Self Protected High Side Driver with Temperature Shutdown and Current Limit

The NCV8452 is a fully protected High-Side driver that can be used to switch a wide variety of loads, such as bulbs, solenoids and other activators. The device is internally protected from an overload condition by an active current limit and thermal shutdown.

Features

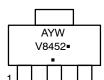
- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- CMOS (3 V/5 V) Compatible Control Input
- Overvoltage Protection and Shutdown
- Output Voltage Clamp for Inductive Switching
- Under Voltage Shutdown
- Loss of Ground Protection
- ESD Protection
- Reverse Battery Protection (with external resistor)
- Very Low Standby Current
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

PRODUCT SUMMARY

Symbol	Characteristics	Value	Unit
V _{OV}	Overvoltage Protection	41	V
V_D	Operation Voltage	5 – 34	V
R _{ON}	On-State Resistance	200	mΩ
I _{ILIM}	Output Current Limit	1.0	Α



ON Semiconductor®

www.onsemi.com

SOT-223 (TO-261) CASE 318E

V8452 = Device Code A = Assembly Location

Y = Year
W = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

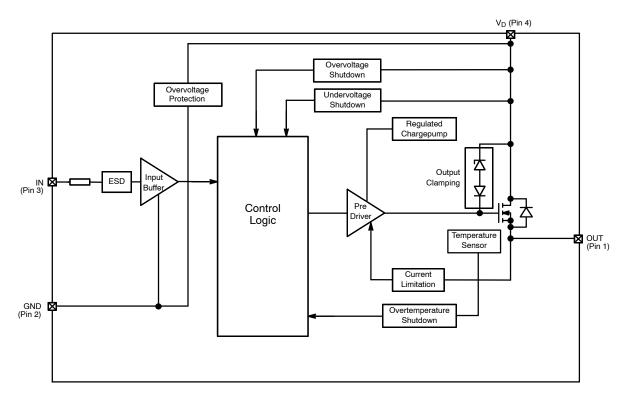


Figure 1. Block Diagram

PACKAGE PIN DESCRIPTION

Pin #	Symbol	Description
1	OUT	Output
2	GND	Ground
3	IN	Logic Level Input
4	V_{D}	Supply Voltage

Figure 2. Voltage and Current Definition

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V _D	40	V
Peak Transient Input Voltage (Load Dump 37.5 V, V _D = 13.5 V, ISO7637–2 pulse5) (Note 1)	V _{peak}	51	V
Input Voltage	V _{IN}	−5 to V _D	V
Input Current	I _{IN}	±5	mA
Output Current	I _{OUT}	Internally Limited	Α
Power Dissipation @T _A = 25°C (Note 3) @T _A = 25°C (Note 4)	P _D	1.19 1.76	W
Electrostatic Discharge (Note 1) (HBM Model 100 pF / 1500 Ω) Input Output V _D		±1 ±5 ±5	kV
Single Pulse Inductive Load Switch Off Energy (Note 1) (L = 4.55 H, V_D = 13.5 V; I_L = 0.5 A, T_{Jstart} = 25°C)	E _{AS}	0.8	J
Operating Junction Temperature	T _J	-40 to +150	°C
Storage Temperature	T _{storage}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Not subjected to production testing
 Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.
- 3. Minimum pad.
- 4. 1 in square pad size, FR-4, 1 oz Cu.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max Value	Unit
Thermal Resistance (Note 5) Junction-to-Soldering Point Junction-to-Ambient (Note 6) Junction-to-Ambient (Note 7)	R _{thJS}	10	°C/W
	R _{thJA}	105	°C/W
	R _{thJA}	71	°C/W

- 5. Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.
- 6. Minimum pad.
- 7. 1 in square pad size, FR-4, 1 oz Cu.

ELECTRICAL CHARACTERISTICS (V_D = 13.5 V; -40°C < T_J < 150°C unless otherwise specified)

			Value			
Rating	Symbol	Conditions	Min	Тур	Max	Unit
Operating Supply Voltage	V_{D}		5	-	34	V
Undervoltage Shutdown	V _{UV}		2.5		5.5	V
Undervoltage Restart	V _{UV(res)}				6.0	V
Undervoltage Hysteresis	V _{UV(hyst)}			0.3		
Overvoltage Shutdown	V _{OV}		34		42	V
Overvoltage Restart	V _{OV(res)}		33			
On-state Resistance	R _{ON}	I _{OUT} = 0.5 A, V _{IN} = 5 V, T _J = 25°C I _{OUT} = 0.5 A, V _{IN} = 5 V, T _J = 150°C		160 -	200 400	mΩ
Standby Current	I _{D(off)}	V _{IN} = V _{OUT} = 0 V		12	25	μΑ
Active Ground Current	I _{GND(on)}	V _{IN} = 5 V		1	1.8	mA
Output Leakage Current	I _{OUT(off)}	V _{IN} = 0 V			2	μΑ
INPUT CHARACTERISTICS	•		-		•	
Input Voltage – Low	V _{IN(low)}				0.8	V
Input Voltage – High	V _{IN(high)}		2.2			V
Off State Input Current	I _{IN(off)}	V _{IN} = 0.7 V			10	μΑ
On State Input Current	I _{IN(on)}	V _{IN} = 5.0 V			10	μΑ
Input Threshold Hysteresis	V _{IN(hyst)}			0.3		V
Input Resistance	R _I		1.5	2.8	3.5	kΩ
SWITCHING CHARACTERISTICS	•		-		•	
Turn-On Time	t _{on}	to 90% V_{OUT} , R_L = 24 Ω		60	120	μs
Turn-Off Time	t _{off}	to 10% V_{OUT} , R_L = 24 Ω		60	120	μs
Slew Rate On	dV _{OUT} /dt _{on}	10% to 30% V_{OUT} , R_L = 24 Ω		1	4	V / μs
Slew Rate Off	dV _{OUT} /dt _{off}	70% to 40% V_{OUT} , R_L = 24 Ω		1	4	V / μs
REVERSE BATTERY (Note 8)	•		-		•	
Reverse Battery	-V _D	Requires a 150 Ω Resistor in GND Connection			32	V
Forward Voltage	V _F	T _J = 150°C		0.6		V
PROTECTION FUNCTIONS (Note 9)						
Temperature Shutdown (Note 8)	TSD		150	175	200	°C
Temperature Shutdown Hysteresis (Note 8)	TSD _(hyst)			10		°C
Overvoltage Protection	V _{OV}	I _D = 4 mA	41			V
Switch Off Output Clamp Voltage	V _{CLAMP}	I _D = 4 mA, V _{IN} = 0 V	V _D - 41	V _D - 47		V
Output Current Limit Initial Peak	I _{LIM}	V _D = 20 V, T _J = 25°C T _J = -40°C to150°C	1.0	1.8 -	3	А

^{8.} Not subjected to production testing
9. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper hardware/software strategy. If the devices operates under abnormal conditions this hardware/software solutions must limit the duration and number of activation cycles.

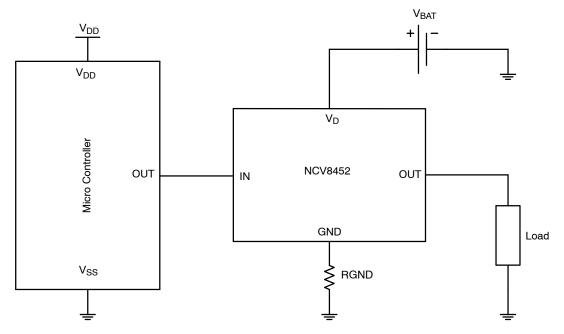


Figure 3. Application Diagram

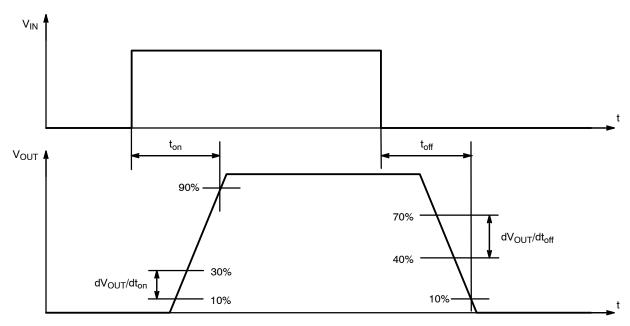


Figure 4. Resistive Load Switching Waveform

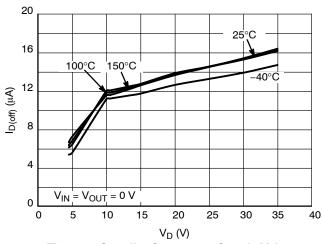


Figure 5. Standby Current vs. Supply Voltage

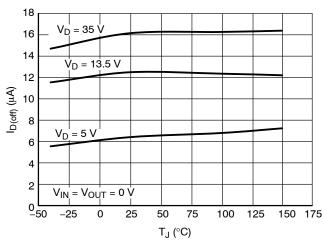


Figure 6. Standby Current vs. Junction Temperature

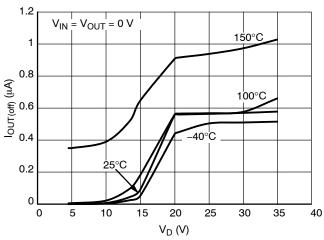


Figure 7. Output Leakage Current vs. Supply Voltage

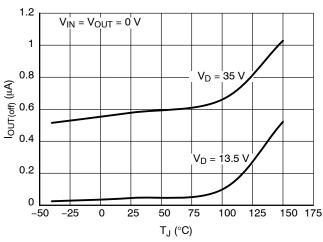


Figure 8. Output Leakage Current vs. Junction Temperature

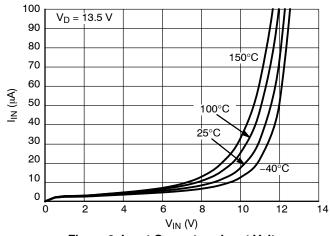


Figure 9. Input Current vs. Input Voltage

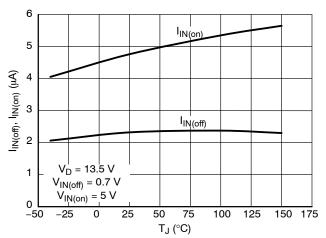


Figure 10. Input Current vs. Junction Temperature

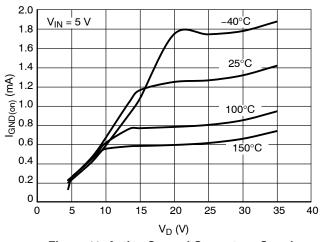


Figure 11. Active Ground Current vs. Supply Voltage

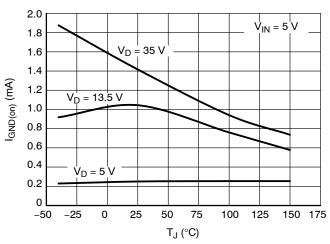


Figure 12. Active Ground Current vs. Junction Temperature

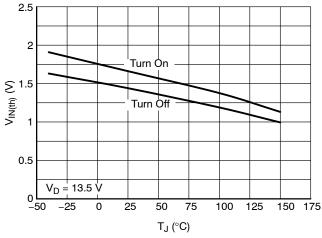


Figure 13. Input Threshold Voltage vs. Junction Temperature

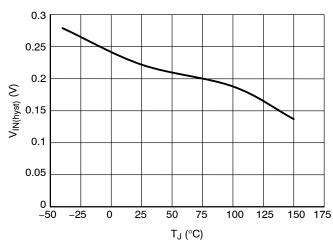


Figure 14. Input Threshold Hysteresis vs. Junction Temperature

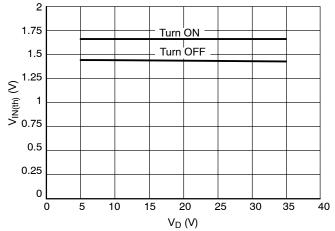
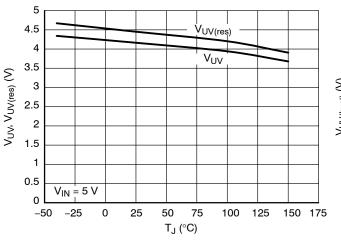
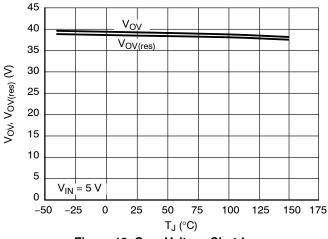



Figure 15. Input Threshold Voltage vs. Supply Voltage

TYPICAL CHARACTERISTIC CURVES


0.35

0.3 0.25 0.25 0.15 0.11 0.05 V_{IN} = 5 V -50 -25 0 25 50 75 100 125 150 175 T_J (°C)

Figure 16. Under Voltage Shutdown and Restart vs. Junction Temperature

Figure 17. Under Voltage Shutdown Hysteresis vs. Junction Temperature

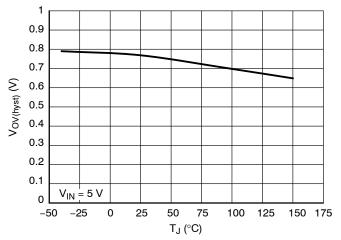
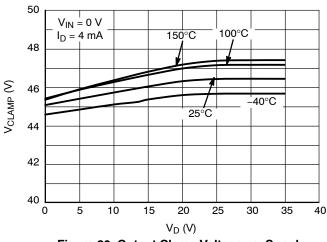



Figure 18. Over Voltage Shutdown vs. Junction Temperature

Figure 19. Over Voltage Shutdown Hysteresis vs. Junction Temperature

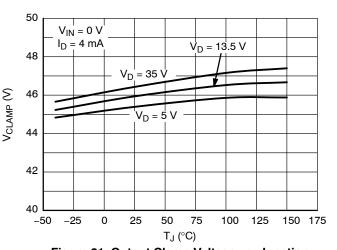


Figure 20. Output Clamp Voltage vs. Supply Voltage

Figure 21. Output Clamp Voltage vs. Junction Temperature

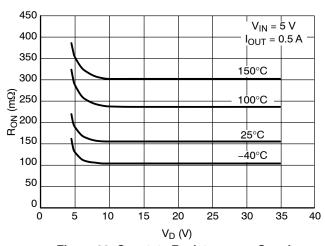


Figure 22. On-state Resistance vs. Supply Voltage

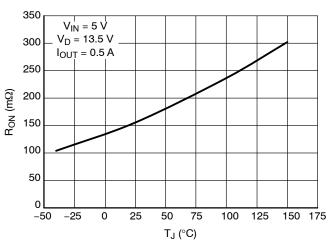


Figure 23. On-state Resistance vs. Junction Temperature

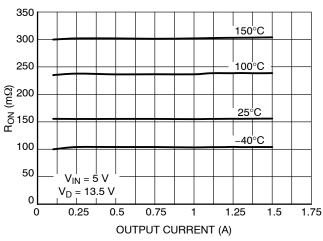


Figure 24. On-state Resistance vs. Output Current

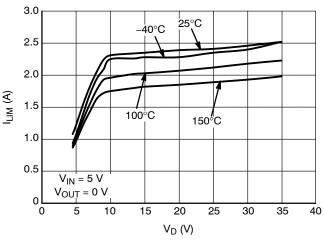


Figure 25. Current Limit vs. Supply Voltage

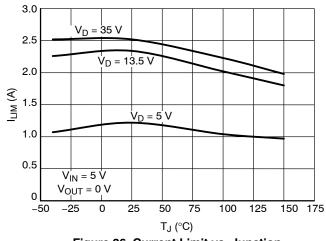


Figure 26. Current Limit vs. Junction Temperature

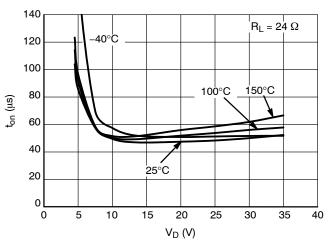


Figure 27. Turn-On Time vs. Supply Voltage

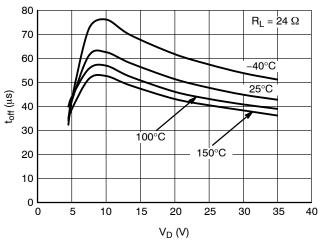


Figure 28. Turn-Off Time vs. Supply Voltage

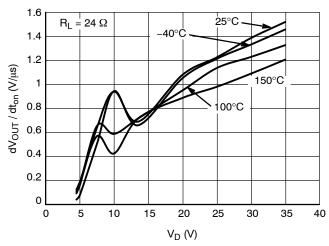


Figure 29. Slew Rate On vs. Supply Voltage

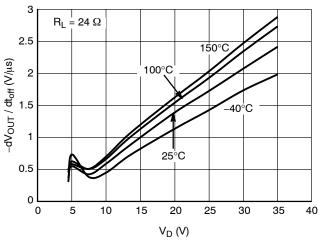


Figure 30. Slew Rate Off vs. Supply Voltage

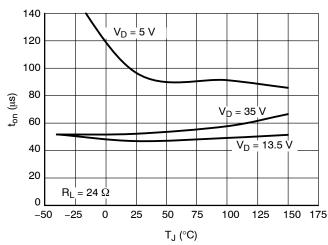


Figure 31. Turn-On vs. Junction Temperature

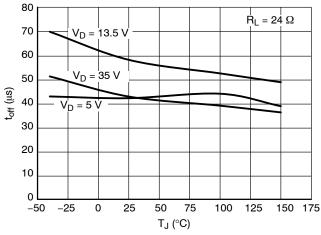


Figure 32. Turn-Off Time vs. Junction Temperature

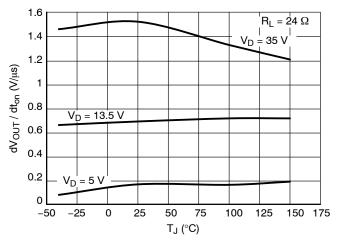


Figure 33. Slew Rate On vs. Junction Temperature

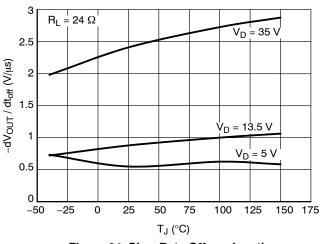


Figure 34. Slew Rate Off vs. Junction Temperature

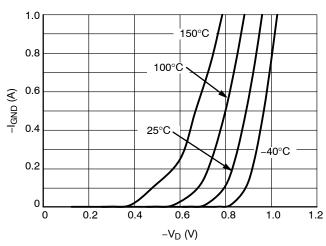
