

Surge-Arrestor Negative Temperature Coefficient Thermistor

SCNxxD-11 Series

Outline

This is a Negative Temperature Coefficient Resistor Whose resistance changes with ambient temperature changes. Thermistor comprises 2 or 4 kinds of metal oxides of iron,nickel,cobalt, manganese and copper, being shaped and sintered at high temperature(1200 $^{\circ}\mathrm{C}$ to 1500 $^{\circ}\mathrm{C}$).

Features

- Small in size,high-powered, and very capable of bringing down the surge current;
- Quick in reaction;
- High in B value and low in residual current; Long service life and high reliability; High coefficient of safety and wide range of application.

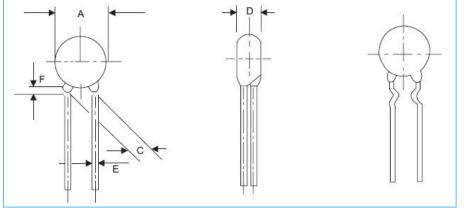
Applications

Conversion power supply, switch power, UPS power, Kinds of electric heater, electronic energy-saving lamps, electronic ballast etc all kinds of power circuit protection of electronic equipments, filament protection of CRT, bulb and other lighting lamps.

Part Number Code

SCN	10	D - 11	
(1)	(2)	(3)	

- (1) SCN: Socay Negative Temperature Cofficient Resistor.
- (2) 10: Resistance Value:10Ω.
- (3) D-11: Diameter of Chip: Φ11.


Surge-Arrestor Negative Temperature Coefficient Thermistor

SCNxxD-11 Series

Electrical Characteristics

Part Number	R25℃ ±20%	Max Steady Current	Approx R Of Max Current	Power Dissipation Coefficient	Time Constant
	(Ω)	(A)	(Ω)	(mW/℃)	(s)
SCN2.5D-11	2.5	5	0.120	13	46
SCN3D-11	3	5	0.126	13	45
SCN5D-11	5	4	0.288	13	45
SCN8D-11	8	3	0.301	13	45
SCN10D-11	10	3	0.395	14	47
SCN16D-11	16	2	0.488	14	50
SCN20D-11	20	2	0.613	14	52
SCN22D-11	22	2	0.739	14	52
SCN25D-11	25	2	0.838	14	52
SCN50D-11	50	1.5	1.204	14	52

Dimensions (Unit: mm)

Туре	D-11		
A _{MAX}	12.5		
C ± 1	7.5		
D_MAX	5		
E ± 0.05	0.8		
F _{MAX}	3		

Note: "E" value may be 0.6 for resistors for which the chip's diameter is \leq 13 and the working current is \leq 2A.

Surge-Arrestor Negative Temperature Coefficient Thermistor

SCNxxD-11 Series

Critical Technical Parameters of NTC Thermistor

Rt---Resistance Value at Zero-power

It's a resistance which is got at a fixed temperature on a basis of a testing power which causes resistance to Vary in a range which can be ignored in relation to the total testing eror.

R₂₅---Resistance Value at Rated Zero-power

The design resistance of the thermistor usually refers to the resistance value got at Zero-power at 25 $^{\circ}$ C , which is usually indicated on the thermistor.

B Value

B value stands for the thermal exponent at a negative temperature coefficient. It's defined as a ratio of the balance between the natural logarithms of resistance values at zero-power to the balance between the reciprocals of the two temperatures. The formula is as below:

$$B = \ln \frac{R_{T1}}{R_{12}} / (\frac{1}{T_1} - \frac{1}{T_2}) \neq \frac{T_1 T_2}{T_2 - T_1} \ln \frac{R_{T1}}{R_{T2}}$$

In this formula: R_{T1} is the resistance at Zero-power when the temperature is T_1 , R_{T2} is the resistance at Zero-power when the temperature is T_2 Unless otherwise specified,B value is got by calculating the Zero-power resistances at 25°C (298.15K) and 50 °C (323.15K). It's not a firm constant within the range of working temperature.

Resistance-to-Temperature Coefficient at Zero-power.lt refers to the ratio of changes of a thermistor. Resistance value at Zero-powerwhen The temperature, to the resistance value at Zero-power The formula is as below:

$$\alpha_{\tau} = \frac{1}{B_{\tau}} \frac{DR_{\tau}}{DT} = -\frac{B}{T_{2}}$$

In this formula, "a" stands for the resistance-temperature coefficient at Zero-power when the temperature is T:

 R_T stands for the resistance value at Zero-power when the temperature is T.

T stands for the temperature(in K).

B stands for B value.

Max steady state current.

The maximum allowable continuous current passing through thermistor at 25°C.

Dissipation Coefficient δ

It's the ratio of the changes with a thermistor dissipation power, in a pre-set ambient temperature, to the changes with the temperature. The formula is as below: $\delta = \triangle P/\triangle T\delta$ changes in response when the ambient temperature changes, within the ranges of the working temperature.

♦ Thermal Time Constant

At Zero-power and when amutatio occurs with the temperature,the time "t", which is-spent for finishing 63.2% of the gap between the beginning temperature and the ending temperature in the thermistor. is directly proportional to "C",the heat capacity of the thermistor, and is inversely proportional to δ , the dissip ation constant. That is " τ =C/ δ ".