

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

9017R. (文件编号: S&CIC1712)

座充充电管理 IC

一、 概述

9017R.是恒流/恒压座充充电器芯片,主要应用于单节锂电池充电。无需外接检测电阻,其内部为 MOSFET 结构, 因此无需外接反向二极管。

9017R.在大功率和高环境温度下可以自动调节充电电流以限制芯片温度。它的充电电压固定在 4.2V, 充电电 流可以通过外置一个电阻器进行调节。当达到浮充电压并且充电电流下降到设定电路的 1/10 时,9017R.自动终止 充电过程。当输入电压移开之后,9017R,自动进入低电流模式,从电池吸取少于2uA的电流。当9017R,进入待机 模式时,供电电流小于 50uA。

9017R.还可以监控充电电流,具有电压检测、自动循环充电的特性,并且具有二个指示管脚指示充电状态、 充电终止状态和输入电压状态。

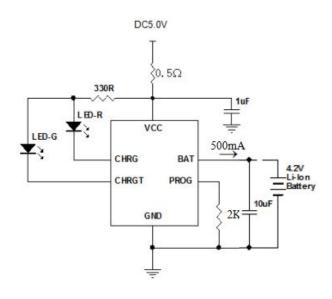
二、特性

- 可达 500mA 的可编程充电电流
- 无需外接 MOSFET、检测电阻、反向二极管
- 恒流/恒压模式操作,具有热保护功能
- 可通过 USB 端口为锂电池充电
- 具有 1%精度的预设充电电压
- 待机模式下电流为 50uA
- ➤ 2.9V 涓流充电电压
- 软启动限制了浪涌电流
- ➤ 采用 SOT23-6 封装

三、 产品应用

- ▶ 手机、掌上电脑、MP3 播放器
- ▶ 蓝牙耳机

四、 管脚图及功能说明



SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

9017R. (文件编号: S&CIC1712)

座充充电管理 IC

五、应用线路

六、 绝对最大额定值

参数	符号	额定值	单位
输入电源电压	Vcc	7	V
PROG 电压	V_{PROG}	VCC+0.3	V
BAT 电压	V_BAT	7	V
CHRG 电压	V_{CHRG}	7	V
CHRGT 电压	V _{CHRGT}	7	V
BAT 短路		Continuous	
热阻	$ heta_{JA}$	250	°C/W
BAT 电流	I _{BAT}	500	mA
PROG 电流	I _{PROG}	800	μΑ
最高结温	Τ _J	110	$^{\circ}$ C
储藏温度	Ts	-65 to +125	$^{\circ}$
焊接温度(不超过 10 秒)		260	${\mathbb C}$

[➤] 充电电流外部编程: PROG (引脚 6): 恒流充电电流设置和充电电流监测端。从 PROG 管脚连接一个外部电阻到地端可以对充电电流进行编程。在预充电阶段,此管脚的电压被调制在 0.1V; 在恒流充电阶段,此管脚的电压被固定在 1V。在充电状态的所有模式,测量该管脚的电压都可以根据下面的公式来估算充电电流:

Rprog电阻和充电电流Ibat对应表

Rprog	Ibat				
Ibat=1000/Rprog					
10K	100mA				
5K	200mA				
3. 3K	300mA				
2. 5K	400mA				
2K	500mA				

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

9017R. (文件编号: S&CIC1712)

座充充电管理 IC

七、电气特性(V_{IN}=5V; T_J=25℃,除非另有说明)

符号	参数	条件	最小值	典型值	最大值	单位
Vcc	输入电源电压		4.5	5.0	5.5	V
Icc		充电模式 ⁽³⁾ ,R _{PROG} =10K		50	300	μA
	 輸入电源电流	待机模式(充电终止)		50		μA
	間がでもがもが	关断模式(R _{PROG} 未连接,		38	50	μA
		V _{CC} < V _{BAT} , V _{CC} < V _{UV})			50	μΑ
V _{FLOAT}	 可调输出(浮充)电压	I _{BAT} =30 mA, I _{CHRG} =5 mA	4.16	4.24	4.28	V
		A: 4.2-4.28V; B: 4.17-4.205V				
I _{BAT}		R _{PROG} = 10k,电流模式	90	110	130	mA
		R _{PROG} = 2k,电流模式	465	500	535	mA
	BAT 端电流	VBAT=4.2V,待机模式		+/-1	+/-5	μA
		关断模式, R _{PROG} 未连接, VCC=3V		+/-0.5	+/-5	μA
		休眠模式,VCC=0V		+/-1		μA
I _{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 10k$		15		mA
V_{TRIKL}	涓流充电阈值电压	$R_{PROG} = 10k$, V_{BAT} Rising	2.8	2.9	3.0	V
V_{UV}	VCC 欠压锁定阈值	VCC 从低到高		3.8		V
V _{UVHYS}	VCC 欠压锁定滞后	VCC 从高到低		200		mV
V _{ASD}	VCC-VBAT 阈值电压	VCC 从低到高		100		mV
	VOO-VBAT 関恒电压	VCC 从高到低		30		mV
I _{TERM}		R _{PROG} = 10k ⁽⁴⁾		0.1		mA/m
	C/10Z 终止电流阈值	TYPROG TON		0.1		Α
OF A TE COMPAGE		R _{PROG} = 2k		0.1		mA/m
		TYPROG ZIV		0.1		Α
V_{PROG}	PROG 端电压	R _{PROG} = 10k,电流模式	0.9	1.03	1.1	V
ΔV_{RECHRG}	电池阈值电压	V _{FLOAT} - V _{RECHRG}		150		mV
T _{LIM}	热保护温度			130		$^{\circ}$

注:

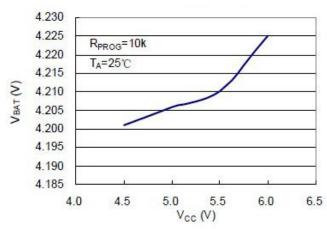
- 1、 超出最大工作范围可能会损坏芯片。
- 2、 超出器件工作参数极限,不保证其正常功能。
- 3、 电源电流包括 PROG 端电流(大约 100uA),不包括通过 BAT 端传输到电池的其他电流。
- 4、 充电终止电流一般是设定充电电流的 0.1 倍。

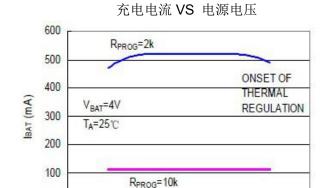
SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

0

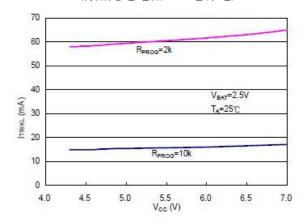
4.0

4.5


5.0


9017R. (文件编号: S&CIC1712)

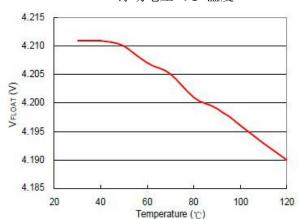
座充充电管理 IC


八、 曲线图

浮动电压 VS 电源电压

涓流充电电流 VS 电源电压

浮动电压 VS 温度

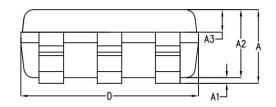

5.5

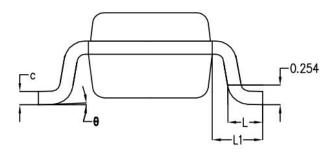
Vcc (V)

6.0

6.5

7.0


SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.


9017R. (文件编号: S&CIC1712)

座充充电管理 IC

九、 封装尺寸图

SOT23-6

SYMBOL	MILLIMETER				
	MIN	NOM	MAX		
A	-	1. 19	1.24		
A1	-	0.05	0.09		
A2	1. 05	1. 10	1. 15		
A3	0.31	0.36	0.41		
b	0.35	0.40	0. 45		
С	0.12	0.17	0. 22		
D	2.85	2.90	2. 95		
Е	2.80	2.90	3.00		
E1	1. 55	1.60	1.65		
е	0.95BSC				
L	0.37	0.45	0. 53		
L1	0.65BSC				
θ	0°	2°	8°		