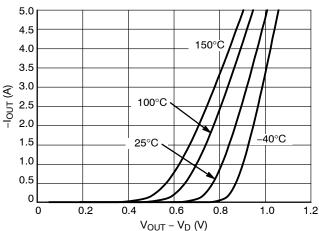



Figure 35. Supply-to-Ground Reverse Characteristics

V_{OUT} - V_D (V)
Figure 36. Power FET Body Forward
Characteristics

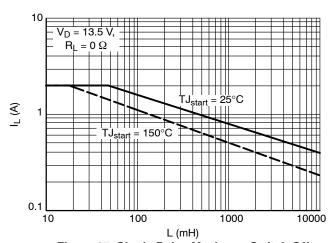


Figure 37. Single Pulse Maximum Switch Off Current vs. Load Inductance

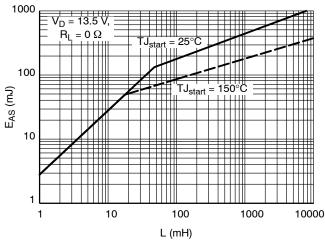


Figure 38. Single Pulse Maximum Switch Off Energy vs. Load Inductance

Figure 39. Initial Short-Circuit Shutdown Time vs. Supply Voltage

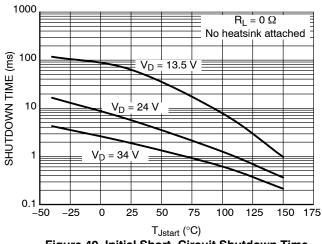


Figure 40. Initial Short-Circuit Shutdown Time vs. Starting Junction Temperature

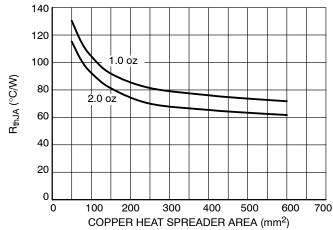


Figure 41. Junction-to-Ambient Thermal Resistance vs. Copper Area

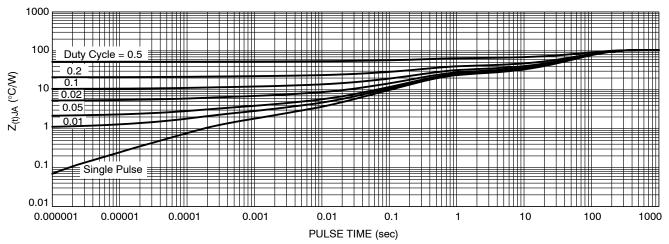
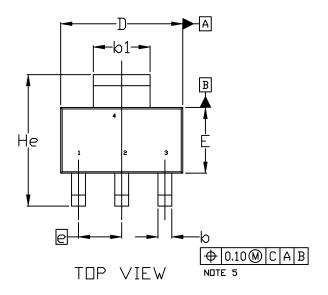
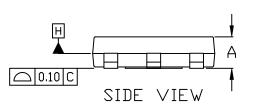


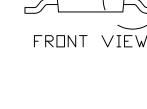
Figure 42. Junction-to-Ambient Transient Thermal Impedance (minimum pad size)

ORDERING INFORMATION


Device	Package	Shipping [†]
NCV8452STT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8452STT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOT-223 (TO-261) CASE 318E-04 ISSUE R


DATE 02 OCT 2018

DETAIL A

A1



SEE DETAIL A

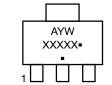
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
c	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	4. DHAIN STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

XXXXX = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative