against 2.5kV ESD.

SOT23 packages.

±15kV ESD-Protected, Low-Voltage, SPDT/SPST, CMOS Analog Switches

General Description

The MAX4561/MAX4568/MAX4569 are low-voltage.

ESD-protected analog switches. The normally open

(NO) and normally closed (NC) inputs are protected

against ±15kV electrostatic discharge (ESD) without

latchup or damage, and the COM input is protected

These switches operate from a single +1.8V to +12V

supply. The 70 Ω at 5V (120 Ω at 3V) on-resistance is

matched between channels to 2Ω max. and is flat (4Ω

max) over the specified signal range. The switches can

handle Rail-to-Rail® analog signals. Off-leakage current

is only 0.5nA at +25°C and 5nA at +85°C. The digital

input has +0.8V to +2.4V logic thresholds, ensuring

TTL/CMOS-logic compatibility when using a single +5V

supply. The MAX4561 is a single-pole/double-throw

(SPDT) switch. The MAX4568 NO and MAX4569 NC are

The MAX4561 is available in a 6-pin SOT23 package, and the MAX4568/MAX4569 are available in 5-pin

Low-Voltage Data-Acquisition Systems

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

single-pole/single-throw (SPST) switches.

High-ESD Environments

Battery-Powered Systems Audio and Video Signal Routing

Sample-and-Hold Circuits Communications Circuits **Features**

- ESD-Protected NO, NC ±15kV—Human Body Model ±15kV—IEC 1000-4-2, Air-Gap Discharge ±8kV—IEC 1000-4-2, Contact Discharge
- Guaranteed On-Resistance
 70Ω +5V Supply
 120Ω with Single +3V Supply
- On-Resistance Match Between Channels (2Ω max)
- Low On-Resistance Flatness: 4Ω max
- ♦ Guaranteed Low Leakage Currents 0.5nA Off-Leakage (at T_A = +25°C) 0.5nA On-Leakage (at T_A = +25°C)
- Guaranteed Break-Before-Make at 5ns (MAX4561 only)
- ♦ Rail-to-Rail Signal Handling Capability
- ◆ TTL/CMOS-Logic Compatible with +5V Supplies
- Industry Standard Pin-Outs MAX4561 Pin Compatible with MAX4544 MAX4568/MAX4569 Pin Compatible with MAX4514/MAX4515

Ordering Information

		-	
	TEMP	PIN-	SOT
PART	RANGE	PACKAGE	TOP MARK
MAX4561EUT+T	-40°C to +85°C	6 SOT23	AAIE
MAX4568EUK+T	-40°C to +85°C	5 SOT23	ADOE
MAX4569EUK+T	-40°C to +85°C	5 SOT23	ADOF

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

_Pin Configurations/Functional Diagrams/Truth Tables

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Applications

ABSOLUTE MAXIMUM RATINGS

V+ to GND0.3 t IN, COM, NO, NC to GND (Note 1)0.3V to (V+ Continuous Current (any terminal)	+ 0.3V)
Peak Current	
(NO, NC, COM; pulsed at 1ms 10% duty cycle)	±30mA
ESD Protection per Method IEC 1000-4-2 (NO, NC)	
Air-Gap Discharge	±15kV
Contact Discharge	±8kV
ESD Protection per Method 3015.7	
V+, GND, IN, COM	.±2.5kV

NO, NC	±15kV
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
5-Pin SOT23 (derate 3.1mW/C above +70°C	.247mW
6-Pin SOT23 (derate 8.7mW/°C above +70°C)	.696mW
Operating Temperature Range40°C t	o +85°C
Storage Temperature Range65°C to	+150°C
Lead Temperature (soldering, 10s)	.+300°C
Soldering Temperature (reflow)	.+260°C

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V_{+} = +4.5V \text{ to } +5.5V, V_{IH} = +2.4V, V_{IL} = +0.8V, T_{A} = T_{MIN} \text{ to } T_{MAX}$, unless otherwise specified. Typical values are at $T_{A} = +25^{\circ}C.$) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIO	MIN	ТҮР	MAX	UNITS	
ANALOG SWITCH							
Input Voltage Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V
On-Resistance	R _{ON}	V+ = 4.5V, I _{COM} = 1mA;	$T_A = +25^{\circ}C$		45	70	Ω
	T ON	$V_{NO} \text{ or } V_{NC} = 1V, 3.5V$	$T_A = T_{MIN}$ to T_{MAX}	0 +25°C 45 TMIN to TMAX +25°C +25°C 0.5 TMIN to TMAX +25°C +25°C 2 TMIN to TMAX +25°C +25°C -0.5 TMIN to TMAX -5 +25°C -0.5 TMIN to TMAX -5 +25°C -0.5 TMIN to TMAX -5 +25°C -1 TMIN to TMAX -5 +25°C -1 TMIN to TMAX -10 2.4 2.4		75	32
On-Resistance Match Between Channels		V+ = 4.5V, I _{COM} =1mA;	$T_A = +25^{\circ}C$		0.5	2	Ω
(Note 4)	ΔR _{ON}	$V_{NO} \text{ or } V_{NC} = 1V, 3.5V$	$T_A = T_{MIN}$ to T_{MAX}			3	
On-Resistance Flatness	_	$V_{+} = 4.5V_{.} I_{COM} = 1mA_{.}$	T _A = +25°C		2	4	
(Note 5)	RFLAT(ON)	$V_{\rm NO} {\rm or} V_{\rm NC} = 1V, 2.25V, 3.5V$	$T_A = T_{MIN}$ to T_{MAX}			5	Ω
Off-Leakage Current	I _{NO(OFF)} ,	$\begin{array}{c} TA = 125^{\circ}C \\ TA = T_{MIN} \text{ to } T_{MAX} \\ TA = T_{MIN} \text{ to } T_{MAX} \\ TA = T_{MIN} \text{ to } T_{MAX} \\ TA = +25^{\circ}C \\ TA = T_{MIN} \text{ to } T_{MAX} \\ TA = +25^{\circ}C \\ TA = T_{MIN} \text{ to } T_{MAX} \\ TA = T_{MIN} \text{ to } T_{MAX} \\ TA = +25^{\circ}C \\ TA = +25^{\circ}C$	0.5	0.5 nA			
(NO or NC)	INC(OFF)	V_{NO} or V_{NC} = 4.5V, 1V	$T_A = T_{MIN}$ to T_{MAX}	-5		5	IIA
COM Off-Leakage Current		V+ = 5.5V, V _{COM} = 1V, 4.5V;	$T_A = +25^{\circ}C$	-0.5	0.01	0.5	
(MAX4568/MAX4569 only)	ICOM(OFF)	$V_{NO} \text{ or } V_{NC} = 4.5 \text{V}, 1 \text{V}$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	nA
		$V_{+} = 5.5V, V_{COM} = 1V, 4.5V;$	TA TA TA TA TA NO or VNC = 1V, 3.5V TA = TMIN to TMAX TA = +25°C TA = +25°C TA TA = TMIN to TMAX TA = +25°C TA = +25°C TA TA = +25°C TA = +25°C TA = +25°C NO or VNC = 1V, 2.25V, 3.5V TA = TMIN to TMAX TA = +25°C TA = +25°C NO or VNC = 1V, 2.25V, 3.5V TA = TMIN to TMAX TA = +25°C TA = +25°C So or VNC = 4.5V, 1V TA = TMIN to TMAX -5 TA = +25°C So or VNC = 4.5V, 1V TA = +25°C -0.5 0 So or VNC = 4.5V, 1V TA = +25°C -0.5 0 So or VNC = 4.5V, 1V TA = +25°C -0.5 0 So or VNC = 4.5V, 1V TA = +25°C -0.5 0 So or VNC = 1V, 4.5V; TA = TMIN to TMAX -5 So or VNC = 1V, 4.5V or TA = +25°C -1 So or VNC = 1V, 4.5V or TA = TMIN to TMAX -10	-1		1	
COM On-Leakage Current	ICOM(ON)	unconnected			10	nA	
LOGIC INPUT							
Input Logic High	VIH			2.4			V
Input Logic Low	VIL					0.8	V
Input Leakage Current	lin	$V_{IN} = 0 \text{ or } V_{+}$		-1		1	μΑ

