maxscend?

MXD8686Q

SP8T Switch with MIPI for LTE Diversity

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8686Q is a low loss, high isolation SP8T switch for antenna diversity receiving.
The MXD8686Q is compatible with MIPI control, which is a key requirement for many cellular transceivers. This part is packaged in a compact $2 \mathrm{~mm} \times 2 \mathrm{~mm}, 14$-pin, QFN package which allows for a small solution size with no need for external DC blocking capacitors (when no external DC is applied to the device ports).

Applications

- $2 G / 3 G / 4 G$ antenna diversity
- Cellular modems and USB Devices

Functional Block Diagram and Pin Function

Figure 1 Functional Block Diagram and Pinout (Top View)

Application Circuit

Figure 2 Evaluation Board Schematic
Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	VIO	Supply voltage for MIPI	8	RF5	RF port5
2	SDATA	MIPI data input/output	9	ANT	Antenna port
3	SCLK	MIPI clock	10	RF1	RF port1
4	GND	Ground	11	RF2	RF port2
5	RF8	RF port8	12	RF3	RF port3
6	RF7	RF port7	13	RF4	RF port4
7	RF6	RF port6	14	VDD	Power supply
Ground Paddle	GND	Ground			

Note: Bottom ground paddles must be connected to ground.

MXD8686Q - SP8T Switch with MIPI for LTE Diversity

Truth Table

Table 2.

| Control | Switched RF Outputs | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Register_0 | RF1 | RF2 | RF3 | RF4 | RF5 | RF6 | RF7 | RF8 |
| 0×06 | Insertion
 Loss | Isolation |
| 0×04 | Isolation | Insertion
 Loss | Isolation | Isolation | Isolation | Isolation | Isolation | Isolation |
| 0×02 | Isolation | Isolation | Insertion
 Loss | Isolation | Isolation | Isolation | Isolation | Isolation |
| 0×00 | Isolation | Isolation | Isolation | Insertion
 Loss | Isolation | Isolation | Isolation | Isolation |
| 0×07 | Isolation | Isolation | Isolation | Isolation | Insertion
 Loss | Isolation | Isolation | Isolation |
| 0×05 | Isolation | Isolation | Isolation | Isolation | Isolation | Insertion
 Loss | Isolation | Isolation |
| 0×03 | Isolation | Isolation | Isolation | Isolation | Isolation | Isolation | Insertion
 Loss | Isolation |
| 0×01 | Isolation | Insertion
 Loss |

Recommended Operation Range

Table 3. Recommended Operation Condition

Parameters	Symbol	Min	Typ	Max	Units
Operation Frequency	f 1	0.7	-	3.0	GHz
Power supply	V_{DD}	2.5	2.8	3.0	V
Power supply for MIPI	$\mathrm{V}_{I \mathrm{O}}$	1.65	1.8	1.95	V
MIPI Control Voltage High	V_{H}	$0.8^{\star} \mathrm{VIO}$	1.8	1.95	V
MIPI Control Voltage Low	V_{L}	0	0	0.3	V

Specifications

Table 4. Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
DC Specifications						
Supply voltage	Vdd		2.5	2.8	3.0	V
Supply current	IdD			30	50	uA
V_{10} supply voltage	Vıo		1.65	1.8	1.95	V
V_{10} Supply current	IıO			4	10	uA
SDATA, SCLK control voltage: High Low	Vctl_h Vcti_L		$\begin{gathered} 0.8^{*} V_{10} \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{10} \\ 0 \end{gathered}$	$\begin{gathered} 1.95 \\ 0.3 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Switching Speed, one RF to another		10\% to 90% RF		1	2	uS
RF Specifications						
Insertion loss (ANT pin to RF1/2/3/4/5/6/7/8 pins)	IL	$\begin{aligned} & 0.1 \text { to } 1.0 \mathrm{GHz} \\ & 1.0 \text { to } 2.0 \mathrm{GHz} \\ & 2.0 \text { to } 2.7 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.40 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.40 \\ & 0.50 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation (ANT pin to RF1/2/3/4/5/6/7/8 pins)	Iso	$\begin{aligned} & 0.1 \text { to } 1.0 \mathrm{GHz} \\ & 1.0 \text { to } 2.0 \mathrm{GHz} \\ & 2.0 \text { to } 2.7 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 24 \\ & \hline \end{aligned}$		dB dB dB
Input return loss (ANT pin to RF1/2/3/4/5/6/7/8 pins)	RL	$\begin{aligned} & 0.1 \text { to } 1.0 \mathrm{GHz} \\ & 1.0 \text { to } 2.0 \mathrm{GHz} \\ & 2.0 \text { to } 2.7 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
0.1 dB Compression Point (ANT pin to RF1/2/3/4/5/6/7/8 pins)	P0.1dB	0.7 GHz to 3.0 GHz		+27		dBm
2nd Harmonic (ANT to RF1/2/3/4//5/6/7/8)	2 fo	$\begin{aligned} & \mathrm{fo}=100 \text { to } 3000 \mathrm{MHz} \text {, } \\ & \mathrm{PIN}=+10 \mathrm{dBm} \end{aligned}$			-80	dBm
3rd Harmonic (ANT to RF1/2/3/4//5/6/7/8)	3fo				-80	dBm

