

Barcode Scanner Module 用户手册

产品简介

Barcode Scanner Module 是条形码、二维码扫描识别模块,我通过图像智能识别算法,可快速准确地读取纸质或屏幕上的一维条码及二维码。体积小巧,板载 USB 和 UART 接口,即可直接接入计算机使用,也可集成到各种设备中。

产品特性

- 操作简单,无须了解复杂图像识别算法
- 支持 Barcode, QR 等通用一维码及二维码的识读
- 板载 micro USB 和 UART 串口,可接入计算机或嵌入式设备使用
- 支持通过扫描设置码来对模块参数进行设置
- 板载辅助光源,能够在完全黑暗的环境中进行识读

产品参数

工作电压	5V
工作电流	135mA
待机电流	58mA
休眠电流	2mA
工作温度	0°C~60°C
工作湿度	5%~95%(不凝结)

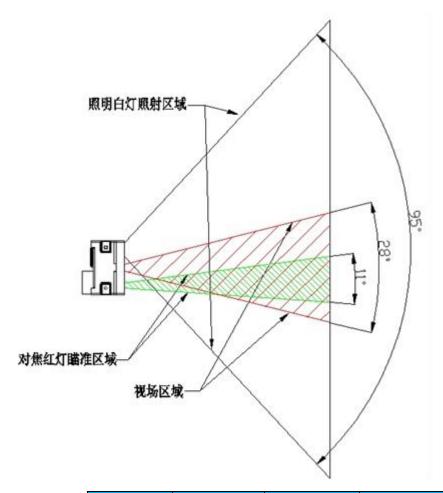
通信接口	UART、USB		
辅助光源	白光		
识读角度	旋转 360°,倾斜±65°,偏转±60°		
视场角度	28°(水平),21.5°(垂直)		
产品尺寸	53.3mm × 21.4mm		

目录

产品简介	1
产品特性	1
产品参数	1
可读条码	5
使用说明	6
扫描区域	6
读码位置	7
设置说明	9
硬件连接	9
设置码	9
设置码开关	9
恢复出厂设置	
用户默认设置	
串行通讯接口	
USB 接口	11
识读模式	
照明和瞄准	
<i>提示输出</i>	18
数据编辑	21
条码类型使能/禁止配置	31
附录A:默认设置表	41
附录B: 常用串口指令	42
附录 C: Code ID 列表	43
附录D: ASCII 码表	44
附录E: 数据码	50
附录 F: 保存或者取消	
串口指令	53
读标志位操作	53

写标志位操作	55
标志位保存到 EEPROM 指令	58
标志位恢复到出厂设置	59
程序擦除操作	60
标志位列表	62

可读条码


格式	可读	默认可读
Codabar	✓	✓
Code 11	✓	×
Code 39/Code 93	✓	✓
UPC/EAN	✓	✓
Code 128/EAN128	✓	✓
Interleaved 2 of 5	✓	×
Matrix 2 of 5	✓	×
MSI Code	✓	×
Industrial 2 of 5	✓	×
GS1 Databar	✓	✓
QR code	✓	✓
Data Matrix	✓	✓
PDF417	√	✓

使用说明

扫描区域

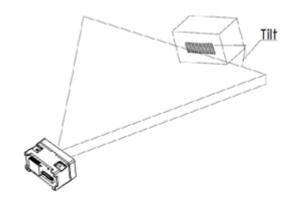
读取距离: 这些距离的测量都是在办公室环境里 (250 lux)

条码类型	密度	最小距离	最大距离
Code 39	0.125 mm	6.0 cm	11.0 cm
	0.375mm	6.0 cm	25.0cm
UPC/EAN	0.375mm	6.0 cm	25.0cm
Code93	0.254mm	6.0 cm	21.0cm

最小距离取决于符号长度和扫描角度。

当安装一个窗口时,请遵循以下建议:

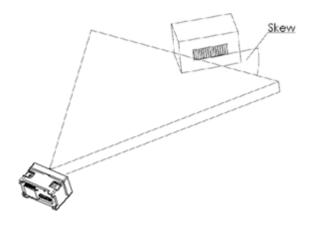
- 窗口不要着色
- 检查窗口的表面,以确保它们没有划伤,凹坑或弄脏。
- 将窗口凹进到设备的外壳
- 定位窗口,使它平行于成像器(没有倾斜)。如果窗口位置不当,就会出现成像性能显著降低。
- 将窗口尽可能接近到模组的前方,并且不要碰触到它。

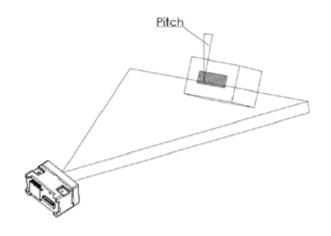

模组的正面和窗口的内表面之间的间隙保护模组和窗口受到跌落时的外界冲击。距离取决于集成环境。

读码位置

如果你使用 Barcode Scanner Module 扫描一维线性条码和二维条码,在你扫描条码时不需要太多的倾斜,歪斜和俯仰角度的公差。扫描器在该区域使条码采集更加容易。

旋转


如果所有的条码都不在读出光束内,模组将无法读取条形码。但如果条形码在读取区域内,倾斜角可以是 360°。(对于一维条码,90 度左右比较难读出)为了提供读码效率,最好保持水平角度识读


倾斜

歪斜降低的条宽,是对高密度条码的临界尺寸。模组可以读取的条形码倾斜的角度可达到65°,但你应该降低倾斜角度以便提高读码效率。

偏转

偏转降低了条码的高度。2°到3°的俯仰角是最佳的,因为它可以防止条形码直接反射。模组可以读取的条形码偏转角度可达到60°,但你应该缩短间距,以便提高读码效率。

设置说明

这里提供了 Barcode Scanner Module 的各种功能设置命令。参考本手册,可以更改模块的功能参数。模块出厂是已经提供了大多数通常应用功能的参数配置,大多数情况下用户无需做调整就可以投入使用。

硬件连接

本模块提供有两个通信接口。Micro USB接口可以直接通过 micro USB线连接到 PC。
UART接口可以通过 CP2102 转串口模块连接到 PC,或者直接接入开发板的串口。

串口引脚

Vcc: 5V

Tx:发送引脚(接串口模块/MCU Rx)

Rx:接收引脚 (接串口模块/MCU Tx)

GND: Ground

设置码

用户可以通过直接扫描设置码来设置模块的功能参数。

设置码开关

通过开启设置码功能,可通过扫描设置码来进行识读模块的参数配置。

开启设置码

关闭设置码

输出设置码内容

不输出设置码内容

命出设置码内容

恢复出厂设置

通过扫描"恢复出厂设置"条码,可将识读模块的所有参数恢复到出厂时的配置。

恢复出厂设置

用户默认设置

除了出厂设置外,用户也可以将自己经常使用的配置保存为用户默认设置,通过扫描"将当前设置保存为用户默认设置",可将设备当前配置信息保存为用户默认设置信息,如果识读模块内已有用户默认设置信息,则该操作后新的配置信息会替换掉原有的用户默认设置信息。