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V + = +4.5V \text{ to } +5.5V, V_{IH} = +2.4V, V_{IL} = +0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } T_A = +25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS			MIN	ТҮР	МАХ	UNITS
SWITCH DYNAMIC CHAR	ACTERISTIC	S						
Turn On Tings		V_{NO} , $V_{NC} = 3V$, $R_L = 300\Omega$,	T _A = +2	5°C		90	150	
Turn-On Time	ton	C _L = 35pF; Figure 1	$T_A = T_N$	IN to TMAX			180	ns
Turn-Off Time	torr	V_{NO} , $V_{NC} = 3V$, $R_L = 300\Omega$,	T _A = +2	5°C		40	80	20
Tum-On Time	tOFF	C _L = 35pF, Figure 1	$T_A = T_N$	IN to T _{MAX}			100	ns
Break-Before-Make Delay (MAX4561 only)	tBBM	V_{NO} , V_{NC} = 3V, R_L = 300 Ω , C_L = 35pF, Figure 2			5	50		ns
	0	$V_{GEN} = 2V, C_L = 1.0nF,$	T _A =	MAX4561		17		
Charge Injection	Q	R _{GEN} = 0; Figure 3	+25°C	MAX4568/9		6		рС
NO or NC Off Capacitance	COFF	$V_{NO} = V_{NC} = GND,$ f = 1MHz, Figure 4	T _A = +2	5°C		20		pF
COM Off-Capacitance (MAX4568/MAX4569 only)	Ссом	V _{COM} = GND, f = 1MHz, Figure 4	$T_A = +25^{\circ}C$			12		pF
		VCOM = VNO, VNC = GND,	Image: A gure 4 Image: A gure 4 <th< td=""><td></td><td>31</td><td></td><td>_</td></th<>		31		_	
COM On-Capacitance	Ссом	f = 1MHz, Figure 4			20	pF	р⊢	
Off-Isolation (Note 6)	VISO	$\label{eq:NO} \begin{split} V_{NO} &= V_{NC} = 1 V_{RMS}, \\ R_L &= 50 \Omega; \ C_L = 5 p F, \\ f &= 1 M Hz; \ Figure 5 \end{split}$	101/01/000/0			-75		dB
Total Harmonic Distortion	THD	$R_L = 600\Omega$, 5Vp-p, f = 20Hz to 20kHz	T _A = +25°C			0.01		%
	L.		T _A = +2	5°C		110		mA
ESD SCR Holding Current	Iн	$T_A = +85^{\circ}C$		$T_A = +85^{\circ}C$		70		
POWER SUPPLY								
Power-Supply Range	V+				1.8		12	V
Positive Supply Current	upply Current I+	V+ = 5.5V, V _{IN} = 0 or V+	T _A =	+25°C		0.05	1	μA
	IT	$v_1 = 0.0 v, v_{111} = 0.01 v +$	T _A =	T _{MIN} to T _{MAX}		10		μ

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V + = +2.7V \text{ to } +3.6V, V_{IH} = +2.0V, V_{IL} = +0.6V, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise specified. Typical values are at $T_A = +25^{\circ}C$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
ANALOG SWITCH							
On Desistance	D	$I_{COM} = 1$ mA, V_{NO} or	$T_A = +25^{\circ}C$		75	120	0
On-Resistance	RON	$V_{\rm NC} = 1.5V, V_{\rm H} = 2.7V$	$T_A = T_{MIN}$ to T_{MAX}			150	Ω
LOGIC INPUT							
Input Logic High	VIH			2.0			V
Input Logic Low	VIL					0.6	V
SWITCH DYNAMIC CHARAC	TERISTICS						
Turn On Time -	4.	$V_{NO} \text{ or } V_{NC} = 1.5 \text{V}, \text{ R}_{L} = 300 \Omega,$	$T_A = +25^{\circ}C$		150	250	
Turn-On Time	ton	$C_L = 35 pF$, Figure 1	$T_A = T_{MIN}$ to T_{MAX}			300	ns
T 0// T		$V_{NO} \text{ or } V_{NC} = 1.5 \text{V}, \text{ R}_{L} = 300 \Omega,$	$T_A = +25^{\circ}C$		60	100	
Turn-Off Time	tOFF	$C_L = 35 pF$, Figure 1 $T_A = T_{MIN}$ to T_{MAL}	$T_A = T_{MIN}$ to T_{MAX}			150	ns
Break-Before-Make Delay (MAX4561 only)	T _{BBM}	V_{NO} or V_{NC} = 3V, R_L = 300 Ω , C_L = 35pF, Figure 2	T _A = +25°C	1.5	80		ns

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.

Note 3: Parameters are 100% tested at +25°C and guaranteed by correlation at the full rated temperature.

Note 4: $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$.

Note 5: Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.

Note 6: Off-Isolation = 20log₁₀ (VCOM/VNO), VCOM = output, VNO = input to off switch.

Typical Operating Characteristics

Typical Operating Characteristics (continued)

_Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN			NAME	FUNCTION
MAX4561	MAX4568	MAX4569		FUNCTION
1	4	4	IN	Logic Control Input
2	5	5	V+	Positive Supply Voltage
3	3	3	GND	Ground
4	_	2	NC	Analog Switch Normally Closed Terminal
5	1	1	СОМ	Analog Switch Common Terminal
6	2	_	NO	Analog Switch Normally Open Terminal

Applications Information

Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always sequence V+ on first, followed by the logic inputs, NO/NC, or COM.

Operating Considerations for High-Voltage Supply

The MAX4561/MAX4568/MAX4569 are capable of +12V single-supply operation with some precautions. The absolute maximum rating for V+ is +13V (referenced to GND). When operating near this region, bypass V+ with a 0.1μ F min capacitor to ground as close to the device as possible.

±15kV ESD Protection

The MAX4561/MAX4568/MAX4569 are ±15kV ESD-protected at the NC/NO terminals in accordance with IEC1000-4-2. To accomplish this, bidirectional SCRs are included on-chip between these terminals. When the voltages at these terminals go Beyond-the-Rails[™], the corresponding SCR turns on in a few nanoseconds and bypasses the surge safely to ground. This method is superior to using diode clamps to the supplies because unless the supplies are very carefully decoupled through low-ESR capacitors, the ESD current through the diode clamp could cause a significant spike in the supplies. This may damage or compromise the reliability of any other chip powered by those same supplies.

There are diodes from NC/NO to the supplies in addition to the SCRs. A resistance in series with each of these diodes limits the current into the supplies during an ESD strike. The diodes protect these terminals from overvoltages that are not a result of ESD strikes. These diodes also protect the device from improper powersupply sequencing.

Once the SCR turns on because of an ESD strike, it remains on until the current through it falls below its "holding current." The holding current is typically 110mA in the positive direction (current flowing into the NC/NO terminal) at room temperature (see SCR Holding Current vs. Temperature in the Typical Operating Characteristics). Design the system so that any sources connected to NC/NO are current-limited to a value below the holding current to ensure the SCR turns off when the ESD event is finished and normal operation resumes. Also, remember that the holding current varies significantly with temperature. The worst case is at +85°C when the holding currents drop to 70mA. Since this is a typical number to guarantee turnoff of the SCRs under all conditions, the sources connected to these terminals should be current-limited to no more than half this value. When the SCR is latched, the voltage across it is approximately 3V. The supply voltages do not affect the holding current appreciably. The sources connected to the COM side of the switches need not be current limited since the switches turn off internally when the corresponding SCR(s) latch.

Even though most of the ESD current flows to GND through the SCRs, a small portion of it goes into V+. Therefore, it is a good idea to bypass the V+ with 0.1μ F capacitors directly to the ground plane.

ESD protection can be tested in various ways. Inputs are characterized for protection to the following:

Beyond-the-Rails is a trademark of Maxim Integrated Products.

- •±15kV using the Human Body Model
- •±8kV using the Contact Discharge method specified in IEC 1000-4-2 (formerly IEC 801-2)
- •±15kV using the Air-Gap Discharge method specified in IEC 1000-4-2 (formerly IEC 801-2)

ESD Test Conditions

Contact Maxim Integrated Products for a reliability report that documents test setup, methodology, and results.

Human Body Model

Figure 6 shows the Human Body Model, and Figure 7 shows the waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which can be discharged into the test device through a $1.5k\Omega$ resistor.

IEC 1000-4-2

The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX4561 enables the design of equipment that meets Level 4 (the highest level) of IEC 1000-4-2, without additional ESD protection components.

The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 ESD test model (Figure 8), the ESD withstand voltage measured to this standard is generally lower than that measured using the Human Body Model. Figure 9 shows the current waveform for the \pm 8kV IEC 1000-4-2 Level 4 ESD Contact Discharge test.

The Air-Gap test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.

Chip Information

PROCESS: CMOS

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 3. Charge Injection

Figure 4. Channel On/Off-Capacitance

Figure 6. Human Body ESD Test Model

Figure 8. IEC 1000-4-2 ESD Test Model

Test Circuits/Timing Diagrams (continued)

Figure 5. Off-Isolation/On-Channel

Figure 7. Human Body Model Current Waveform

Figure 9. IED 1000-4-2 ESD Generator Current Waveform

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SOT23	U5+2	<u>21-0057</u>	<u>90-0174</u>
6 SOT23	U6SN+1	<u>21-0058</u>	<u>90-0175</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/00	Initial release	—
1	7/12	Added RoHS packaging option to data sheet	1, 2, 10

_ 11

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated Products, Inc. 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

Maxim is a registered trademark of Maxim Integrated Products, Inc.