Power MOSFET ## 60 V, 27.4 m Ω , 17 A, Single N-Channel #### **Features** - Low R_{DS(on)} to Minimize Conduction Losses - Low Q_G and Capacitance to Minimize Driver Losses - AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |---|-------------------------|---------------------------|-----------------------------------|---------------|------| | Drain-to-Source Voltage | Drain-to-Source Voltage | | | 60 | V | | Gate-to-Source Voltage | | | V _{GS} | ±16 | V | | Continuous Drain Cur- | | T _C = 25°C | I _D | 17 | Α | | rent R _{θJC} (Notes 1 & 3) | Steady | T _C = 100°C | | 12 | | | Power Dissipation R _{θJC} | State | T _C = 25°C | P _D | 18 | W | | (Note 1) | | T _C = 100°C | | 9.0 | | | Continuous Drain | | T _A = 25°C | I _D | 7.0 | Α | | Current $R_{\theta JA}$ (Notes 1, 2 & 3) | Olcady | T _A = 100°C | | 5.0 | | | Power Dissipation R _{θJA} | State | T _A = 25°C | P _D | 2.9 | W | | (Notes 1 & 2) | | T _A = 100°C | | 1.45 | | | Pulsed Drain Current | T _A = 25° | C, t _p = 10 μs | I _{DM} | 77 | Α | | Operating Junction and S | torage Te | mperature | T _J , T _{stg} | -55 to
175 | °C | | Source Current (Body Did | ode) | | Is | 20 | Α | | Single Pulse Drain-to-So
Energy (T _J = 25°C, I _{L(pk)} | | | E _{AS} | 48 | mJ | | Lead Temperature for So (1/8" from case for 10 s) | Idering Pu | rposes | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL RESISTANCE MAXIMUM RATINGS | Parameter | Symbol | Value | Unit | |---|-----------------|-------|------| | Junction-to-Case (Drain) (Note 1) | $R_{\theta JC}$ | 8.05 | °C/W | | Junction-to-Ambient - Steady State (Note 2) | $R_{\theta JA}$ | 51.6 | | - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. - 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad. - 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle. #### ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(on)} | I _D | | |----------------------|---------------------|----------------|--| | 60 V | 27.4 mΩ @ 10 V | 17 A | | | 00 V | 40 mΩ @ 4.5 V | 17.8 | | #### **MARKING DIAGRAM & PIN ASSIGNMENT** = Assembly Location = Year ww = Work Week 5C688L = Device Code = Pb-Free Package #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Parameter | Symbol | Test Cond | ition | Min | Тур | Max | Unit | |--|--------------------------------------|--|-------------------------|-----|------|------|-------| | OFF CHARACTERISTICS | · · · · · | | • | | • | _ | • | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} = 0 V, I _D = | = 250 μΑ | 60 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | | | | 27 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V, | T _J = 25°C | | | 10 | μΑ | | | | $V_{DS} = 60 \text{ V}$ | T _J = 125°C | | | 250 | 1 | | Gate-to-Source Leakage Current | I _{GSS} | $V_{DS} = 0 V, V_{G}$ | _S = 20 V | | | 100 | nA | | ON CHARACTERISTICS (Note 4) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_{D}$ | = 15 μΑ | 1.2 | | 2.1 | V | | Negative Threshold Temperature Coefficient | V _{GS(TH)} /T _J | | | | 4.4 | | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 10 V, I _E | _O = 10 A | | 22.8 | 27.4 | mΩ | | | | V _{GS} = 4.5 V, I | _D = 10 A | | 32 | 40 | 1 | | Forward Transconductance | 9FS | $V_{DS} = 5 \text{ V}, I_{D}$ | = 10 A | | 20 | | S | | CHARGES, CAPACITANCES AND GATE RE | SISTANCES | | | | | | | | Input Capacitance | C _{iss} | | | | 400 | | pF | | Output Capacitance | C _{oss} | V _{GS} = 0 V, f =
V _{DS} = 25 | 1.0 MHz, | | 170 | | 1 | | Reverse Transfer Capacitance | C _{rss} | VDS - 20 | V | | 12 | | | | Total Gate Charge | Q _{G(TOT)} | V _{DS} = 48 V, | V _{GS} = 4.5 V | | 3.4 | | nC | | | | | V _{GS} = 10 V | | 7.0 | | | | Threshold Gate Charge | Q _{G(TH)} | | • | | 0.9 | | nC | | Gate-to-Source Charge | Q _{GS} | Voc = 4.5 V. Vr | ne = 48 V. | | 1.5 | | | | Gate-to-Drain Charge | Q_{GD} | $V_{GS} = 4.5 \text{ V}, V_{DS} = 48 \text{ V},$ $I_D = 10 \text{ A}$ | | | 1.1 | | 1 | | Plateau Voltage | V_{GP} | | | | 2.9 | | V | | SWITCHING CHARACTERISTICS (Note 5) | | | | | • | | | | Turn-On Delay Time | t _{d(on)} | | | | 8 | | ns | | Rise Time | t _r | $V_{GS} = 4.5 \text{ V}, V_{E}$ | ne = 48 V. | | 42 | | 1 | | Turn-Off Delay Time | t _{d(off)} | $I_D = 10 \text{ A}, R_G$ | = 2.5 Ω | | 11 | | | | Fall Time | t _f | | | | 24 | | | | DRAIN-SOURCE DIODE CHARACTERISTIC | S | | | | | | | | Forward Diode Voltage | V_{SD} | V _{GS} = 0 