而通过扫描"恢复用户默认设置"可将识读模块切换到用户默认设置信息

将当前设置保存为用户默认设置

恢复用户默认设置

串行通讯接口

当识读模块与主机使用串口线连接时,系统默认采用串行通讯模式。使用串行通讯接口时,识读模块与主机设备间必须在通讯参数配置上完全匹配,才可以确保通讯顺畅和内容正

确。识读模块默认的串行通讯参数:**波特率9600bps,无校验,8位数据位,1位停止位,**无流控。

串口输出

1. 波特率设置

4800bps

9600bps

14400bps

19600bps

38400bps

57600bps

115200bps

USB 接口

1. USB PC 键盘

当识读模块与主机使用 USB 线连接时,可通过扫描 USB PC 设置码将识读模块配置成标准键盘输入模式。

USB PC 键盘

2. USB 虚拟串口 (保留功能)

当识读模块与主机使用 USB 线连接时,可通过扫描 USB 虚拟串口设置码将识读模块配置成虚拟串口输出模式。

USB 虚拟串口

识读模式

1. 手动模式

手动识读模式为默认识读模式。在此模式下,识读模块在按下触发键后开始读码,在读码成功输出信息或松开触发键后停止读码。

手动模式

在此模式下,识读模块默认空闲一定时间后,自动进入休眠模式,可通过如下设置码进行设置

启用休眠功能

禁用休眠功能

默认识读模块空闲 30 秒后自动进入休眠,可通过按键唤醒,退出休眠模式后设备会重启。

2. 连续模式

设置完毕后,无需触发,识读模块立即开始读码,当读码成功输出信息或单次读码时间结束后,识读模块等待一段时间(可设置)会自动开始下一次读码。若未发生下述情况,识读模块将按以上方式循环工作:读码过程中用户也可单击触发键手动暂停读码。单击触发键识读模块将继续循环读码。

连续模式

单次读码时长

在连续识读模式下,该参数指在识读成功前允许识读模块持续进行采集识别的最大时长。 识读成功或单次读码超时后,识读模块将进入不采集识读的间隔期。单次读码时长设置范围为 0.1~25.5 秒,步长为 0.1 秒;当设置为 0 时,表示读码时间无限长。默认时长为 5.0 秒。

1000ms

3000ms

*5000ms

无限长

识读间隔时长

该参数指相邻两次识读的间隔时间,即识读模块在结束上一次读码后(不论识读成功与否),在设定的间隔时间内不进行采集识读,直到间隔时间结束后才进行下一次读码。识读间隔时长的设置范围为 0~25.5 秒,步长为 0.1 秒。默认间隔时长为 1.0 秒。

500ms

3. 感应模式

设置完毕后,无需触发,识读模块立即开始监测周围环境的亮度,在场景发生改变时,识 读模块等待设定的稳像时间结束后才开始读码。在识读成功输出信息或单次读码超时后, 识读 模块需间隔一段时间(可设置)才重新进入监测状态。若未发生下述情况,识读模块将按以上 方式循环工作: 在单次读码时间内未扫描到条码, 识读模块将自动暂停读码并且进入监测状 态。在感应识读模式下,识读模块也可在按下触发键后开始读码,当读码成功输出信息或松开 触发键后继续监测周围环境的亮度。

单次读码时长

在感应识读模式下,该参数指在识读成功前允许识读模块持续进行采集识别的最大时长。 识读成功或单次读码超时后,识读模块将进入不采集识读的间隔期。单次读码时长设置范围为 0.1~25.5 秒, 步长为 0.1 秒。当设置为 0 时, 表示读码时间无限长。默认时长为 5.0 秒。

识读间隔时长

在识读成功输出信息或单次读码超时后,识读模块需间隔一段时间(可设置)才重新进入监测状态。识读间隔时长的设置范围为 0~25.5 秒,步长为 0.1 秒。默认间隔时长为 1.0 秒。

稳像时长

稳像时长指在感应识读模式下,侦测到场景变化的识读模块在读码之前需要等待图像稳定的时间。稳像时长设置范围为 0~25.5 秒,步长为 0.1 秒。默认稳像时长为 0.4 秒。

4. 命令触发模式

在这种模式下, 识读模块接收到主机发送的扫描命令 (即标志位 0x0000 的 bit0 写 "1") 时开始读码, 在读码成功输出信息或单次读码时间结束后停止读码。

命令触发模式

注:在命令触发模式下,触发扫描的串口指令为:7E 00 08 01 00 02 01 AB CD;识读模块收到触发指令后,会先输出七个字节的回应信息并同步启动扫描(回应信息内容:02 00 00 01 00 33 31)

单次读码时长

在命令触发识读模式下,该参数指在识读成功前允许识读模块持续进行采集识别的最大时长。单次读码时长设置范围为 0.1~25.5 秒,步长为 0.1 秒。当设置为 0 时,表示读码时间无限长。默认时长为 5.0

3000ms

16 / 72

照明和瞄准

1. 照明

照明灯可为拍摄识读提供辅助照明,光束照射在识读目标上,提高识读性能和弱环境光照 时的适应能力。用户可根据应用环境将其设置为以下状态中的一种:

普通 (默认设置) :照明灯在拍摄识读时亮起,其它时间熄灭。

常亮: 照明灯在识读模块开机后, 持续发光。

无照明: 在任何情况下照明灯都不亮起。

无照明

2. 瞄准

模组投射的瞄准光束可帮助用户在拍摄识读时找到最佳识读距离。 用户可根据应用环境 选择以下任一模式。

普通 (默认设置) : 识读模块只在拍摄识读时投射瞄准光束。

常亮: 识读模块上电后, 持续投射瞄准光束。

无瞄准: 在任何情况下瞄准光束都熄灭。

受声

于瞄准

提示输出

1.1. 所有提示音

读取"蜂鸣器驱动频率"可将蜂鸣器设置成有源/无源蜂鸣器,也可对无源蜂鸣器的驱动频率进行设置。

蜂鸣器驱动频率-无源低频

*蜂鸣器驱动频率-无源中频

蜂鸣器驱动频率-无源高频

蜂鸣器驱动频率-有源驱动

有源蜂鸣器模式下,读取"蜂鸣器工作电平-高"可设置成蜂鸣器空闲低电平,工作高电平;蜂鸣器工作电平-低"可设置成蜂鸣器空闲高电平,工作低电平。

*蜂鸣器工作电平-高

蜂鸣器工作电平-低

读取"启动静音"可关闭所有提示音。读取"关闭静音"即可取消静音设置。

启动静音

*关闭静音

1.2. 识读成功提示音

读取"关闭解码成功提示音"可以禁止条码识读成功提示音响起,读取"开启解码成功提示音"即可恢复条码识读成功提示。

*开启识读成功提示音

关闭识读成功提示音

读取"提示音持续时间"可对识读成功提示音的持续时间进行设置。默认 60ms

提示音持续时间-30ms

*提示音持续时间-60ms

提示音持续时间-90ms

提示音持续时间-120ms

1.3. 解码状态提示符

为了让主机能快速了解当前解码是否成功,可以开启此功能。

读取"输出解码状态提示符"开启此功能后,若识读不成功,识读模块会发送提示字符

"F" ; 若识别成功则在解码数据前添加提示字符 "S" 。

*不输出解码状态提示符

输出解码状态提示符

1.4. 数据编码格式

为了让主机按照指定的编码格式打印中文数据,可以通过读取"数据编码格式"来进行设置。

注: GBK 格式可用于记事本, UNICODE 格式可用于 WORD 及常用聊天工具的输入框, BIG5 格式支持繁体中文。

数据编码格式 UNICCODE

数据编码格式 BIG5

1.5. 各国键盘设置

为了让各国的主机均能使用设备,可以通过读取对应国家的"键盘"来进行设置。

*键盘-美国

键盘-捷克

键盘-法国

键盘-德国

键盘-匈牙利

键盘-意大利

键盘-日本

键盘-西班牙

1.6. 图像翻转

在实际应用中,我们会遇到镜像或者垂直翻转的图像,如下图所示

原始图像

镜像翻转

当条码出现翻转时,可通过扫描对应的设置码进入镜像翻转模式

注: 镜像翻转模式下, 仅可识别镜像翻转的条码, 如需识别正常条码或设置码, 请先退出 镜像翻转模式。

1.7. 读取版本信息

为了让主机能快速读取当前设备的版本信息,可以通过"读取版本信息"来进行确认。

读取版本信息

数据编辑

在实际应用中,我们有时需要对识读的数据进行编辑后再输出,方便数据区分和处理 数据编辑包括:

增加前缀 Prefix

- 増加后缀 Suffix
- 解码信息 Data 段截取
- 输出条码类型 CodeID
- 解码失败输出特定 RF 信息字符
- 増加结束符 Tail

处理后的数据默认输出顺序如下

[Prefix] [CodeID] [Data] [Suffix] [Tail]

1.1. 前缀

添加前缀

前缀是在解码信息前由用户自定义修改的字符串,可通过扫描"允许添加前缀"设置码进行添加

允许添加前缀

*不添加前缀

修改前缀

扫描"修改前缀"设置码,并组合扫描数据设置码,用户可修改前缀内容,对每个前缀字符使用两个16进制值表示,前缀最多允许15个字符,字符值的16进制转换表可参考附录D

修改前缀

示例:修改用户自定义前缀为 "DATA"

- 1. 查字符表得到 "DATA" 四个字符的十六进制值为: "44" 、 "41" 、 "54" 、 "41"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码
- 3. 扫描"修改前缀"设置码
- 4. 依次扫描数据设置码 "4" 、 "4" 、 "4" 、 "1" 、 "5" 、 "4" 、 "4" 、 "1"
- 5. 扫描"保存"设置码

1.2. 后缀

添加后缀

后缀是在解码信息后由用户自定义修改的字符串,可通过扫描"允许添加后缀"设置码进行添加

允许添加后缀

*不添加后缀

修改后缀

扫描"修改后缀"设置码,并组合扫描数据设置码,用户可修改后缀内容,对每个后缀字符使用两个16进制值表示,后缀最多允许15个字符,字符值的16进制转换表可参考附录D

修改后缀

示例:修改用户自定义后缀为 "DATA"

- 1. 查字符表得到 "DATA" 四个字符的十六进制值为: "44" 、 "41" 、 "54" 、 "41"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码
- 3. 扫描"修改后缀"设置码
- 4. 依次扫描数据设置码 "4" 、 "4" 、 "4" 、 "1" 、 "5" 、 "4" 、 "4" 、 "1"
- 5. 扫描"保存"设置码

1.3. CODE ID

添加 CODE ID

用户可通过 CODE ID 来标识不同的条码类型,每种条码类型所对应的 CODE ID 用户可自由修改,CODE ID 使用一个字符进行标识。

允许添加 CODE ID

*不添加 CODE ID

CODE ID 默认值

扫描 "CODE ID 默认值"设置码,每个条码对应的 CODE ID 可恢复至默认值,默认 CODE ID 可参考附录 C

所有条码的 CODE ID 恢复默认值

修改 CODE ID

每种条码对应的 CODE ID 用户可自由修改,通过扫描对应的设置码,并组合扫描数据设置码来实现。每种条码对应的 CODE ID 字符使用一个 16 进制值表示,字符值的 16 进制转换表可参考附录 D

示例: 修改 CODE 128 条码对应的 CODE ID 为 "A"

- 1. 查字符表得到 "A"字符的十六进制值为: "41"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码
- 3. 扫描 "修改 CODE 128 的 CODE ID" 设置码
- 4. 依次扫描数据设置码 "4" 、"1"
- 5. 扫描"保存"设置码

修改各条码类型的 CODE ID 设置码列表:

修改 EAN13 的 CODE ID

修改 UPCA 的 CODE ID

修改 UPCE1 的 CODE ID

修改 EAN8 的 CODE ID

修改 UPCEO 的 CODE ID

修改 CODE 128 的 CODE ID

修改 CODE 39 的 CODE ID

修改 CODE BAR 的 CODE ID

修改 Industrial 25 的 CODE ID

修改 CODE 11 的 CODE ID

修改 RSS 的 CODE ID

修改扩展式 RSS 的 CODE ID

修改 Data Matrix 的 CODE ID

修改 CODE 93 的 CODE ID

修改 Interleaved 2 of 5 的 CODE ID

修改 Matrix 2 of 5 的 CODE ID

修改 MSI 的 CODE ID

修改限定式 RSS 的 CODE ID

修改 QR CODE 的 CODE ID

修改限定式 PDF417 的 CODE ID

1.4. 结束符

为了让主机能快速区分当前解码的结果,可以开启此功能。

读取"增加结束符"开启此功能后,若识读成功,识读模块则在解码数据后添加对应的结束符。

关闭结束符

增加结束符 TAB

*增加结束符 CI

增加结束符 CRLF

1.5. Data 段截取

当用户只需要输出一部分解码信息的时候,可开启此功能。

我们将解码信息【Data】分为三部分:

[Start] [Center] [End]

其中 Start、End 段的字符长度可通过扫码控制。

用户通过扫码如下设置码,可选择输出相应位置的解码信息

*传输整个 Data 段

仅传输 Start 段

仅传输 Center 段

修改 Start 段长度 M

扫描"修改前截取长度 M",并组合扫描数据设置码,可修改 Start 段的长度大小, Start 段最多允许 255 个字符,

前截取长度 M 使用一个十六进制字符表示, 长度 M 对应的十六进制值转换表可参考 M录 D

修改前截取长度 M

修改 End 段长度 N

扫描"修改后截取长度 N",并组合扫描数据设置码,可修改 End 段的长度大小,End 段最多允许 255 个字符,

后截取长度 N 使用一个十六进制字符表示, 长度 N 对应的十六进制值转换表可参考附录 D

修改后截取长度 N

仅传输 Start 段

示例: 当解码信息为 "1234567890123ABC" 时,输出前十三个字节 "1234567890123"

- 1. 查字符表得到十进制数据 "13" 对应的十六进制字符为 "0D"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码
- 3. 扫描"修改前截取长度 M"设置码
- 4. 依次扫描数据设置码 "0"、"D"
- 5. 扫描"保存"设置码
- 6. 扫描 "仅传输 Start 段" 设置码

仅传输 End 段

示例: 当解码信息为 "1234567890123ABC"时,输出后三个字节 "ABC"

- 1. 查字符表得到十进制数据 "3" 对应的十六进制字符为 "03"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码
- 3. 扫描"修改后截取长度 N"设置码
- 4. 依次扫描数据设置码 "0" 、"3"
- 5. 扫描"保存"设置码
- 6. 扫描 "仅传输 End 段" 设置码

仅传输 Center 段

示例: 当解码信息为 "12345678900123ABC" 时,输出中间四个字节 "0123"

- 1. 查字符表得到十进制数据"10"、"3"对应的十六进制字符分别为"0A"、"03"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码
- 3. 扫描"修改后截取长度 N"设置码
- 4. 依次扫描数据设置码 "0" 、"3"
- 5. 扫描"保存"设置码

- 6. 扫描"修改前截取长度 M"设置码
- 7. 依次扫描数据设置码 "0" 、 "A"
- 8. 扫描"保存"设置码
- 9. 扫描 "仅传输 Center 段" 设置码

1.6. RF 信息

RF(Read Fail)信息是指识读模块在某些模式下,希望在读码不成功时,输出用户自由定义的一些信息,用户或程序检测到这段信息后进行相应的调整或操作

发送 RF 信息

木发送 RF 信息

修改 RF 信息

扫描"修改 RF 信息"设置码,并组合扫描数据设置码,用户可修改 RF 信息内容,对每个 RF 字符使用两个 16 进制值表示, RF 最多允许 15 个字符,字符值的 16 进制转换表可参考附录

修改 RF 信息

示例: 修改用户自定义 RF 信息为 "FAIL"

- 1. 查字符表得到 "FAIL" 四个字符的十六进制值为: "46" 、 "41" 、 "49" 、 "4C"
- 2. 确认设置码是否开启, 若未开启, 请扫描"开启设置码"设置码

- 3. 扫描"修改 RF 信息"设置码
- 4. 依次扫描数据设置码 "4" 、 "6" 、 "4" 、 "1" 、 "4" 、 "9" 、 "4" 、 "C"
- 5. 扫描"保存"设置码

条码类型使能/禁止配置

1.1. 所有条码可解

读取以下设置码,将对所有支持的条码类型进行允许识读或禁止识读的操作。禁止识读所有类型后,仅允许识读设置码

禁止识读所有类型

1.2. 条码旋转功能

读取以下设置码,将对所有支持的条码类型进行允许或禁止 360°旋转识读的操作。禁止 360°旋转功能将会提高解码速度。

*允许 360°旋转识读

禁止 360°识读

1.3. EAN13

读取以下设置码, 将对 EAN13 条码允许/禁止识读进行设置

*允许识读 EAN13

埜止设法 FΔN13

1.4. EAN8

读取以下设置码, 将对 EAN8 条码允许/禁止识读进行设置

*允许识读 EAN8

禁止识读 EAN8

1.5. UPCA

读取以下设置码,将对 UPCA 条码允许/禁止识读进行设置

*允许识读 UPCA

禁止识读 UPCA

1.6. UPCE0

读取以下设置码,将对 UPCEO 条码允许/禁止识读进行设置

*允许识读 UPCE0

禁止识读 UPCF0

1.7. UPCE1

读取以下设置码,将对 UPCE1 条码允许/禁止识读进行设置

*允许识读 UPCE1

禁止识读 UPCE1

1.8. Code128

读取以下设置码, 将对 Code128 条码允许/禁止识读进行设置

*允许识读 Code128

禁止识读 Code128

读取以下设置码, 将对 Code128 条码最短识读长度进行设置

Code128 信息最短长度为 0

*Code128 信息最短长度为 4

读取以下设置码, 将对 Code128 条码最长识读长度进行设置

*Code128 信息最长长度为 32

Code128 信息最长长度为 255

1.9. Code39

读取以下设置码,将对 Code39 条码允许/禁止识读进行设置

*允许识读 Code39

禁止识读 Code39

读取以下设置码,将对 Code39 条码最短识读长度进行设置

Code39 信息最短长度为 0

*Code39 信息最短长度为 4

读取以下设置码,将对 Code39 条码最长识读长度进行设置

*Code39 信息最短长度为 32

Code39 信息最短长度为 255

1.10. Code93

读取以下设置码,将对 Code93 条码允许/禁止识读进行设置

*允许识读 Code93

禁止识读 Code93

读取以下设置码,将对 Code93 条码最短识读长度进行设置

Code93 信息最短长度为 0

*Code93 信息最短长度为 4

读取以下设置码,将对 Code93 条码最长识读长度进行设置

*Code93 信息最短长度为 32

Code93 信息最短长度为 255

1.11. Code Bar

读取以下设置码,将对 CodeBar 条码允许/禁止识读进行设置

*允许识读 CodeBar

禁止识读 CodeBar

读取以下设置码,将对 CodeBar 条码允许/禁止发送起止符进行设置

发送 CodeBar 起止符

*不发送 CodeBar 起止符

读取以下设置码,将对 CodeBar 条码最短识读长度进行设置

CodeBar 信息最短长度为 0

*CodeBar 信息最短长度为 4

读取以下设置码,将对 CodeBar 条码最长识读长度进行设置

*CodeBar 信息最短长度为 32

CodeBar 信息最短长度为 255

1.12. QR

读取以下设置码, 将对 QR 条码允许/禁止识读进行设置

允许识读 QR

禁止识读 QR

1.13. Interleaved 2 of 5

读取以下设置码,将对 Interleaved 2 of 5 条码允许/禁止识读进行设置

允许识读 Interleaved 2 of 5

*禁止识读 Interleaved 2 of 5

读取以下设置码,将对 Interleaved 2 of 5 条码最短识读长度进行设置

Interleaved 2 of 5 信息最短长度为 0

* Interleaved 2 of 5 信息最短长度为 4

读取以下设置码,将对 Interleaved 2 of 5 条码最长识读长度进行设置

* Interleaved 2 of 5 信息最短长度为 32

Interleaved 2 of 5 信息最短长度为 255

1.14. Industrial 25

读取以下设置码,将对 Industrial 25 条码允许/禁止识读进行设置

允许识读 Industrial 25

*禁止识读 Industrial 25

读取以下设置码,将对 Industrial 25 条码最短识读长度进行设置

Industrial 25 信息最短长度为 0

* Industrial 25 信息最短长度为 4

读取以下设置码,将对 Industrial 25 条码最长识读长度进行设置

* Industrial 25 信息最短长度为 32

Industrial 25 信息最短长度为 255

1.15. Matrix 2 of 5

读取以下设置码, 将对 Matrix 2 of 5 条码允许/禁止识读进行设置

允许识读 Matrix 2 of 5

*禁止识读 Matrix 2 of 5

读取以下设置码,将对 Matrix 2 of 5 条码最短识读长度进行设置

Matrix 2 of 5 信息最短长度为 0

* Matrix 2 of 5 信息最短长度为 4

读取以下设置码,将对 Matrix 2 of 5 条码最长识读长度进行设置

* Matrix 2 of 5 信息最短长度为 32

Matrix 2 of 5 信息最短长度为 255

1.16. Code11

读取以下设置码, 将对 Code11 条码允许/禁止识读进行设置

允许识读 Code11

*禁止识读 Code11

读取以下设置码,将对 Code11 条码最短识读长度进行设置

Code11 信息最短长度为 0

*Code11 信息最短长度为 4

读取以下设置码, 将对 Code11 条码最长识读长度进行设置

*Code11 信息最短长度为 32

Code11 信息最短长度为 255

1.17. MSI

读取以下设置码,将对 MSI 条码允许/禁止识读进行设置

允许识读 MSI

*禁止识读 MS

读取以下设置码,将对 MSI 条码最短识读长度进行设置

MSI 信息最短长度为 0

*MSI 信息最短长度为 4

读取以下设置码,将对 MSI 条码最长识读长度进行设置

* MSI 信息最短长度为 32

MSI 信息最短长度为 255

1.18. RSS

读取以下设置码, 将对 RSS-14 条码允许/禁止识读进行设置

允许识读 RSS-14

*禁止识读 RSS-14

读取以下设置码,将对限定式 RSS 条码允许/禁止识读进行设置

允许识读限定式 RSS

*禁止识读限定式 RSS

读取以下设置码,将对扩展式 RSS 条码允许/禁止识读进行设置

允许识读扩展式 RSS

*禁止识读扩展式 RSS

读取以下设置码,将对 RSS 条码最短识读长度进行设置

RSS 信息最短长度为 0

*RSS 信息最短长度为 4

读取以下设置码,将对 RSS 条码最长识读长度进行设置

* RSS 信息最短长度为 32

RSS 信息最短长度为 255

1.19. DM

读取以下设置码, 将对 DM 条码允许/禁止识读进行设置

*允许识读 DM

禁止识读 DM

1.20. PDF417

读取以下设置码, 将对 PDF417 条码允许/禁止识读进行设置

*允许识读 PDF417

禁止识读 PDF417

附录 A:默认设置表

参数名称		默认设置	备注
通讯接口			
	波特率	9600	
	校检	无校检	
UART	数据位	8 位	
	停止位	1 位	
	硬件流控	无硬件流控	
模式参数			
默认识读模式		手动模式	
串口触发模式	单次读码时间	5s	参数范围: 0.1-25.5 秒, 步长为
T	רונופואאוייד		0.1s; 0 表示单次解码时间不限
手动模式	触发电平	低电平触发	默认高电平

附录 B: 常用串口指令

功能	串口指令
设置波特率为 9600	7E 00 08 01 00 D9 D3 20 38
将设置保存到 EEPROM	7E 00 09 01 00 00 DE C8
查询波特率	7E 00 07 01 00 2A 02 D8 0F

主机发送查询波特率的串口指令后, 识读模块会回复下列信息:

返回信息	对应的波特率
02 00 00 02 C4 09 SS SS	1200
02 00 00 02 71 02 SS SS	4800
02 00 00 02 39 01 SS SS	9600
02 00 00 02 D0 00 SS SS	14400
02 00 00 02 9C 00 SS SS	19200
02 00 00 02 4E 00 SS SS	38400
02 00 00 02 34 00 SS SS	57600

注: SS SS 为校验值。

附录 C: CODE ID 列表

条码类型	对应字符	标志位地址
EAN-13	d	0x91
EAN-8	d	0x92
UPC-A	С	0x93
UPC-E0	С	0x94
UPC-E1	С	0x95
Code 128	j	0x96
Code 39	b	0x97
Code 93	i	0x98
Codabar	a	0x99
Interleaved 2 of 5	e	0x9A
Industrial 2 of 5	D	0x9B
Matrix 2 of 5	v	0x9C
Code 11	Н	0x9D
MSI-Plessey	m	0x9E
GS1 Databar(RSS-14)	R	0x9F
GS1 Databar Limited(RSS)	R	0xA0
GS1 Databar Expanded(RSS)	R	0xA1
QR Code	Q	0xA2
Data Matrix	u	0xA3
PDF 417	r	0xA4

附录 D: ASCII 码表

十六进制	十进制	字符
0	0	NUL
1	1	SOH
2	2	STX
3	3	ETX
4	4	ЕОТ
5	5	ENQ
6	6	ACK
7	7	BEL
8	8	BS
9	9	НТ
0a	10	LF
0b	11	VT
0с	12	FF
0d	13	CR
0e	14	SO
Of	15	SI
10	16	DLE
11	17	DC1
12	18	DC2
13	19	DC3
14	20	DC4
15	21	NAK
16	22	SYN

十六进制	十进制	字符
17	23	ЕТВ
18	24	CAN
19	25	EM
1a	26	SUB
1b	27	ESC
1c	28	FS
1d	29	GS
1e	30	RS
1f	31	US
20	32	SP
21	33	!
22	34	п
23	35	#
24	36	\$
25	37	%
26	38	&
27	39	
28	40	(
29	41)
2a	42	*
2b	43	+
2c	44	ı
2d	45	-
2e	46	
2f	47	/

十六进制	十进制	字符
30	48	0
31	49	1
32	50	2
33	51	3
34	52	4
35	53	5
36	54	6
37	55	7
38	56	8
39	57	9
За	58	
3b	59	
3c	60	<
3d	61	=
3e	62	>
3f	63	?
40	64	@
41	65	A
42	66	В
43	67	С
44	68	D
45	69	E
46	70	F
47	71	G
48	72	Н

十六进制	十进制	字符
49	73	I
4a	74	J
4b	75	Κ
4c	76	L
4d	77	М
4e	78	N
4f	79	О
50	80	Р
51	81	Q
52	82	R
53	83	S
54	84	Т
55	85	U
56	86	V
57	87	w
58	88	X
59	89	Υ
5a	90	Z
5b	91	[
5c	92	\
5d	93]
5e	94	^
5f	95	_
60	96	
61	97	a

十六进制	十进制	字符
62	98	b
63	99	С
64	100	d
65	101	е
66	102	f
67	103	g
68	104	h
69	105	i
6a	106	j
6b	107	k
6с	108	I
6d	109	m
6e	110	n
6f	111	О
70	112	р
71	113	q
72	114	r
73	115	S
74	116	t
75	117	u
76	118	v
77	119	w
78	120	x
79	121	у
7a	122	Z



十六进制	十进制	字符
7b	123	{
7c	124	
7d	125	}
7e	126	~
7f	127	DEL

附录 E: 数据码

0 ~ 9:

A-F:

附录 F: 保存或者取消

读取数据码后要扫描"保存"设置码才能将读取到的数据保存下来。如果在读取数据码时出错,您可以取消读取错误的数据。

如读取某个设置码,并依次读取数据"A"、"B"、"C"、"D",此时若读取"取消前一次读的一位数据",将取消最后读的数字"D",若读取"取消前面读的一串数据"将取消读取到的数据"ABCD",若读取"取消修改设置"将取消读取到的数据"ABCD"并退出该修改设置。d

保存

取消前一次读的一位数据

取消前面读的一串数据

取消修改设置

串口指令

用户可从主机发送串口指令对识读模块进行设置。识读模块与主机设备间必须在通讯参数配置完全匹配时才能实现正常通讯。识读模块默认的串行通讯参数:波特率 9600bps, 无校验, 8 位数据位, 1 位停止位, 无流控。

读标志位操作

对于设备标志位的读操作,最多可一次读取 256 个字节的标志位。

命令格式:

输入: {Head1} {Types} {Lens} {Address} {Data} {CRC}

其中 Head1 : 0x7E 0x00 (2 bytes)

Types : 0x07 (1 byte)

Lens : 0x01 (1 byte)

Address: 0x0000~0x00FF (2 bytes), 表示要读取的标志位的起始地址。

Data : 0x00~0xFF (1 byte) , 表示要连续读取的标志位的字节数, 0x00 表示 256

个字节。

CRC: CRC_CCITT 校验值(2 bytes)。计算的范围: Types、Lens、Address、Data 计算的方法为 CRC_CCITT,特征多项式: X16+X12+X5+1,即多项式系数为 0x1021, 初始值为全 0,对于单个字节来说最高位先计算,不需要取反直接输出。C 的参考代码如 下:


```
unsigned int crc_cal_by_bit(unsigned char* ptr, unsigned int len)
{
Unsigned int crc = 0;
while(len-- != 0)
{
for(unsigned char i = 0x80; i != 0; i /= 2)
{
crc *= 2;
if((crc&0x10000) !=0) //上一位 CRC 乘 2 后,若首位是 1,则除以
0x11021 crc ^= 0x11021;
if((*ptr&i) != 0) //如果本位是 1,那么 CRC = 上一位的 CRC + 本位
/CRC_CCITT crc ^= 0x1021;
}
ptr++;
```

注: 当用户不需要 CRC 校验功能时,可在 CRC 字节处填写 0xAB 0xCD,免校验。

返回: {Head2} {Types} {Lens} {Data} {CRC}

1) 读成功并返回读数据

其中 Head2 : 0x02 0x00

Types : 0x00 (读成功)

Lens : 表示上传的 Data 的字节个数, 0x00 表示 256 个

Data : 0x00~0xFF, 表示读上来的数据

CRC : CRC_CCITT 校验值。计算的范围: Types、Lens、Data 计算的方法为

CRC CCITT, 特征多项式: X16+X12+X5+1, 即多项式系数为 0x1021, 初始值为全 0,

对于单个字节来说最高位先计算,不需要取反直接输出(参考代码同上)

2) 下发 CRC 校验失败无回应命令

无回应命令

3) 未知命令应答

无回应命令

示例:

对标志位中地址为 0x000A 的 1 个地址进行读操作

1) 读成功并返回数据,返回的数据为 0x3E

输入: 0x7E 0x00 0x07 0x01 0x00 0x0A 0x01 0xEE 0x8A

返回: 0x02 0x00 0x00 0x01 0x3E 0xE4 0xAC

2) 下发的 CRC 错误

输入: 0x7E 0x00 0x07 0x01 0x00 0x0A 0x01 0x11 0x22

返回: 无

3) 当发送的指令长度不够或发送 0x7e 0x00 后等待时间超过 400ms 时, 当成未知命令处

理

输入: 0x7E 0x00 0x07 0x01 0x00 0x0A 0x01

返回: 无

写标志位操作

对于设备标志位的写操作最多可一次写入 256 个字节的标志位。

命令格式:

输入: {Head1} {Types} {Lens} {Address} {Data} {CRC}

其中

Head1 : 0x7E 0x00 (2 bytes)

Types : 0x08 (1 byte)

Lens : 0x00~0xFF (1 byte) ,表示该命令中 Data 字段的字节数,同时也表示要

进行连续写操作的次数, 而 0x00 表示有 256 个字节

Address: 0x0000~0xFFFF (2 bytes), 表示要写入的标志位的起始地址

Data : 0x00~0xFF (1~256 bytes) , 表示写入标志位的数据

CRC: CRC_CCITT 校验值(2 bytes)。计算的范围: Types、Lens、Address、Data 计算的方法为 CRC_CCITT,特征多项式: X16+X12+X5+1,即多项式系数为 0x1021, 初始值为全 0,对于单个字节来说最高位先计算,不需要取反直接输出。C 的参考代码如

下:

```
unsigned int crc_cal_by_bit(unsigned char* ptr, unsigned int len)
{
unsigned int crc = 0;
while(len-- != 0)
{
for(unsigned char i = 0x80; i != 0; i /= 2)
{
    crc *= 2;
    if((crc&0x10000) !=0) //上一位 CRC 乘 2 后,若首位是 1,则除以 0x11021
    crc ^= 0x11021;
    if((*ptr&i) != 0) //如果本位是 1,那么 CRC = 上一位的 CRC + 本位/CRC_CCITT
    crc ^= 0x1021;
}
ptr+++;
```

注: 当用户不需要 CRC 校验功能时,可在 CRC 字节处填写 0xAB 0xCD,免校验。

返回: {Head2} {Types} {Lens} {Data} {CRC}

1) 写成功

其中

Head2 : 0x02 0x00

Types : 0x00 (写成功)

Lens : 0x01

Data : 0x00

CRC: CRC_CCITT 校验值 (0x33 0x31)

2) 下发 CRC 校验失败

无回应命令

3) 未知命令应答

无回应命令

示例:

向地址为 0x000A 的标志位写入 0x3E

1) 设置成功

输入: 0x7E 0x00 0x08 0x01 0x00 0x0A 0x3E 0x4C 0xCF

返回: 0x02 0x00 0x00 0x01 0x00 0x33 0x31

2) 下发的 CRC 错误

输入: 0x7E 0x00 0x08 0x01 0x00 0x0A 0x3E 0x11 0x22

返回: 无

3) 当发送的指令长度不够或发送 0x7e 0x00 后等待时间超过 400ms 时, 当成未知命令处

理

输入: 0x7E 0x00 0x08 0x01 0x00 0x0A 0x3E

返回: 无

标志位保存到 EEPROM 指令

若要将设备标志位的内容保存到外挂的 EERPOM 中则需要发送保存命令。

命令格式:

输入: {Head1} {Types} {Lens} {Address} {Data} {CRC}

其中

Head1 : 0x7E 0x00

Types : 0x09

Lens : 0x01

Address: 0x0000

Data : 0x00

CRC : CRC_CCITT 校验值 (0xDE 0xC8)

返回: {Head2} {Types} {Lens} {Data} {CRC}

1) 保存成功

其中

Head2 : 0x02 0x00

Types : 0x00 (写成功)

Lens : 0x01

Data : 0x00

CRC : CRC_CCITT 校验值 (0x33 0x31)

2) 下发 CRC 校验失败

无回应命令

3) 未知命令应答

无回应命令

标志位恢复到出厂设置

若要将设备标志位的内容恢复到出厂设置,并保存到外挂的 EERPOM 中则需要发送恢复出厂命令。

命令格式:

输入: {Head1} {Types} {Lens} {Address} {Data} {CRC}

其中

Head1 : 0x7E 0x00

Types : 0x09

Lens : 0x01

Address: 0x0000

Data : 0xFF

CRC: CRC_CCITT 校验值

返回: {Head2} {Types} {Lens} {Data} {CRC}

1) 保存成功

其中

Head2 : 0x02 0x00

Types : 0x00 (写成功)

Lens: 0x01

Data: 0x00

CRC: CRC CCITT 校验值 (0x33 0x31)

2) 下发 CRC 校验失败

无回应命令

3) 未知命令应答

无回应命令

程序擦除操作

对于设备中程序的擦除,可选择擦除引导程序和用户程序,须使用擦除命令。

命令格式:

输入: {Head1} {Types} {Lens} { NotUse } {Data} {CRC}

其中

Head1 : 0x7E 0x00 (2 bytes)

Types : 0x05 (1 byte)

Lens : 0x01 (1 byte) ,表示该命令中 Data 字段的字节数,同时也表示要进行连

续写操作的次数,而 0x00 表示有 256 个字节

NotUse: 0x0000 (2 bytes),两个字节的 0x00

Data : 0x11/0x22/0x33 (1 bytes) , 表示写入的数据;其中 0x11 代表擦除引导程

序; 0x22 代表擦除用户程序, 0x33 代表擦除引导程序跟用户程序 (用户升级代码时, 使

用 0x22 即可, 0x11/0x33 仅供厂家调试使用)。

CRC: CRC_CCITT 校验值 (2 bytes) 。计算的范围: Types、Lens、NotUse、Data 计算的方法为 CRC CCITT,特征多项式: X16+X12+X5+1,即多项式系数为 0x1021,

初始值为全 0, 对于单个字节来说最高位先计算, 不需要取反直接输出。C 的参考代码如

下

```
unsigned int crc_cal_by_bit(unsigned char* ptr, unsigned int len)
{
    unsigned int crc = 0;
    while(len--!= 0)
    {
        for(unsigned char i = 0x80; i != 0; i /= 2)
        {
            crc *= 2;
        if((crc&0x10000) !=0) //上一位 CRC 乘 2 后,若首位是 1,则除以 0x11021
        crc ^= 0x11021;
        if((*ptr&i) != 0) //如果本位是 1,那么 CRC = 上一位的 CRC + 本位/CRC_CCITT
        crc ^= 0x1021;
    }
    ptr++;
```

注: 当用户不需要 CRC 校验功能时,可在 CRC 字节处填写 0xAB 0xCD,免校验。

返回: {Head2} {Types} {Lens} {Data} {CRC}

1) 擦除成功

其中

Head2 : 0x02 0x00

Types : 0x00 (写成功)

Lens: 0x01

Data: 0x00

CRC: CRC_CCITT 校验值 (0x33 0x31)

2) 下发 CRC 校验失败

无回应命令

3) 未知命令应答

无回应命令

示例:

擦除用户程序 , 设备在擦除用户程序后会自动进入引导程序等待新用户程序的下载

1) 擦除成功

输入: 0x7E 0x00 0x05 0x01 0x00 0x00 0x22 xx xx

返回: 0x02 0x00 0x00 0x01 0x00 0x33 0x31

2) 下发的 CRC 错误

输入: 0x7E 0x00 0x05 0x01 0x00 0x00 0x22 xx xx

返回:无

3) 当发送的指令长度不够或发送 0x7e 0x00 后等待时间超过 400ms 时, 当成未知命令处

理

输入: 0x7E 0x00 0x05 0x01 0x00 0x00 0x22

返回:无

标志位列表

标志位	0x0000
数据位	功能
Bit 7	1: 开启解码成功 LED 提示 0: 关闭解码成功 LED 提示
Bit 6	1: 关闭静音 0: 启动静音
Bit 5-4	00: 无瞄准
Bit 3-2	00: 无照明 01: 普通 10/11: 常亮
Bit 1-0	00: 手动模式 01: 命令触发模式 10: 连续模式 11: 感应模式

标志位	0x0002
数据位	功能
Bit 7	保留
Bit 6	1: 输出解码状态提示符 0: 不输出解码状态提示符
Bit 5-1	保留
Bit 1-0	保留
标志位	0x0003
数据位	功能
Bit 7-2	保留
Bit 1	1: 关闭设置码 0: 开启设置码
Bit 1-0	1: 输出设置码内容 0: 不输出设置码内容
标志位	0x0004
数据位	功能
Bit 7-0	稳像时长
标志位	0x0005
数据位	功能
Bit 7-0	识读间隔时长
标志位	0x0006
数据位	功能
Bit 7-0	单次读码时长
标志位	0x0007
数据位	功能
Bit 7	自动休眠功能
Bit6-0	空闲时长(高位 Bit14-8)
标志位	0x0008
数据位	功能
Bit 7-0	空闲时长(低位 Bit7-0)

标志位	0x000A
数据位	功能
Bit 7-0	识读成功提示音频率
标志位	0x000B
数据位	功能
Bit 7-0	识读成功提示音持续时间
标志位	0x000C
数据位	功能
Bit 7-1	保留
Bit0	有源蜂鸣器模式下默认电平
标志位	0x000D
数据位	功能
Bit 7-4	保留
Bit 3-2	数据编码格式
Bit1-0	00: 串口输出
标志位	0x000E
数据位	功能
Bit 7-3	保留
Bit2	1: 开启解码成功提示音 0: 关闭解码成功提示音
Bit1-0	保留
标志位	0x002B, 0x2A
数据位	功能
Bit 15-13	保留
Bit 12-0	0x09C4:串口波特率为 1200 bps
标志位	0x002C
数据位	功能
Bit 7-3	保留

Bit 2-1	条码总开关
Bit 0	360°旋转条码可识读
标志位	0x002E
数据位	功能
Bit 7-1	保留
Bit0	识读 EAN13 码
标志位	0x002F
数据位	功能
Bit 7-1	保留
Bit0	识读 EAN8 码
标志位	0x0030
数据位	功能
Bit 7-1	保留
Bit0	识读 UPCA 码
标志位	0x0031
数据位	功能
Bit 7-1	保留
Bit0	识读 UPCE0 码
标志位	0x0032
数据位	功能
Bit 7-1	保留
Bit0	识读 UPCE1 码
标志位	0x0033
数据位	功能
Bit 7-1	保留
Bit0	识读 Code128 码
标志位	0x0034

数据位	功能
Bit 7-0	Code128 信息最短长度设置
标志位	0x0035
数据位	功能
Bit 7-0	Code128 信息最长长度设置
标志位	0x0036
数据位	功能
Bit 7-1	保留
Bit0	识读 Code39 码
标志位	0x0037
数据位	功能
Bit 7-0	Code39 信息最短长度设置
标志位	0x0038
数据位	功能
Bit 7-0	Code39 信息最长长度设置
标志位	0x0039
数据位	功能
Bit 7-1	保留
Bit0	识读 Code93 码
标志位	0x003A
数据位	功能
Bit 7-0	Code93 信息最短长度设置
标志位	0x003B
数据位	功能
Bit 7-0	Code93 信息最长长度设置
标志位	0x003C
数据位	功能

Bit 7-2	保留
Bit1	CodeBar 码发送起始符/结束符
Bit0	识读 CodeBar 码
标志位	0x003D
数据位	功能
Bit 7-0	CodeBar 信息最短长度设置
标志位	0x003E
数据位	功能
Bit 7-0	CodeBar 信息最长长度设置
标志位	0x003F
数据位	功能
Bit 7-1	保留
Bit0	识读 QR 码
标志位	0x0040
数据位	功能
Bit 7-1	保留
Bit0	识读 Interleaved 2 of 5 码
标志位	0x0041
数据位	功能
Bit 7-0	Interleaved 2 of 5 信息最短长度设置
标志位	0x0042
数据位	功能
Bit 7-0	Interleaved 2 of 5 信息最长长度设置
标志位	0x0043
数据位	功能
Bit 7-1	保留
Bit0	识读 Industrial 25 码

标志位	0x0044
数据位	功能
Bit 7-0	Industrial 25 信息最短长度设置
标志位	0x0045
数据位	功能
Bit 7-0	Industrial 25 信息最长长度设置
标志位	0x0046
数据位	功能
Bit 7-1	保留
Bit0	识读 Matrix 2 of 5 码
标志位	0x0047
数据位	功能
Bit 7-0	Matrix 2 of 5 信息最短长度设置
标志位	0x0048
数据位	功能
Bit 7-0	Matrix 2 of 5 信息最长长度设置
标志位	0x0049
数据位	功能
Bit 7-1	保留
Bit0	识读 Code11 码
标志位	0x004A
数据位	功能
Bit 7-0	Code11 信息最短长度设置
标志位	0x004B
数据位	功能
Bit 7-0	Code11 信息最长长度设置
标志位	0x004C

数据位	功能
Bit 7-1	保留
Bit0	识读 MSI 码
标志位	0x004D
数据位	功能
Bit 7-0	MSI 信息最短长度设置
标志位	0x004E
数据位	功能
Bit 7-0	MSI 信息最长长度设置
标志位	0x004F
数据位	功能
Bit 7-1	保留
Bit0	识读 RSS-14 码
标志位	0x0050
数据位	功能
Bit 7-1	保留
Bit0	识读限定式 RSS 码
标志位	0x0051
数据位	功能
Bit 7-1	保留
Bit0	识读扩展式 RSS 码
标志位	0x0052
数据位	功能
Bit 7-0	RSS 信息最短长度设置
标志位	0x0053
数据位	功能
Bit 7-0	RSS 信息最长长度设置

标志位	0x0054
数据位	功能
Bit 7-1	保留
Bit0	识读 DM 码
标志位	0x0055
数据位	功能
Bit 7-1	保留
Bit0	识读 PDF417 码
标志位	0x0060
数据位	功能
Bit 7	保留
Bit6-5	结束符后缀类型
Bit4	1.允许添加 RF 信息 0:禁止添加 RF 信息
Bit3	1: 允许添加前缀 0: 禁止添加前缀
Bit2	1:允许添加 Code ID 0:禁止添加 Code ID
Bit1	1: 允许添加后缀 0: 禁止添加后缀
Bit0	1: 允许添加结束符 0: 禁止添加结束符
标志位	0x0061
数据位	功能
Bit 7-0	各国键盘设置
标志位	0x0062
数据位	功能
Bit 7-4	前缀字符长度
Bit3-0	后缀字符长度
标志位	0x0063 – 0x0071
数据位	功能
Bit 7-0	前缀

标志位	0x0072 - 0x0080
数据位	功能
Bit 7-0	后缀
标志位	0x0081
数据位	功能
Bit 7-4	保留
Bit3-0	RF 信息长度
标志位	0x0082- 0x0081
数据位	功能
Bit 7-0	RF 信息
标志位	0x0091 – 0x00A4
数据位	功能
Bit 7-0	Code ID 字符设置
标志位	0x00B0
数据位	功能
Bit 7-2	保留
Bit 1-0	Data 字符截取设置
标志位	0x00B1
数据位	功能
Bit 7-0	前截取长度 M
标志位	0x00B2
数据位	功能
Bit 7-0	后截取长度 N
标志位	0x00D9 (只写标志位)
数据位	功能
Bit 7-0	功能标志位
标志位	0x00E0 (只读标志位)

数据位	功能
Bit 7-0	PHT PHT
 标志位	<i>0x00E1</i> (只读标志位)
数据位	功能
Bit 7-0	 硬件版本
标志位	<i>0x00E2</i> (只读标志位)
数据位	功能
Bit 7-0	软件版本
标志位	Ox00E3 (只读标志位)
数据位	功能
Bit 7-0	软件年份(该值的基础上加 2000 表示年份)
标志位	Ox00E4 (只读标志位)
数据位	功能
Bit 7-0	软件月份(该值表示月份)
标志位	0x00E5 (只读标志位)
数据位	功能
Bit 7-0	软件日期(该值表示日期)