也可能造成乱码,务必保证电源的可靠性;
- 延长线、馈线品质差或太长, 也会造成误码率偏高。



第九章 焊接作业指导

9.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度	183℃	217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235°C	230−250℃
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6℃/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

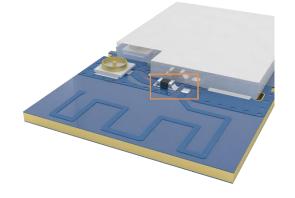
9.2 回流焊曲线图

第十章 相关型号

本見刑是	产品型号 芯片方案		发射功率	测试距离	产品尺寸	支持协议	通信接口
) 加至与	心月刀采	Hz	dBm	km	mm	又1寸107以	地位按口
<u>E72-2G4M05S1A</u>	CC2630	2. 4G	5	0.5	17. 5*28. 7	ZigBee	I/0
<u>E72-2G4M23S1A</u>	CC2630	2. 4G	23	1.5	17. 5*33. 5	ZigBee	I/0
E72-2G4M05S1B	CC2640	2.4G	5	0.5	17. 5*28. 7	BLE 4.2	I/0
E72-2G4M02S2B	CC2640	2. 4G	2	0.3	14*23	BLE 4.2	TTL

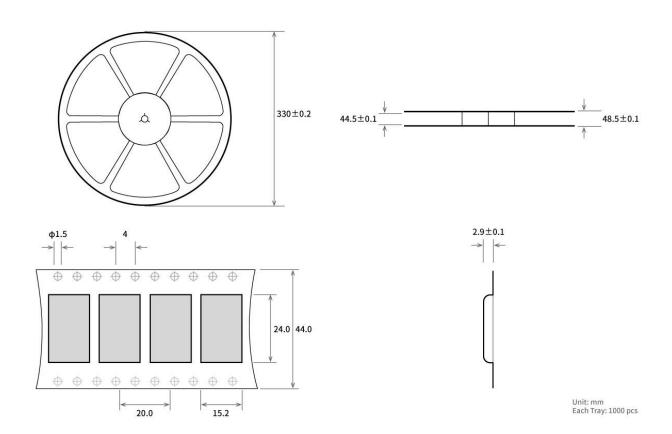

第十一章 天线指南

11.1 天线推荐


天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套我司无线模 块且性能较为优秀且价格合理的天线。

产品型号	类型	频段	增益	尺寸	馈线	接口	特点
厂帕空 写	火型	Hz	dBi	mm	cm		
TX2400-NP-5010	柔性天线	2. 4G	2.0	10x50	_	IPEX	柔性 FPC 软天线
<u>TX2400-JZ-3</u>	胶棒天线	2. 4G	2.0	30	_	SMA-J	超短直式,全向天线
<u>TX2400-JZ-5</u>	胶棒天线	2. 4G	2.0	50	-	SMA-J	超短直式,全向天线
TX2400-JW-5	胶棒天线	2. 4G	2.0	50	_	SMA-J	固定弯折,全向天线
TX2400-JK-11	胶棒天线	2. 4G	2.5	110	-	SMA-J	可弯折胶棒,全向天线
TX2400-JK-20	胶棒天线	2. 4G	3.0	200	_	SMA-J	可弯折胶棒,全向天线
TX2400-XPL-150	吸盘天线	2. 4G	3.5	150	150	SMA-J	小型吸盘天线,性价比

11.2 天线选择



使能 PCB 板载天线 (默认)

使能 IPEX 接口

第十二章 批量包装方式

修订历史

版本	修订日期	修订说明	维护人
1.0	2018-8-30	初始版本	huaa
1.1	2018-11-7	版本拆分	huaa
1.2	2019-2-20	版本更新	Ray

关于我们

销售热线:4000-330-990公司电话:028-61399028技术支持:support@cdebyte.com官方网站:www.ebyte.com公司地址:四川省成都市高新西区西芯大道 4 号创新中心 B333-D347