V, | $T_J = 25^{\circ}C$ | | 0.9 | 1.2 | V | | | | $I_S = 10 \text{ A}$ | T _J = 125°C | | 0.8 | | 1 | | Reverse Recovery Time | t _{RR} | | • | | 17 | | ns | | Charge Time | ta | $V_{CS} = 0 \text{ V dIs/dt}$ | = 100 A/us | | 8 | | 1 | | Discharge Time | tb | $V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 10 \text{ A}$ | | | 9 | | 1 | | Reverse Recovery Charge | Q _{RR} | | | | 10 | | nC | Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. Switching characteristics are independent of operating junction temperatures. #### **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate-to-Source Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage #### **TYPICAL CHARACTERISTICS** Figure 7. Capacitance Variation Figure 8. Gate-to-Source vs. Total Charge Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. $I_{\mbox{\scriptsize PEAK}}$ vs. Time in Avalanche #### **TYPICAL CHARACTERISTICS** Figure 13. Thermal Response #### **ORDERING INFORMATION** | Order Number | Package | Shipping [†] | |---------------|-------------------|-----------------------| | NVD5C688NLT4G | DPAK
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. **DETAIL A** ROTATED 90° CW # **DPAK (SINGLE GAUGE)** CASE 369C ISSUE F **DATE 21 JUL 2015** - IOTES. 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI- - MENSIONS b3, L3 and Z. Jimensions b And E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. MENSIONS D AND E ARE DETERMINED AT THE - OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM - 7. OPTIONAL MOLD FEATURE. | | INCHES | | MILLIM | ETERS | |-----|--------|-------|----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.086 | 0.094 | 2.18 | 2.38 | | A1 | 0.000 | 0.005 | 0.00 | 0.13 | | b | 0.025 | 0.035 | 0.63 | 0.89 | | b2 | 0.028 | 0.045 | 0.72 | 1.14 | | b3 | 0.180 | 0.215 | 4.57 | 5.46 | | С | 0.018 | 0.024 | 0.46 | 0.61 | | c2 | 0.018 | 0.024 | 0.46 | 0.61 | | D | 0.235 | 0.245 | 5.97 | 6.22 | | E | 0.250 | 0.265 | 6.35 | 6.73 | | е | 0.090 | BSC | 2.29 | BSC | | Н | 0.370 | 0.410 | 9.40 | 10.41 | | L | 0.055 | 0.070 | 1.40 | 1.78 | | L1 | 0.114 | REF | 2.90 | REF | | L2 | 0.020 | BSC | 0.51 BSC | | | L3 | 0.035 | 0.050 | 0.89 | 1.27 | | L4 | | 0.040 | | 1.01 | | Z | 0.155 | | 3.93 | | #### **GENERIC MARKING DIAGRAM*** XXXXXX = Device Code = Assembly Location Α = Wafer Lot L Υ = Year WW = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. ### SCALE 1:1 Α В L3 Ζ Ո DETAIL A NOTE 7 **BOTTOM VIEW** Cb2 е SIDE VIEW ⊕ 0.005 (0.13) M C **TOP VIEW** Z Ħ L2 GAUGE C SEATING PLANE **BOTTOM VIEW A1** ALTERNATE CONSTRUCTIONS | STYLE 1:
PIN 1. BASE
2. COLLE
3. EMITTI
4. COLLE | ER 3. S | | STYLE 3:
PIN 1. ANOD
2. CATHO
3. ANOD
4. CATHO | E
DDE
E | STYLE 4:
PIN 1. CATHODE
2. ANODE
3. GATE
4. ANODE | STYLE 5:
PIN 1. GATE
2. ANODE
3. CATHODE
4. ANODE | |--|---|------|--|---------------|---|---| | STYLE 6:
PIN 1. MT1
2. MT2
3. GATE
4. MT2 | STYLE 7:
PIN 1. GATE
2. COLLECT
3. EMITTER
4. COLLECT | OR 2 | E 8:
I. N/C
I. CATHODE
I. ANODE
II. CATHODE | 2.
3. |):
ANODE
CATHODE
RESISTOR ADJUST
CATHODE | STYLE 10:
PIN 1. CATHODE
2. ANODE
3. CATHODE
4. ANODE | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrol | | | |------------------|---------------------------------|---|-------------|--| | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from the Document F
versions are uncontrolled except w | | | | NEW STANDARD: | REF TO JEDEC TO-252 | "CONTROLLED COPY" in red. | | | | DESCRIPTION: | DPAK SINGLE GAUGE SURFACE MOUNT | | PAGE 1 OF 2 | | | DOCUMENT | NUMBER: | |------------|---------| | 98AON10527 | 7D | PAGE 2 OF 2 | ISSUE | REVISION | DATE | | | | | |-------|--|-------------|--|--|--|--| | 0 | RELEASED FOR PRODUCTION. REQ. BY L. GAN | 24 SEP 2001 | | | | | | Α | ADDED STYLE 8. REQ. BY S. ALLEN. | 06 AUG 2008 | | | | | | В | ADDED STYLE 9. REQ. BY D. WARNER. | 16 JAN 2009 | | | | | | С | ADDED STYLE 10. REQ. BY S. ALLEN. | 09 JUN 2009 | | | | | | D | RELABELED DRAWING TO JEDEC STANDARDS. ADDED SIDE VIEW DETAIL A. CORRECTED MARKING INFORMATION. REQ. BY D. TRUHITTE. | 29 JUN 2010 | | | | | | E | ADDED ALTERNATE CONSTRUCTION BOTTOM VIEW. MODIFIED DIMENSIONS b2 AND L1. CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY I. CAMBALIZA. | 06 FEB 2014 | | | | | | F | ADDED SECOND ALTERNATE CONSTRUCTION BOTTOM VIEW. REQ. BY K. MUSTAFA. | 21 JUL 2015 | ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative