

LSD4WN-2I717M90 产品规格书

文件版本: V2.0

文件状态: Release

利尔达物联网技术有限公司

目录

概还		. 1
1.1	产品特点	1
3.1		
机械	特性	. 7
4.1	产品外观	7
4.2	模块装配图	8
接口	说明	. 9
	5.2.3 模式控制	11
	5.2.4 UART 接口	11
	5.2.5 模块状态指示	13
	5.2.6 睡眠控制	13
	5.2.7 扩展 GPIO	14
5.3	典型应用电路	.15
	5.3.1 天线设计建议	15
产品	焊接与包装	16
6.1	产品回流焊作业指导	.16
6.2	产品包装	.17
	1.1 2 2 2 3.1 4.2 2 5.3 2 6.2 4 6.2	1.1 产品特点

图片索引

图 3-1	模块应用框图	4
图 4-1	LSD4WN-2I717M90 TOP 面	7
图 4-2	LSD4WN-2I717M90 BOTTOM 面	7
图 4-3	模块装配图	8
图 5-1	LSD4WN-2I717M90 典型时序应用电路	15
图 6-1	回流焊作业指导	16
图 6-2	卷带包装规格	17
图 6-3	模块的放置方向	17
图 6-4	载带胶轮	18
表格氮		
表 2-1	模块技术参数	2
	模块技术参数	
表 2-2		2
表 2-2 表 2-3 表 2-4	直流特性参数	3
表 2-2 表 2-3 表 2-4 表 3-1	直流特性参数	2 3 3 5
表 2-2 表 2-3 表 2-4 表 3-1 表 3-2	直流特性参数	2 3 3 5 6
表 2-2 表 2-3 表 2-4 表 3-1 表 3-2 表 5-1	直流特性参数	2 3 3 5 6 9
表 2-2 表 2-3 表 2-4 表 3-1 表 3-2 表 5-1 表 5-2	直流特性参数. 射频特性参数. 环境特性参数. 模块激活状态的子模式. 不同速率对应的最大负载值. 引脚定义. 复位引脚功能.	2 3 5 6 9
表 2-2 表 2-3 表 2-4 表 3-1 表 3-2 表 5-1 表 5-2 表 5-3	直流特性参数. 射频特性参数. 环境特性参数. 模块激活状态的子模式. 不同速率对应的最大负载值. 引脚定义. 复位引脚功能.	2 3 5 6 9
表 2-2 表 2-3 表 2-4 表 3-1 表 3-2 表 5-1 表 5-2 表 5-3 表 5-4	直流特性参数 財頻特性参数 环境特性参数 模块激活状态的子模式 不同速率对应的最大负载值 引脚定义 复位引脚功能 模式控制引脚功能 丰口接口	2 3 3 5 6 9 10
表 2-2 表 2-3 表 2-4 表 3-1 表 3-2 表 5-1 表 5-2 表 5-3 表 5-4 表 5-5	直流特性参数. 射频特性参数. 环境特性参数. 模块激活状态的子模式. 不同速率对应的最大负载值. 引脚定义. 复位引脚功能.	2 3 5 6 9 10 11

表 5-7 扩展 GPIO......14

1 概述

LSD4WN-2I717M90 是利尔达科技集团股份有限公司研制的一款 LoRaWAN End Node 模块。本模块集成了LoRaWAN™协议栈,符合 LoRa Alliance 发布的 LoRaWAN Specification 1.0.2 Class A/C 标准,支持 ICA的 LoRaWAN 规范。硬件支持 433-510MHz 超宽频段(使用不同频段时,需要选择合适天线)。

模块采用串行接口与用户设备进行数据、指令交互,可以方便地为用户提供快速 LoRaWAN 网络接入和无线数据等业务。

LSD4WN-2I717M90 模块具有功耗低、传输距离远、抗干扰能力强,适用于多种应用场合:物联网低功耗应用(IoT)、自动抄表、智慧城市、工业自动化、智能家居等。

1.1 产品特点

- ➤ 工作电压: 2.5~ 3.6 V;
- ▶ 频段: 470~510MHz;
- ▶ 发射功率: 19±1 dBm(max);
- ▶ 超高接收灵敏度: -136±1dBm(@SF=12);
- ▶ 超远有效通讯距离: 5Km (城市公路环境, 非旷野环境);
- ➤ 符合 LoRaWAN[™] Specification 1.0.2 标准, 支持 ICA 规范等;
- ▶ 内部集成 LoRaWAN™协议栈,支持 Class A/Class C设备类型;
- ▶ 低功耗: 待机电流 ≤ 2 uA;
- ▶ UART 通信,对外接口为邮票孔,简易指令配置模块参数;

1.2 应用场景

- ▶ 自动抄表,特别适用于水表、气表、热表等无线抄表场合;
- ➤ 物联网(IoT)
- ▶ 智慧城市
- ▶ 智能家居
- ▶ 智慧物流
- ▶ 工业自动化
- **>** ...

2 产品技术参数

下文描述本模块的技术参数,主要包括遵循的协议标准、接口特性、机械特性、直流特性参数、射频特性参数、环境特性参数等。

表 2-1 模块技术参数

主要参数	枚 内容							
工女学奴			4:33					
		描述	备注					
	协议版本	LoRaWAN [™] Specification						
	份	1.0.2final						
	物理层	符合 ICA 2.3.0 定义						
协议标准	网络拓扑	Star						
	发送寻址模式	广播						
	调制方式	LoRa\FSK						
	数据速率	SF12~SF7、50Kbps(FSK)						
	串口接口	2线 UART	兼容 3.3V TTL\CMOS					
接口特性	串口波特率	2400/4800/9600/38400/19200/115	用户可配置透传模式的串口波特					
		200bps	率,命令模式固定使用 9600bps					
	主天线接口	邮票孔 50Ω 输出						
机械特性	接口封装类型	邮票孔(2×11pin×2.0mm)						
71.7双行注	PCB 尺寸	25(L) ×21.5(W) ×3 (H) mm	(GB/T1804-c)					

表 2-2 直流特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
工作电压	-	2.5	3.3	3.6	V	保证最大输 出功率 20dBm
工作电流						
平均电流	正常工作,9600bps	-	2.4	-	mA	
	RTC 打开	-	2	-	Ua	
峰值电流	最大输出	-	-	130	mA	

文档类型: SP_LSD4WN-2I717M90 规格书 技术支持: http://bbs.lierda.com 版本: V2.00

页码: 2/20

表 2-3 射频特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注	
工作频段	测试电压: 3.3V 测试温度: 室温	470	-	510	Mhz		
发射特性	ООК Ф	莫式,载波输b	出,PA_BOOST	0N,25℃ 环均	竟温度		
最大发射功率	PA_BOOST 输出,功率满 负荷,使用 9020 频谱测 试仪	18	19	20	dBm		
二次谐波			-40		dBm		
发射电流(射 频部分)	射频最大发射功率输出, 仪器负载		120		mA	实际使用 时,电流与 天线环境 有关	
接收特性	PER = 1%, CR = 4/	6, CRC ON, I	Preamble Ler	ngth = 12, F	acket Lengt	th = 10	
接收灵敏度	SF12	-	-136	-	dBm	平坦度 <0.5dB	
	SF7 -		-123	-	dBm	(0.00)	
接收电流(射频部分)		-	12	-	mA		
休眠电流		-	2	-	uA		
频率特性	频率稳定度: 15ppm@-40℃~85℃						

表 2-4 环境特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
工作温度	-	-40	-	85	$^{\circ}$	
存储温度	-	-40	ı	125	$^{\circ}$	
工作湿度	-	5	-	95	%	
ESD 防护	-	-	-	TBD	V	

3 产品功能说明

本模块与用户主板连接时,主要包括串口接口、复位、唤醒、模式控制、状态输出及供电接口等。模块应用框图如图 3-1 所示。

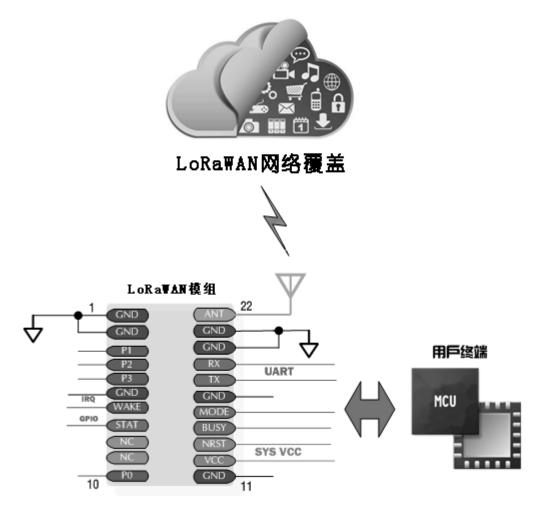


图 3-1 模块应用框图

版本: V2.00 页码: 4/20

3.1 功能简述

本模块集成了 LoRaWAN 协议栈,符合 LoRa Alliance 发布的 LoRaWAN Specification 1.0.2,支持 Class A\Class C 设备类型,符合 ICA 联盟规范。

模块工作模式分为命令模式与透传模式。命令模式下配置及查询参数,透传模式下发送与接收用户数据。如表 3-1 所示

首次使用时,需要配置模块必要的网络参数,并执行保存命令后,复位模块(模块将以新参数来初始化),然后切换为透传模式。

工作模式	描述
透传模式	转发用户数据,可以选择详细信息输出等,方便调试
命令模式	通过 AT 指令读取状态或配置参数,有些参数需要使用保存指令,并复位才生效

表 3-1 模块激活状态的子模式

3.1.1 命令模式

在命令模式下,用户可以通过串口发送 AT 指令来访问模块。用户端发送指令给模块,模块解析接收到的命令,并返回一个命令响应帧,指示所接收命令的执行结果。

3.1.2 透传模式

在透传模式下,模块直接转发用户数据。

如果开启 LoRaWAN 网络的 ADR 机制,由于每个空口数据包的最大数据长度可能会动态变化,为了保证数据传输可靠性与完整性,引入一种简单的流控机制。

•流控机制

用户自行决定一帧数据的长度。当串口超过 10ms 未接收到新的串口数据数据或者达到物理分包上限时,判定一帧数据传输完成,立即拉低 BUSY 引脚(忙),关闭串口接收,进行发送操作。发送完成后(成功或失败),BUSY 引脚重新拉高,如果 WAKE 引脚仍为高电平,则重新开启模块的串口接收。

•物理分包

实际的物理分包参照《LoRaWAN Regional Parameter V1.0.2》,用户可以通过AT指令查询响应参数,或者要求详细信息输出,来获取分包情况。

通常情况下,不同速率对应的最大负载值 N,如表 3-2 所示:

 DataRate
 N (MAX)

 0-(SF12 BW125)
 51

 1-(SF11 BW125)
 51

 2-(SF10 BW125)
 51

 3-(SF9 BW125)
 115

 4-(SF8 BW125)
 222

 5-(SF7 BW125)
 222

表 3-2 不同速率对应的最大负载值

•服务器响应

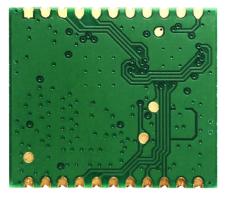
根据 LoRaWAN 网络 Class A 运行特点,任何一包数据,用户服务器都可以给出响应,如果模块收到用户服务器数据,会立即通过串口输出。

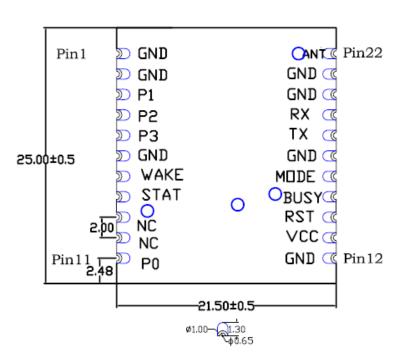
4 机械特性

4.1 产品外观

产品实物图如图 4-1 与图 4-2 所示,标签中的 EUI(DevEUI)与 $S\setminus N$ 等仅供参考,具体以实际为准,标签的小三角标识为模块的 Pin1:

图 4-1 LSD4WN-2I717M90 TOP 面




图 4-2 LSD4WN-2I717M90 BOTTOM 面

文档类型: SP_LSD4WN-2I717M90 规格书 技术支持: http://bbs.lierda.com 版本: V2.00 页码: 7/20

4.2 模块装配图

模块装配图如图 4-3 所示(单位:mm), 左图视角为 Top View

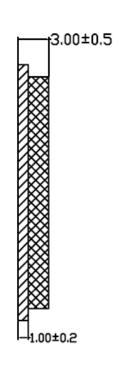


图 4-3 模块装配图

5 接口说明

5.1 引脚定义

所有 I\0 口为 CMOS 与 TTL 兼容。模块引脚功能如表 5-1 所示:

表 5-1 引脚定义

引脚	功能定义	端口类型	缺省值	描述
1	GND	Power	-	接地系统
2	GND	Power	-	接地系统
3	P1	I/O	Low	扩展功能,通过 AT+GPIO 指令控制输出
4	P2	I/O	Low	扩展功能,通过 AT+GPIO 指令控制输出
5	Р3	I/O	Low	扩展功能,通过 AT+GPIO 指令控制输出
6	GND	Power	-	接地系统
7	WAKE	Input	Float	唤醒/关闭模块
8	STAT	Ouput	Low	状态指示
9	NC	NC	-	悬空处理
10	NC	NC	-	悬空处理
11	Р0	I/O	Low	扩展功能,通过 AT+GPIO 指令控制输出
12	GND	Power	-	接地系统
13	VCC	Power	-	系统供电,供电范围 2.5~3.6V
14	NRST	Reset	PULL-UP	复位模块,内部弱上拉,低电平有效,用户 若不使用,可以悬空处理
15	BUSY	Output	Low	模块忙信号输出
16	MODE	Input	Low	工作模式控制,根据用户控制电平,内部自动上/下拉
17	GND	Power	-	接地系统
18	TXD	Output	High	串口发送端
19	RXD	Input	High-impendance	串口接收端
20	GND	Power	-	接地系统
21	GND	Power	-	接地系统
22	ANT	RF	-	射频出口,注意使用 50Ω阻抗线

注 1: 扩展功能用于开放 IO 操作

注 2: 灰色标注为客户系统最小使用的引脚

注 3: 缺省值, 描述的是用户尚未对模块进行任何配置、首次上电后的引脚状态

5.2 硬件接口描述

使用 LSD4WN-2I717M90 模块进行硬件设计时,根据实际应用,需要合理选择与设计所需接口及其外围 电路。

LSD4WN-2I717M90 模块应用接口包括以下:

- 外部电源
- 复位
- 模式控制
- UART接口
- 模块状态指示
- 睡眠控制
- 扩展 GPIO

5.2.1 外部电源

用户在使用本模块时,首先需要保证外部电源能够充足的供电带载能力,并且供电范围需要严格控制在 $2.5V^{\sim}3.6V$ 之间。高于模块供电范围,会导致模块的主芯片损坏;低于模块供电范围,会影响射频电路工作,无法保证输出最大功率。

5.2.2 复位

用户给模块 NRST 引脚提供一个至少 1ms 低脉冲(或者直接拉低),会复位模块。模块复位后,需要等待复位延时时间为 150ms,保证模块系统初始化完成。模块复位引脚功能如表八所示:

接口 引脚 定义 I/O 描述 备注 高电平 模块正常运行 模块复位后,用户需 复位 NRST 14 Input 要等待复位延时时 间,才可以操作模块 低电平 模块保持复位状态(复位 MCU)

表 5-2 复位引脚功能

5.2.3 模式控制

模块有在两种工作模式,用户通过 MODE 引脚来选择工作在哪种模式。用户如果不知道模块当前的工作模式,可以通过读取该引脚的状态来获取。模块模式控制引脚功能如表 5-3 所示:

接口 引脚 定义 I/O 描述 备注 模式控制 16 MODE 若模块检测信号: Input 高电平 检测到高电平脉冲(上升沿&高电平)进入 并驻留在命令模式 低电平 检测到低电平脉冲(下降沿&低电平)进 入并驻留在透传模式

表 5-3 模式控制引脚功能

5.2.4 UART 接口

模块提供一个 UART 接口,结合自定义的软件流控制,来完成串口通信,缺省串口设置为 9600N81,对 外接口电平为 3.3V TTL\CMOS 电平。

用户每次发送数据前,拉高 WAKE 引脚,等待 10ms 后,唤醒模块(以便模块准备好串口等)。用户拉低 WAKE 引脚,则模块进入睡眠模式。串口接口功能如表 5-4 所示:

文档类型: SP_LSD4WN-2I717M90 规格书技术支持: http://bbs.lierda.com

版本: V2.00 页码: 11/20

表 5-4 串口接口

接口	引脚	定义	I/O	# 中口按口 描述	备注
	18	TXD	Output	串口发送端(TX)	模块的 TX 信号方向
	19	RXD	Input	串口接收端(RX)	模块的 RX 信号方向
UART	15	BUSY	Output	模块忙信号输出。 ②上电后,BUSY默认为低电平。 ②模块初始化完成后,输出高电平。 ③此时,若模块处于透传模式,BUSY 会立即拉低,开始执行加入网络等操作; ④若模块处于指令模式,BUSY输出高后,则用户可以开始执行AT指令操作。 模块空闲。指示用户格CU可以继续向模块写入数据。 模块忙。指示用户低电平格CU暂停向模块写入数据。	
	7 WAKE Inpu	Input	模块唤醒\睡眠 用户发送数据前,必须拉高 WAKE 引脚,并等待 10ms 时间, 唤醒模块 低电平 模块进入睡眠模式。		

5.2.5 模块状态指示

模块的 STAT 引脚目前定义两种功能:

(1) 模块在首次接入 LoRaWAN 网络时,首先执行加入网络操作,在 JOIN 过程中,STAT 引脚始终保持为低电平,直到模块成功加入网络,此时 STAT 输出高电平,模块可以正常处理用户的串口数据。用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。

注: 在搜索网络过程中,用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。用户查询完成后,立即切换会透传模式。

(2) 模块在接入 LoRaWAN 网络后,会动态更新模块的网络状态,状态变化通过 STAT 引脚输出。如果模块模块本次数据操作异常,STAT 引脚输出为低电平,用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。

状态指示引脚功能如表 5-5 所示:

接口 引脚 定义 I/O 描述 备注 状态输出 STAT Output 若模块处于 具体异常状 态可以特定 入网 STAT引脚表示入网状态 AT命令读取 阶段 高电平 模块入网成功 低电平 模块未入网,等待入网成功 数 据 STAT引脚表示本次数据通信的结果 通信 本次空口数据通信发\收成功 阶段 注: 确认帧情况下,高电平表示接收 高电平 非确认帧情况下,高电平表示发 送成功 低电平 本次空口数据通信发\收失败

表 5-5 状态指示引脚

在数据通信阶段,建议用户在每次与模块完成一次数据交互后,判断 STAT 引脚状态,已获得当前数据包的空口处理结果。

5.2.6 睡眠控制

文档类型: SP_LSD4WN-2I717M90 规格书技术支持: http://bbs.lierda.com

版本: V2.00 页码: 13/20

为了满足低功耗应用场景,用户在不需要使用的时候,可以通过拉低睡眠引脚 WAKE, 并至少保持 5ms, 控制模块进入睡眠状态。在睡眠状态,模块将不进行任何数据操作,但仍然会保存入网信息等。用户通过 拉高 WAKE 引脚,并至少保持 5ms,可以唤醒模块,唤醒后可以便进行正常的数据操作。睡眠控制如表 5-6

 接口
 引脚
 定义
 I/O
 描述
 备注

 若 WAKE 引脚处于
 高电平
 唤醒模块,模块处于正常工作状态

 低电平
 控制模块进入休眠

表 5-6 睡眠引脚

5.2.7 扩展 GPIO

模块提供了 P0-P3 扩展 GPI0 口,用户当前可以通过 AT+GPI0 指令,控制指定的 GPI0 口输出高\低电平。扩展 GPI0 说明,如表 5-7

接口	引脚	定义	I/O 描述		备注
GPIO	11	P0	Output	通过 AT+GPIO 指令控制输出高电平或者低电平	
GPIO	3	P1	Output	通过 AT+GPIO 指令控制输出高电平或者低电平	
GPIO	4	P2	Output	通过 AT+GPIO 指令控制输出高电平或者低电平	
GPIO	5	Р3	Output	通过 AT+GPIO 指令控制输出高电平或者低电平	

表 5-7 扩展 GPIO

5.3 典型应用电路

用户接口:串口、GPIO、电源等

天线接口: 50Ω邮票孔输出

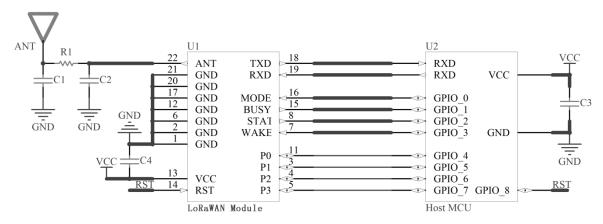


图 5-1 LSD4WN-2I717M90 典型时序应用电路

说明:

- 1: 粗实线为推荐连接,细实线为可选连接。
- 2: 不需低功耗时,图 5-1 中 WAKE 直接拉高,需要低功耗时,需连接 Host MCU 引脚控制。
- 3: 天线出口 (ANT<->PIN22) 的走线要求 50 Ω 阻抗匹配。
- 4: 缺省情况下, R1 为 0 Ω, C1, C2 为空贴。C4 空贴(只做预留)。
- 5: R1、C1、C2参数的具体取值,由产品进行天线匹配后确定。
- 6: 天线部分的 Layout 设计,请参考我司《射频 PCB LAYOUT 设计规则(适用 sub-1GHZ 及蓝牙模块) WSN 160824》。

5.3.1 天线设计建议

天线设计直接关系到产品的通信性能。不同终端根据天线大小、成本、性能会选择不同类型的天线,短距离天线中比较常见的有 PCB 天线、芯片(陶瓷) 天线、弹簧天线、鞭状天线等。选择天线时,需要主要考虑如下几个最重要的参数:在天线周围不同方向上的辐射变化、天线效率、天线工作时需要的带宽以及需要提供给天线的功率等。其中,天线带宽的典型定义是反射波衰低于-10dB 或者 VSWR 小于 2 的频率范围,即天线反射功率小于 10%的频率范围。

目前面向 LoRa 表类应用,我司主要提供弹簧天线与折线天线两种形式参考。

天线设计特别需要注意模块的工作频段。理想情况下,客户的天线带宽设计在 470-510MHz,可以满足要求。但在实际应用中,受限于天线大小、成本等因素,天线带宽有限制,因此必须根据实际情况来选择。

6 产品焊接与包装

6.1 产品回流焊作业指导

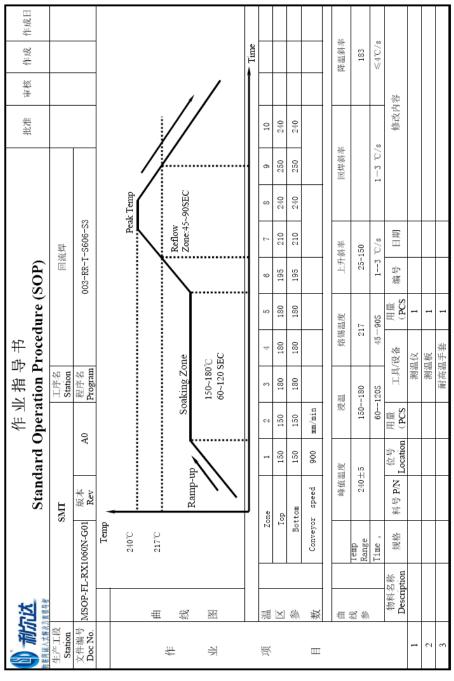


图 6-1 回流焊作业指导

注: 此回流焊作业指导仅适用于无铅作业,仅供参考

6.2 产品包装

本产品采用卷带包装,载带材料:黑色 PS,卷带包装规格如图 6-2 所示:

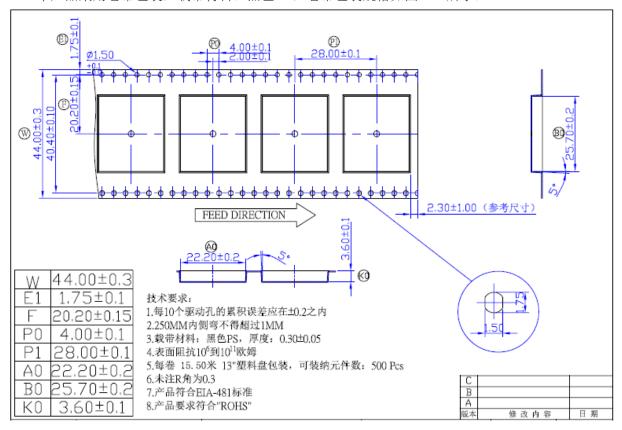


图 6-2 卷带包装规格

模块在载带中的放置方向,如图 6-3 所示

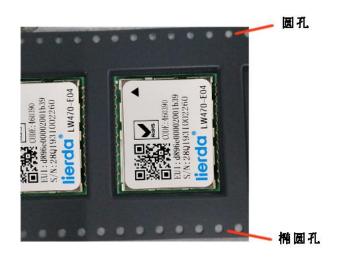


图 6-3 模块的放置方向

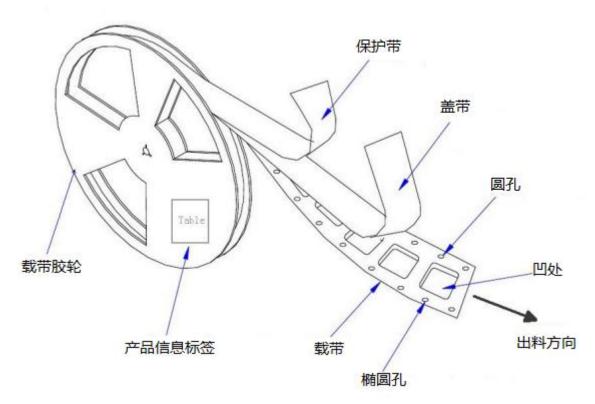


图 6-4 载带胶轮

7 文件修订历史

版本	日期	作者	变更描述
1.00	2018-08-23	黄贤景	初始版本
2.00	2019-09-01	顾超杰	文档格式更新

8 敬告用户

欢迎您使用利尔达科技有限公司的产品,在使用我公司产品前,请先阅读此敬告;如果您已开始使用说明您已阅读并接受本敬告。

利尔达科技有限公司保留所配备全部资料的最终解释和修改权,如有更改恕不另行通知。

浙江利尔达物联网技术有限公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,利尔达公司有权对该文档进行更新。

浙江利尔达物联网技术有限公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请随时联系我司各地分部或浙江总部。

版权所有 © 利尔达科技集团,保留一切权利。

Copyright © Lierda Science & Technology Group Co.,Ltd

编制: 利尔达物联网技术有限公司

2019年9月

文档类型: SP_LSD4WN-2I717M90 规格书技术支持: http://bbs.lierda.com

版本: V2.00 页码: 20/20