Note: Unless otherwise stated: all unused RF ports terminated in 50Ω, Input and Output $=50 \Omega, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{VDD}=2.8 \mathrm{~V}$

MIPI Read and Write Timing

MIPI supports the following Command Sequences:

- Register Write
- Register_0 Write
- Register Read

Figures 3 and 4 provide the timing diagrams for register write commands and read commands, respectively. Figure 5 shows the Register 0 Write Command Sequence. Refer to the MIPI Alliance Specification for RF Front-End Control Interface (RFFE), v1.10 (26 July 2011) for additional information on MIPI USID programming sequences and MIPI bus specifications.

Figure 3 Register Write Command Sequence

Figure 4 Register Read Command Sequence

In the timing figures, $\mathrm{SA}[3: 0]$ is slave address. $\mathrm{A}[4: 0]$ is register address. $\mathrm{D}[7: 0]$ is data. " P " is odd parity bit.

Register 0 Write Command Sequence

Figure shows the Register 0 Write Command Sequence. The Command Sequence starts with an SSC, followed by the Register 0 Write Command Frame containing the Slave address, a logic one, and a seven bit word to be written to Register 0. The Command Sequence ends with a Bus Park Cycle.

Figure 5 Register 0 Write Command Sequence

Register definition

Table 5. Register definition table

Register Address	Register Name	Data Bits	R/W	Function	Description	Default	BROADC AST_ID support	Trigger support
0x00	REGISTER_0	7:0	R/W	RF Control	Register_0 truth Table: Table 2	0x00	No	Yes
0x001A	RFFE_STATU S	7	R/W	SOFTWARE RESET	0: Normal operation 1: Software reset Note: On software reset, this register and all configurable registers are reset except for USID, GSID, and PM_TRIG.	0	No	No
		6	R/W	COMMAND_FR AME_PARITY_E RR	Command Frame with parity error	0	No	No
		5	R/W	COMMAND_LE NGTH_ERR	Command Sequence with incorrect length	0		No
		4	R/W	ADDRESS_FRA ME_PARITY_E RR	Address Frame with parity error	0	No	No
		3	R/W	DATA FRAME PARITY_ERR	Data Frame with parity error		No	No
		2	R/W	$\begin{aligned} & \text { READ_UNUSED } \\ & \text { _REG } \end{aligned}$	Read Command Sequence to an invalid address	0	No	No
		1	R/W	WRITE_UNUSE D_REG	Write Command Sequence to an invalid address	0	No	No
		0	R/W	BID_GID_ERR	Read Command Sequence with a BSID or GSID Note: Reading this register resets this register.	0	No	No
0x001B	GROUP_SID	7:4	R	RESERVED		0x0	No	No
		3:0	R/W	GSID	Group Slave ID	0x0	No	No
0x001C	PM_TRIG	7:6	R/W	PWR_MODE	00: Normal Operation (ACTIVE) 01: Reset all registers to default settings (STARTUP) 10: Low power (LOW POWER) 11: Reserved Note: Write PWR_MODE=2'h1 will reset all register, and puts the device into STARTUP state.	0b10	Yes	No
		5	R/W	Trigger_Mask_2	If this bit is set, trigger 2 is disabled	0	No	No
		4	R/W	Trigger_Mask_1	If this bit is set, trigger 1 is disabled	0	No	No
		3	R/W	Trigger_Mask_0	If this bit is set, trigger 0 is disabled Note: When all triggers are disabled, writing to a register that is associated with trigger 0, 1 , or 2, causes the data to go directly to the destination register.	0	No	No
		2	W	Trigger_2	A write of a one to this bit loads trigger 2's registers	0	Yes	No
		1	W	Trigger_1	A write of a one to this bit loads trigger 1's registers	0	Yes	No
		0	W	Trigger_0	A write of a one to this bit loads trigger 0's registers Note: Trigger processed immediately then cleared. Trigger 0,1 , and 2 will always read as 0 .	0	Yes	No
0x001D	PRODUCT_ID	7:0	R	PRODUCT_ID	Product Number	0x5e	No	No
0x001E	MANUFACTU RER_ID	7:0	R	MANUFACTUR ER_ID[7:0]	Lower eight bits of MIPI registered Manufacturer ID	0x81	No	No
$0 \times 001 F$	MAN_USID	7:6	R	RESERVED		0b00	No	No
		5:4	R	MANUFACTUR ER_ID[9:8]	Upper two bits of MIPI registered Manufacturer ID	0b11	No	No
		3:0	R/W	USID	USID of the device.	0xb	No	No

Absolute Maximum Ratings

Table 6. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V_{DD}	+2.0	+3.3	V
Supply voltage for MIPI	$\mathrm{V}_{I O}$	+1.0	+2.0	V
MIPI Control voltage (SDATA, SCLK)	$\mathrm{V}_{\text {CTL }}$	0	+2.0	V
RF input power (RF1 to RF8)	$\mathrm{P}_{\text {IN }}$		+28	dBm
Operating temperature	$\mathrm{T}_{\text {OP }}$	-35	+90	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {STG }}$	-40	+125	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge Human body model (HBM), Class 1C Machine Model (MM), Class A Charged device model (CDM), Class III	ESD_HBM	ESD_MM		1000

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device

Power ON and OFF sequence

Here is the recommendation about power-on/off sequence in order to avoid damaging the device.

Power ON

1) Apply voltage supply $-V_{D D}$
2) Apply logic supply - V_{10}
3) Wait 10μ s or greater and then apply MIPI bus signals - SCLK and SDATA
4) Wait 5μ s or greater after MIPI bus goes idle and then apply the RF Signal

Power OFF

1) Remove the RF Signal
2) Remove MIPI bus - SCLK and SDATA
3) Remove logic supply - V
4) Remove voltage supply - V $V_{D D}$

VDD	VIO	MIPI	RF	RF	VIO	VDD
ON	ON	Trigiger	ON	OFF	OFF	OFF

Note: VIO can be applied to the device before VDD or removed after VDD.
It is important to wait 10μ s after VIO \& VDD are applied before sending SDATA to ensure correction data transmission.
The minimum time between a power up and power down sequence (and vice versa) is ≥ 100 us.

Package Outline Dimension

DESCRIPTION		SYMBOL	MILLIMETER			
		MiN	NOM	MAX		
TOTAL THICKNESS			A	0.50	0.55	0.60
STAND OFF		A1	0	---	0.05	
MOLD THICKNESS		A2	0.35	0.40	0.45	
L/F THICKNESS		A3	0.152 REF			
LEAD WIDTH		b	0.13	0.18	0.23	
BODY SIZE	X	D	1.95	2.00	2.05	
	Y	E	1.95	2.00	2.05	
LEAD PITCH		e	0.40 BSC			
EP SIZE	X	J	0.93	0.98	1.03	
	Y	K	0.93	0.98	1.03	
LEAD LENGTH		L	0.16	0.21	0.26	
PACKAGE EDGE TOLERANCE		-00	0.100			
MOLD FLATNESS		bbb	0.100			
COPLANARITY		ccc	0.080			
LEAD OFFSET		ddd	0.100			
EXPOSED PAD OFFSET		eee	0.100			

Figure 6 package outline dimension

Marking Specification

Figure 7 Marking specification (Top View)

Tape and Reel Dimensions

SECTION Y-Y

Figure 8 Tape and reel dimensions

Reflow Chart

Figure 9 Recommended Lead-Free Reflow Profile
Table 7. Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate $\left(\mathrm{TS}_{\max }\right.$ to $\left.\mathrm{T}_{\mathrm{p}}\right)$	$3{ }^{\circ} \mathrm{C} /$ second max.
Preheat temperature $\left(\mathrm{TS}_{\min }\right.$ to $\left.\mathrm{TS}_{\max }\right)$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Preheat time $\left(\mathrm{t}_{\mathrm{s}}\right)$	$60-180$ seconds
Time above $\mathrm{TL}, 217^{\circ} \mathrm{C}\left(\mathrm{t}_{\mathrm{L}}\right)$	$60-150$ seconds
Peak temperature $\left(\mathrm{T}_{\mathrm{p}}\right)$	$260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of peak temperature $\left(\mathrm{t}_{\mathrm{p}}\right)$	$20-40$ seconds
Ramp-down rate	$6{ }^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

