

WS3441BN 非隔离降压型 LED 恒流控制器

特点

- 临界模式工作,无需电感补偿
- 内置 500V 功率 MOSFET
- 无需辅助绕组供电
- 高达±3%的 LED 电流精度
- 高达 93%以上的系统效率
- LED 短路保护
- 智能温度控制技术,避免高温灯闪
- LED 开路保护可选,通过 Rovp 接地或悬空
- 内置 LED 开路保护,彻底解决潮湿漏电闪灯问题
- 掉电无回闪
- 可以用很小的输入电容

应用领域

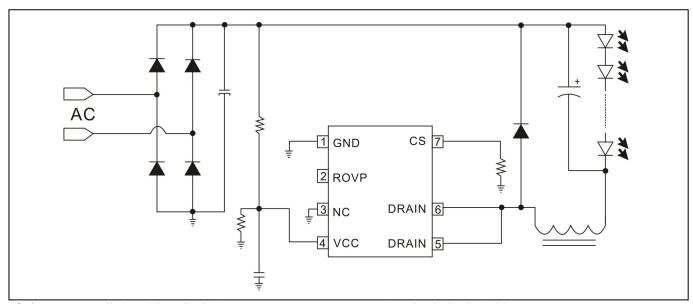
- T5灯管
- T8灯管
- 球泡灯
- 其它LED灯管

概述

WS3441BN 是一款高精度的 LED 恒流控制芯片,应用于非隔离的降压型 LED 电源系统,适合全范围的交流电压输入或者 12V~500V 的直流电压输入。

WS3441BN 内部集成 500V 功率 MOSFET, 只需要很少的外围元件,即可实现优异的恒流特性。

WS3441BN 芯片內带有高精度的电流取样电路,同时采用了先进的恒流控制技术,实现高精度的 LED 恒流输出和优异的线性调整率。芯片工作在电感电流临界模式,系统输出电流不随电感量和 LED 工作电压的变化而变化,实现优异的负载调整率。


WS3441BN 芯片工作电流只有 95uA, 无需辅助绕组供电, 简化设计, 降低系统成本。

WS3441BN 内部采用了独特的智能温度控制,可以轻易解决高温时灯闪的问题。

WS3441BN具有多重保护功能,包括LED开路/短路保护、 电流采样电阻短路保护和芯片过温保护。

WS3441BN 提供 7-Pin 的 SOP-7 封装。

典型应用图

备注: Rovp PIN 接地,则内置过压保护,Tovp 约 6Us; Rovp PIN 悬空,则没有过压保护功能。

2/8

引脚定义与器件标识

WS3441BN 提供 7-Pin 的 SOP-7 封装,如下图所示:

引脚功能说明

引脚名	引脚号	功能说明	
GND	1	芯片地	
ROVP	2	通过该引脚接地或者悬空,选择是否需要过压保护功能;	
NC	3	悬空脚,必须接地,参考下文中 PCB 设计指导	
VCC	4	芯片电源端	
DRAIN	5,6	内部高压 MOSFET 的漏极	
CS	7	电流采样端,接电流检测电阻到地。	

电路内部结构框图

WINSEMI MICROELECTRONICS WINSEMI WINSEMI

订购信息

封装形式	芯片表面标识	采购器件名称	
7-Pin SOP-7, Pb-free	WS3441BNS7P	WS3441BNS7P	

推荐应用功率

产品型号	封装形式	输入电压(VAC)	输出电压 (V)	输出电流(mA)
WS3441BNS7P	SOP-7	175VAC—264VAC	170	≤110mA
			200	≤80mA
		90VAC—264VAC	50	≤150mA

极限参数

符号(symbol)	参数(parameter)	极限值	单位(unit)
V _{DS}	内部高压 MOSFET 漏极到源极峰值电压	-0.3~500	V
Icc_max	最大电源电流	2.5	mA
V _{ROVP}	LED 开路保护电压调节端	-0.3~7	V
V _{SOURCE}	内部高压 MOSFET 的源极电压	-0.3~8	V
V _{CS}	CS 电流采样端电压	-0.3~7	V
P _{DMAX}	功耗 SOP7	0.6	W
TJ	最大工作结温	165	$^{\circ}$ C
T _{STG}	最小/最大储藏温度	-55~165	$^{\circ}$

注意:超过上表中规定的极限参数会导致器件永久损坏。不推荐将该器件工作在以上极限条件,工作在极限条件以上,可能会影响 器件的可靠性。

WINSEMI MICROELECTRONICS WINSEMI WINSE

电气特性参数(若无特殊说明, T_A=25℃, VCC=7V)

符号	参数	测试条件	最小值	典型值	最大值	单位
电源供电部分						
V _{cc_clamp}	VCC 钳位电压	Ivcc=1mA	6.9	7.3	7.9	V
I _{cc_clamp}	VCC 钳位电流				2.5	mA
V _{CC_ST}	芯片启动电压	VCC 上升	6.5	6.9	7.5	V
V _{uvlo_HYS}	欠压保护迟滞	VCC 下降		1.5		V
Ist	启动电流	VCC <vcc_st-0.5v< td=""><td></td><td>200</td><td>270</td><td>uA</td></vcc_st-0.5v<>		200	270	uA
l _{op}	工作电流			95		uA
		电流采样部分	·			
Vcs_th	电流检测阈值		390	400	410	mV
T _{LEB}	电流采样消隐时间			350		ns
T _{DELAY}	芯片关断延迟			300		ns
		内部驱动				
T _{OFF_MIN}	最小退磁时间			3		us
T _{OFF_MAX}	最大退磁时间			340		us
T _{ON_MAX}	最大开通时间			53		us
		高压 MOSFET 参数部分	\			
R _{DSON}	内部开关管导通阻抗	Vcc=7V/Id=0.5A		16	20	ohm
$V_{\text{DS_BD}}$	内部开关管最大耐压	Vgs=0V/Id=250uA	500			V
ldss	功率管漏电流	Vgs=0V/Vds=500V			10	uA
OVP 部分						
Tovp	内置 OVP 保护消磁时间			6		us
过温保护						
T _{REG}	过热调节温度点			150		°C

winsemi microelectronics winsemi microelectronics winsemi microelectronics winsemi microelectronics winsemi microelectronics www.winsemi.com Tel: +86-755-8250 6288 Fax: +86-755-8250 6299

功能描述

WS3441BN是一款专为 LED 照明设计的恒流驱动芯片,应用于非隔离的降压型 LED 电源系统。它内部集成500V功率MOSFET,并且采用先进的恒流控制方法,只需要很少的外围元件就可以达到优异的恒流特性,系统成本低,效率高。

启动电阻

系统上电后,母线电压通过启动电阻对VCC电容充电, 当VCC电压达到芯片开启阈值时,芯片开始工作。WS3441BN 内部将VCC电压箝位到7.3V。

系统启动电流的典型值为 200uA (最大值为 270uA)。例如当使用在 176VAC—264VAC 时,启动电阻应按如下公式设定为:

$$R_{ST} < \frac{V_{IN_MIN} \times 1.414}{I_{ST_MAX}} \approx \frac{176 \times 1.414}{270} = 910 K\Omega$$

启动电阻建议采用两颗 1206 封装贴片电阻串联使用。

VCC 电容的选取

Vcc 电容是用于给芯片供电,从而确保芯片稳定工作。 布板的时候,要尽可能贴近芯片放置。

推荐Vcc采用1uF或以上容量的电容。如果选用的是叠层 瓷片电容(MLCC),推荐用X7R的材质,从而保证高低温下,容量的稳定性。另外,由于MLCC体积小,材质脆等特点,容 易出现由于外应力损坏或者因为PCB板上杂质的存在而出现 Vcc漏电,从而导致芯片启动不了的现象。请务必在布板和生产过程中加以严格的控制。

恒流控制,输出 LED 电流设置

WS3441BN采用专利的恒流控制方法,只需要很少的外围元件,即可实现高精度的恒流输出。芯片逐周期检测电感的峰值电流,CS 端连接到内部峰值电流比较器的输入端,与内部 400mV阈值电压进行比较,当CS电压达到内部检测阈值时,功率管关断。CS比较器的输出还包括一个350ns的前沿消隐时间。

电感峰值电流的计算公式:

$$I_{PK} = \frac{400}{R_{CS}} (mA)$$

其中,Rcs为电流检测电阻阻值。为了保证系统的恒流精度,建议采样电阻Rcs选用1%精度的电阻。

LED 输出电流计算公式:

$$I_{LED} = \frac{I_{PK}}{2} (mA)$$

其中,IPK是电感的峰值电流。

续流二极管

MOSFET导通时,二极管将会承受等于输入电压的反向电压。推荐使用耐压600V二极管。并且,由于续流二极管的工作频率在20K~120Khz,所以推荐使用Trr小于50nS的ES,ER等系列的超快恢复二极管。

输入电解电容

输出电解电容耐压必须考虑输入电压,常用的是400V。 通常,输入电解电容的容量设计可以采用如下的经验公 式:

90Vac~264Vac: 1W 输出选用1uF输入电解电容 176Vac~264Vac: 1W 输出选用0.5uF输入电解电容

输出电容

推荐使用电解电容,稳定的容量可以提高电源效率,改善 LED纹波电流,提高光效。

输出电解电容耐压必须考虑设置的Vovp电压。

储能电感L的设计

为了彻底解决客户遇到的外置OVP设定电阻受到潮湿,污渍等影响,出现闪灯的故障。WS3441BN将OVP的保护时间固化在IC的内部,通过ROVP PIN 接地或者悬空来设定是否具有OVP功能。当ROVP PIN接地时,具有OVP功能,此时内置Tovp约为: 6uS; 当ROVP PIN 悬空时,不具有OVP功能。对于具有OVP功能的设计,可以通过电感量的设计来获取合适的OVP电压。

通常,建议开路保护电压,设定为最大带载电压的1.3-1.5 倍以上,WS3441BN内部设定的 时间为6us;所以,建议最大带载电压下的Toff时间为9us。

$$t_{o\!f\!f} = \frac{L \times I_{P\!K}}{V_{L\!E\!D\ \rm max}}$$

其中, L 是电感的感量; 是流过电感的电流峰值; 是指

最大带载灯电压。

储能电感的计算公式为:

$$L = \frac{V_{LED_max} \times 9us}{I_{PK}}$$

当电感量发生变化时,OVP电压也会随之发生变化。由于工字型等磁路开放的电感,其感量容易受到温度,外围环境等的影响而发生巨大的变化,因此,为了避免因为电感量变化而出现误触发 OVP 的现象,请勿和本产品配合使用。

保护控制

WS3441BN內置多种保护功能,包括输出 LED 开路/短路保护,电流检测电阻短路保护。

芯片工作时会自动检测故障状态,如果输出LED开路/短路、电流检测电阻短路或者电感饱和,芯片立刻进入保护状态,功率 MOSFET 被关断。同时,芯片不断检测故障状态,直到故障解除,当外部故障解除后,芯片自动恢复到正常工作。

线电压补偿

WS3441BN內置线电压补偿功能,使得LED电流在全电 压范围内都能保持一致,具有非常小的线性调整率,确保高的 恒流精度。

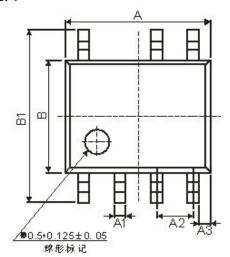
智能温控技术

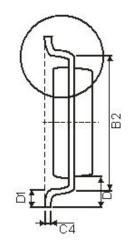
WS3441BN具有智能温控技术,在驱动电源过热时逐渐减小输出电流,从而控制输出功率和温升,使电源温度保持在设定值,以提高系统的可靠性。芯片内部设定过热调节温度点为150℃。

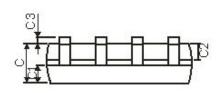
PCB 设计

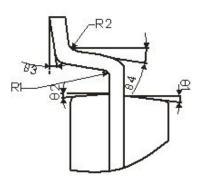
在设计 WS3441N PCB时,需要遵循以下指南:

Vcc电容: VCC电容需要紧靠芯片VCC和GND引脚。


地线: 电流采样电阻的功率地线尽可能短,且要和芯片的 地线及其它小信号的地线分头接到 Bulk 电容的地端。


功率环路:由输入电容,功率IC和续流二极管构成的功率 环路的面积要尽量小,以减小EMI辐射。




封装信息

SOP7封装外观图

	Winsemi				
Symbol	Dimensions in Millimeters		Dimensions in Inches		
	Min	Max	Min	Max	
Α	4.70	5.10	0.185	0.201	
В	3.70	4.10	0.146	0.161	
С	1.30	1.50	0.051	0.059	
A1	0.35	0.48	0.014	0.019	
A2	1.27TYP		0.05TYP		
A3	0.345TYP		0.014TYP		
B1	5.80	6.20	0.228	0.244	
B2	5.00TYP		0.197T	YP	
C1	0.55	0.70	0.022	0.028	
C2	0.55	0.70	0.022	0.028	
C3	0.05	0.225	0.002	0.009	
C4	0.203TYP		0.008TYP		
D	1.05TYP 0.041TYP		YP		
D1	0.40	0.80	0.016	0.031	

注意事项

- 1. 购买时请认清公司商标,如有疑问请与公司本部联系。
- 2. 在电路设计时请不要超过器件的绝对最大额定值,否则会影响整机的可靠性。
- 3. 本说明书如有版本变更不另外告知。

联系方式

深圳市稳先微电子有限公司

公司地址:深圳市福田区车公庙天安数码城创新科技广场二期东座1002

邮编: 518040

总机: +86-755-8250 6288 传真: +86-755-8250 6299 网址: <u>www.winsemi.com</u>