

2 差分通道高精度 ADC,带 实时时钟,24*4 液晶的 SOC

特点

- 高精度 ADC, ENOB=18.8bits@8sps, 差分 2 通道或单端 4 通道
- ●低噪声高输入阻抗前置放大器,1、12.5、50、 100和 200倍增益可选
- 8 位 RISC 超低功耗 MCU,在 2MHz 工作时钟, MCU 部分在 3V 工作电压下电流典型值为 300uA;32kHz 时钟待机模式下工作电流1.5uA, 休眠模式电流小于 1uA
- 16k Bytes OTP 程序存储器, 512Bytes SRAM 数据存储器
- 低压烧录功能,可以替代外部 EEPROM
- ●集成多种时钟振荡器,灵活多样的时钟选择, 选择外部晶振时,支持停振检测功能
- ADC 输出速率可选择范围: 8SPS-2kSPS
- 24SEG×4COM 液晶驱动电路,超低功耗和大驱动能力设计;内含程控升压模块,可以在低压条件下维持高亮显示,并支持灰度调节
- 内有硅温度传感器,可单点校准
- 输出 1.2V 低温漂基准
- 输出四种可选择稳压源: 2.4V/2.6V/2.9V/3.3V, 提供外部传感器激励信号
- 灵活的电池检测功能,检测范围 2.0V~3.3V
- ADC 外部基准与内部基准可选,内部集成多种 基准选项
- RTC 模块,可以提供秒信号输出
- 丰富的外围资源: UART, I2C, SPI, PWM/PDM,

PFD, TIMER, CAPTURE

- 掉电检测电路和上电复位电路
- 工作电压范围: 2.4V~3.6V
- 工作温度范围: -40℃~ 85℃

描述

本芯片是高精度 24 位 ADC 的 SOC 产品,外围资源丰富: RTC,可选的多种稳压电源输出,灵活设置的 PGIA 模块,升压模块, UART、I2C、SPI、TIMER、PWM/PDM、PFD、CAPTURE 输出模块,LCD 驱动等。

本产品带 16k Bytes OTP, 可以低压自烧录, 烧录电压范围: 2.4V~3.6V, OTP 可以替代 EERPOM 使用。

超低功耗设计,典型应用时整个芯片的工作电流约为 1mA(IAD=0)或 1.5mA(IAD=1)。提供三种工作模式:正常工作模式、待机模式和休眠模式。

应用领域

红外测温、仪器仪表、及微弱信号测量领域

订购信息

QFN48 封装

管脚图和管脚描述

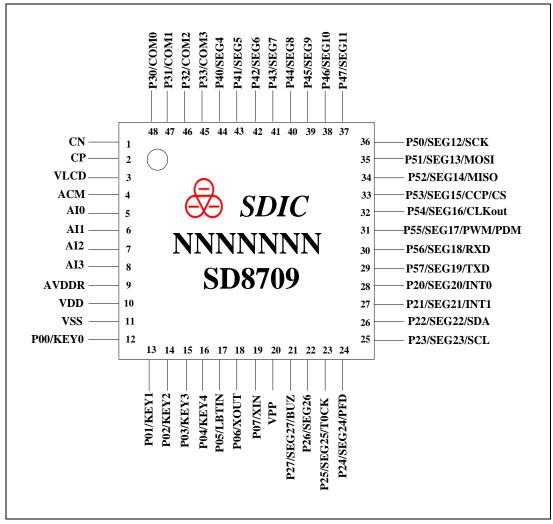


图 1. 管脚图

表 1. PAD 描述

PC 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
序号	PAD 名称	属性	PAD 描述			
1-2	1.2 CN CD		升压电路需要一个外接电容,CP、CN 引脚用于连接这个外接电容的两端。当升			
1-2	CN, CP	模拟	压电路选择使用高频 RC 时钟时,该电容可以不接			
2	AH CD		LCD driver 的供电电源,可通过寄存器选择内部与 VDD 连接或与升压电路的输			
3 VLCD		模拟	出连接,在 VLCD 与 VDD 之间外接 1uF 电容			
4	4 ACM		1.2V 基准输出。当 ACM 模块被关闭时此引脚为悬空状态。外接 0.1uF 电容到			
4			VSS			
5.0	5-8 AI0—AI3				AI0-AI3 为模拟信号输入端口。每个端口都有由寄存器控制的独立下拉电阻(默	
5-8			认关闭)。当不使用这些端口的时候,可以将其下拉为低电平			

晶华微电子 版本 0.1 2017.12

第 2 页 共 10 页

			AI0-AI1、AI2-AI3 可以作为两组差分输入对或四路单端输入						
			内部 LDO 输出,供内部模拟模块使用,也可以为外部传感器提供电源激励						
9	AVDDR	模拟	外接 0. 1uF 滤波电容到 VSS						
10	VDD	电源	电源,外接 0.1uF 电容到 VSS						
11	VSS	地	地						
12-16	P00/KEY0 P04/KEY4	I/O	数字 I/O P00-04,可作为外部按键 KEY0-KEY4 输入						
17	P05/LBTIN	模拟,	数字 I/O P05,可作为电压检测信号输入(LBTIN)使用						
17	PU3/LDTIN	I/O							
18-19	P06/XOUTP07/XIN	模拟, I/O	数字 I/O P06-07, 可作为晶振的外接引脚 XIN、XOUT 根据内部寄存器的选择可以外接 32. 768kHz、1MHz-4MHz 的晶振 XIN 也可以作为外部时钟输入口						
20	VPP	I	OTP 烧录的高压引脚,外接 1uF 电容到 VSS						
21	P27/SEG27/ BUZ	I/O	数字 I/O P27,可以作为 SEG27 复用,也可以作为蜂鸣器输出使用						
22	P26/SEG26	I/O	数字 I/0 P26,可以作为 SEG26 复用						
23	P25/SEG25/T0CK	I/O	数字 I/O P25,可以作为 SEG25 复用,也可以作为 TIMERO 的外部时钟输入						
24	P24/SEG24/PFD	I/O	数字 I/O P24,可以作为 SEG24 复用,也可以作为可编程分频器 PFD 输出使用						
25	P23/SEG23/SCL	I/O	数字 I/O P23,可以作为 SEG23 复用,也可以作为 I2C 通信的时钟信号使用						
26	P22/SEG22/SDA	I/O	数字 I/O P22,可以作为 SEG22 复用,也可以作为 I2C 通信的数据信号使用						
27	P21/SEG21/INT1	I/O	数字 I/O P21,可以作为 SEG21 使用,也可以作为外部中断 1 使用						
28	P20/SEG20/INT0	I/O	数字 I/0 P20,可以作为 SEG20 使用,也可以作为外部中断 0 使用						
29-30	P57/SEG19/TXD	I/O	数字 I/O P57-56,可以作为 SEG19-18 使用						
	P56/SEG18/RXD		P57 复用 UART TXD, P56 复用 UART RXD						
31	P55/SEG17/ PWM/PDM	I/O	数字 I/0 P55,可以作为 SEG17 使用,也可以作为 PWM/PDM 使用						
32	P54/SEG16/CLKout	I/O	数字 I/O P54,可以作为 SEG16 使用,也可以作为 CLKout 输出						
33	P53/SEG15/CCP/CS	I/O	数字 I/O P53,可以作为 SEG15 使用,也可以作为 CAPTURE 使用,也可以作为 SPI 通信的片选信号						
34	P52/SEG14/MISO	I/O	数字 I/O P52,可以作为 SEG14 使用,也可以作为 SPI 通信的数据 MISO 信号						
35	P51/SEG13/MOSI	I/O	数字 I/O P51,可以作为 SEG13 使用,也可以作为 SPI 通信的数据 MOSI 信号						
36	P50/SEG12/SCK	I/O	数字 I/O P50,可以作为 SEG12 使用,也可以作为 SPI 通信的时钟信号						
37-44	P47/SEG11 P40/SEG4	I/O	数字 I/O P47-40, 可以作为 SEG11-4 使用						
45-48	P33/COM3 P30/COM0	I/O	数字 I/O P33-30,可以作为 COM3-0 使用 COM3-COM0 分别复用为串行烧录的数据输出,2MHz 时钟输入,数据输入和数据 通信时钟						

注: 所有数字端口 Pnn 皆有上拉选择(默认关闭),并有输入迟滞功能,转换点分别为 0.3 VDD 与 0.7 VDD

<u>晶华微电子</u> 版本 0.1 2017.12 第 3 页 共 10 页

功能框图

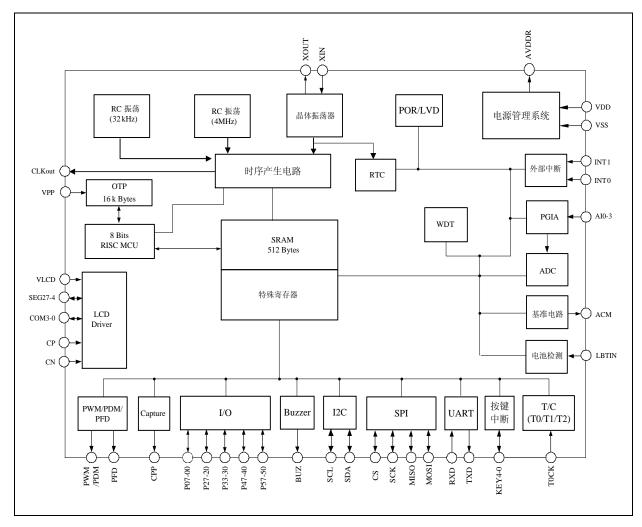


图 2. 功能框图

晶华微电子 版本 0.1 2017.12 第 4 页 共 10 页

典型应用图

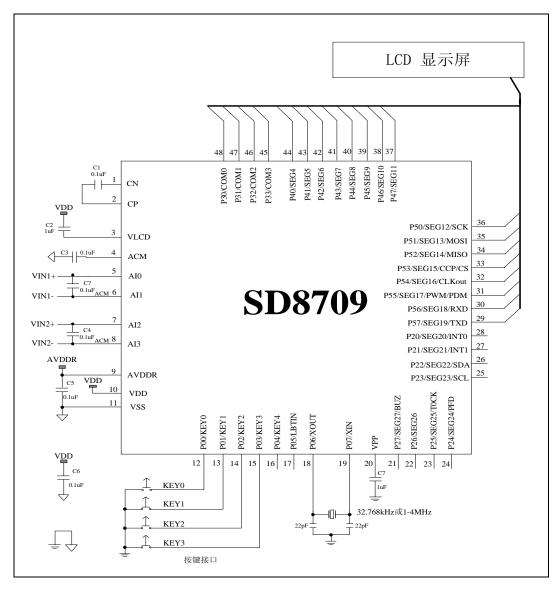


图 3. 微弱信号测量典型应用图

晶华微电子 版本 0.1 2017.12 第 5 页 共 10 页

ADC 性能

表 2. ADC 的 ENOB 和电压噪声 Vnrms (AVDDR=2.4V, VREF=0.6V, SINC3, Buffer 开启, IAD=1)

	ADC 工作频率 = 128kHz										
	0	SR	128	256	512	1024	2048	4096	8192	16384	
	200	ENOB	14. 7	15. 2	15. 7	16. 1	16.6	17. 1	17. 5	18.0	
	200	Vn _{rms} (nV)	227	162	116	83	59	42	32	22	
增	100	ENOB	15. 4	16.0	16. 5	17.0	17.4	17.9	18. 4	18.8	
益	100	Vn _{rms} (nV)	269	190	133	94	68	49	35	27	
	1	ENOB	16. 3	16. 9	17. 4	17.9	18.3	18.6	19. 2	19.5	
		Vn _{rms} (nV)	15027	9924	7079	5078	3640	3235	2067	1656	

	ADC 工作频率 = 512kHz										
OSR 128 256 512 1024 204							2048	4096	8192	16384	
	200	ENOB		14. 2	14.7	15. 2	15. 7	16. 2	16.6	17. 1	
	200	Vn _{rms} (nV)		319	224	160	113	80	59	44	
增	100	ENOB		15. 0	15. 5	16.0	16. 5	17.0	17. 4	17.8	
益	100	Vn _{rms} (nV)		364	256	183	128	94	70	55	
	1	ENOB		16. 0	16.5	16.9	17. 4	17.8	18. 1	18. 3	
	1	Vn _{rms} (nV)		18317	12953	9614	6953	5303	4347	3860	

注:以上数据是多颗芯片测试的平均值,单颗芯片采样 1024 个数据。

ENOB 的计算公式为 $\log_2(\frac{\text{FRS}}{\textit{Vrms}})$,其中 FRS 为满量程输入电压(2 * Vref / Gain),Vrms 为 rms Noise。

<u>晶华微电子 版本 0.1 2017.12 第 6 页 共 10 页</u>

电气特性

表 3. 最大极限值

标识	参数	最小值	最大值	单位
T_{A}	环境温度	-40	+85	$\mathcal C$
T_{S}	储存温度	-55	+150	С
V_{DD}	供电电压	-0.2	+4.0	V
Vpp	烧录电压	-0.2	+7.5	V
V_{IN}, V_{OUT}	数字输入、输出	-0.2	V _{DD} +0.3	V
$T_{\rm L}$	回流焊温度曲线	Per IPC/JEI	$\mathcal C$	

注:

- 1. CMOS 器件易被高能静电损坏,设备必须储存在导电泡沫中,注意避免工作电压超出范围。
- 2. 在插拔电路前请关闭电源。

表 4. 电气参数(电源电压 3V,工作温度 25℃)

标识	参数名称	最小值	典型值	最大值	单位	条件
WDD	工作中区	2.4	3.0	3.6		模拟模块工作电压
VDD	工作电压	2.0	3.0	3.6	V	数字模块和 MCU 工作电压
FOSC	工作时钟	16k	2M	4M	Hz	在运行写表指令时只能工作在 2MHz
IHRC	内部高频 RC 振荡频率		4		MHz	经过校准后的频率
ILRC	内部低频 RC 振荡频率	28	1	36	kHz	经过校准后的频率
HXT	外部高频晶振	1		4	MHz	
LXT	外部低频晶振	16	32.768		kHz	
IDD1	工作电流 1		1.5		mA	MCU 采用内部 RC 振荡器的二分频工作,ADC 等模拟模块全部工作,IAD=1
IDD2	工作电流 2		1		mA	MCU 采用内部 RC 振荡器的二分频工作,ADC 等模拟模块全部工作,IAD=0
IDD3	工作电流 3		1.5		uA	MCU 采用内部 32kHz RC 振荡工作, MCU 进待机模式,模拟模块不工作
IDD4	工作电流 4		1		uA	MCU 进休眠模式,模拟模块不工作
Fsam	ADC 采样频率		128	512	kHz	
OSR	过采样率	128		16384		
NFbit	Noise free bits ¹		16		bits	Gain=200, input FSR=±4mV
NMbit	无失码输出			24	bits	
INL	INL		0.002		%FSR	
	DOIA * A P. II	-Vref		Vref		1 倍增益
VINdif	PGIA 差分信号 输入范围	-Vref/12.5		Vref/12.5	mV	12.5 倍增益
	細ノくれは国	-Vref/50		Vref/50		50 倍增益

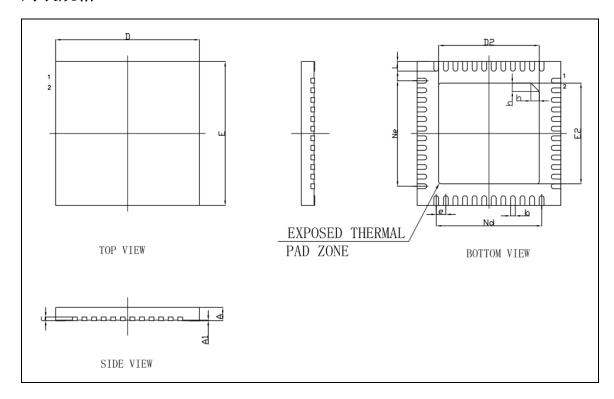
晶华微电子 版本 0.1 2017.12

第7页共10页

VIN PGIA 电压输入 范围 2 -0.3 AVDDR 增益为 1 且输入 buffer 关闭 Vnrms RMS noise 22 nVrms 200 倍增益	
VIN 范围² 0.3 AVDDR-0.7 增益为 1 但输入 buffer 开启	1
泡围 ² 0.3 AVDDR-0.7 増益为 1 但输入 buffer 开启	J
Vnrms RMS noise 22 nVrms 200 倍增益	或增益非
Vacm ACM 输出电压 1.2 V	
IacmSour ACM source 电流 1 mA	
IacmSink ACM sink 电流 1 mA	
PSRacm ACM PSR 100 uV/V	
Tgain 增益温漂 ±4 ppm/℃ -10℃到 40℃	
2.4 AVDDRX[1:0]=00	
2.6 AVDDRX[1:0]=01	
Vavddr AVDDR 输出电压 2.9 V AVDDRX[1:0]=10	
3.3 AVDDRX[1:0]=11	
Iavddr AVDDR 电流能力 10 mA	
POR 上电复位电压 2.0 V	
LVD 低压检测复位电压 1.9 V	
THlbt 低压检测迟滞 200 mV	
3.3 LBTX[3:0]=0010	
3.2 LBTX[3:0]=0011	
3.1 LBTX[3:0]=0100	
3.0 LBTX[3:0]=0101	
2.9 LBTX[3:0]=0110	
2.8 V LBTX[3:0]=0111	
VIbt 电池电压检测 2.7 LBTX[3:0]=1000	
Vlbt 电池电压检测 2.6 LBTX[3:0]=1001	
2.5 LBTX[3:0]=1010	
2.4 LBTX[3:0]=1011	
2.3 V LBTX[3:0]=1100	
2.2 LBTX[3:0]=1101	
2.1 LBTX[3:0]=1110	
2.0 LBTX[3:0]=1111	
2.1 V VLCDX[2:0]=000	
2.3 VLCDX[2:0]=001	
2.5 VLCDX[2:0]=010	
Vlcd LCD 电荷泵输出	_
电压 2.9 VLCDX[2:0]=100	
3.1 VLCDX[2:0]=101	
3.3 VLCDX[2:0]=110	

版本 0.1 2017.12

			3.5			VLCDX[2:0]=111	
Ilcd	LCD 电荷泵驱动 能力 ³			500	uA		
管脚电气参	管脚电气参数						
ЮН	高电平 Source 电流		3		A	VOH=VDD-0.3V,PTxSR 设置为"0"	
ЮП	同电干 Source 电视		12		mA	VOH=VDD-0.3V,PTxSR 设置为"1"	
IOL	近中亚 G. 1 中深	1	3		4	VOL=0.3V,PTxSR 设置为"0"	
IOL	低电平 Sink 电流		12		mA	VOL=0.3V,PTxSR 设置为"1"	
VIH	输入高电平	0.7VDD			V		
VIL	输入低电平			0.3VDD	V		
VOH	输出高电平	VDD-0.3			V		
VOL	输出低电平			VSS+0.3	V		
Rpu	引脚上拉电阻		50		kΩ	VDD = 3.0	


注:

- 1. Noise free bits,有效位数都与信号的满量程范围有关系,真正起决定性作用的是 Vpp noise 或 rms noise,上表中的位数主要针对电子秤的典型应用范围给出。
- 2. 对于 ADC 或 PGIA,输入信号的范围要区分差分信号输入范围和输入端的绝对电压范围,前者是真正的信号输入范围,是两个输入绝对电压之差,其不仅受到单个输入端的电压范围影响,还受增益和基准选择的影响;后者为包含了差分信号和共模输入范围的影响,主要受电路的限制。
- 3. 电荷泵的驱动能力与选择的电容和工作频率有关。

晶华微电子 版本 0.1 2017.12 第 9 页 共 10 页

封装规格

尺寸: 毫米

Symbol	Min.	Nom.	Max.				
A	0.50	0.55	0.60				
A1	0	0.02	0.05				
b	0.15	0.20	0.25				
С	0.10	0.15	0.20				
D	5.90	6.00	6.10				
D2	4.10	4.20	4.30				
e		0.40BSC					
Ne		4.40BSC					
Nd		4.40BSC					
Е	5.90	6.00	6.10				
E2	4.10	4.20	4.30				
L	0.35	0.40	0.45				
h	0.30	0.35	0.40				

图 4. QFN48 封装外形图

晶华微电子 版本 0.1 2017.12 第 10 页 共 10 页