
-12A、-55V P沟道增强型场效应管

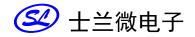
描述

SVD9Z24NT P沟道增强型功率 MOS 场效应晶体管,采用士兰微电子新的平面 VDMOS 工艺技术制造。先进的工艺及条状的原胞设计结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。该产品可广泛应用于推挽放大器,高侧开关电路,CMOS 功率放大器。

特点

- -12A, -55V, $R_{DS(on)(\text{ADE}(o))}$ <175m $\Omega@V_{GS}$ =10V
- ▶ P沟道
- ◆ 低栅极电荷量
- ◆ 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力

产品规格分类


产品名称	封装形式	打印名称	材料	包装
SVD9Z24NT	TO-220-3L	SVD9Z24NT	无铅	料管

极限参数(除非特殊说明, T_c=25°C)

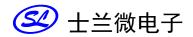
参数		符号	参数范围	单位
漏源电压		V_{DS}	-55	V
栅源电压		V_{GS}	±20	V
2P.47 点次	T _C =25°C] .	-12	_
漏极电流	T _C =100°C	I _D	-8.5	А
漏极脉冲电流	漏极脉冲电流		-48	Α
耗散功率(T _C =25°C) - 大于 25°C 每摄氏度减少		45		W
		P _D	0.36	W/°C
单脉冲雪崩能量(注1)		E _{AS}	106	mJ
工作结温范围		TJ	-55~+175	°C
贮存温度范围		T _{stg}	-55~+175	°C

热阻特性

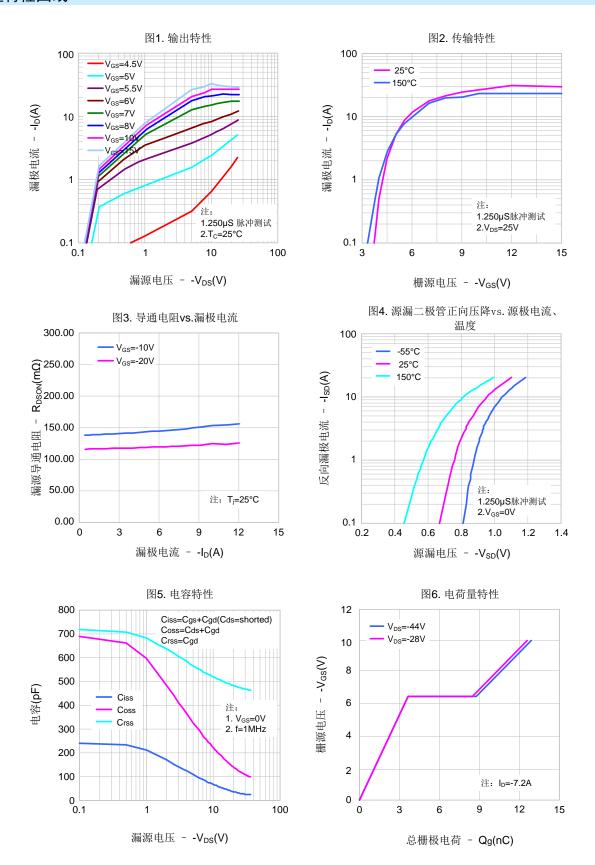
参数	符号	参数范围	单位
芯片对管壳热阻	$R_{ heta JC}$	2.78	°C/W
芯片对环境的热阻	$R_{\theta JA}$	62.5	°C/W

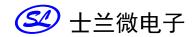
电性参数(除非特殊说明, T_c=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	B _{VDSS}	V _{GS} =0V,I _D =-250μA	-55			V
漏源漏电流	I _{DSS}	V _{DS} =-55V, V _{GS} =0V			-25	μΑ
栅源漏电流	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{D}=-250\mu A$	-2.0		-4.0	V
导通电阻	R _{DS(on)}	V _{GS} =-10V, I _D =-7.2A		-	175	mΩ
输入电容	C _{iss}			300		
输出电容	C_{oss}	V _{DS} =-25V,V _{GS} =0V, f=1.0MHz		135		pF
反向传输电容	C_{rss}			18		
开启延迟时间	t _{d(on)}			3		
开启上升时间	t _r	V_{DD} =-28V, V_{GS} =-10V,		30		
关断延迟时间	t _{d(off)}	$R_G=24\Omega$, $I_D=-7.2A$		13		ns
关断下降时间	t _f	(注 2, 3)		13		
栅极电荷量	Q_g	V _{DS} =-44V, V _{GS} =-10V, I _D =-7.2A		7.6		
栅极-源极电荷量	Q_gs			1.8		nC
栅极-漏极电荷量	Q_gd	(注 2, 3)		3.5		

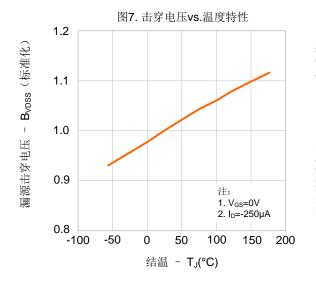

源-漏二极管特性参数

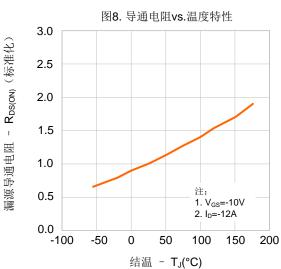
参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的反偏 P-N	-	-	-12	
源极脉冲电流	I _{SM}	结	1	1	-48	А
源-漏二极管压降	V_{SD}	I _S =-7.2A, V _{GS} =0V	1	1	-1.6	V
反向恢复时间	T_{rr}	I _S =-7.2A, V _{GS} =0V,	1	34		ns
反向恢复电荷	Qrr	dl _F /dt=100A/μs(注 2)		0.05		μC

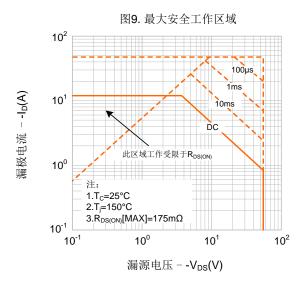

注:

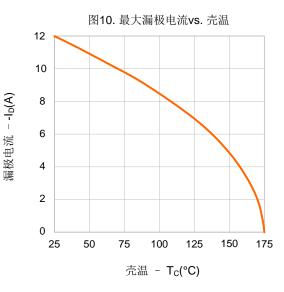

- 1. L=3.7mH, I_{AS} = -8A, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300μs,占空比≤2%;
- 3. 基本上不受工作温度的影响。

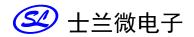
版本号: 1.1 共7页 第2页

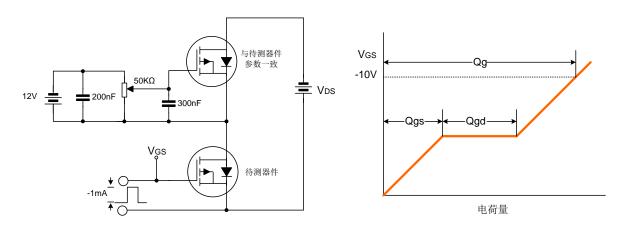


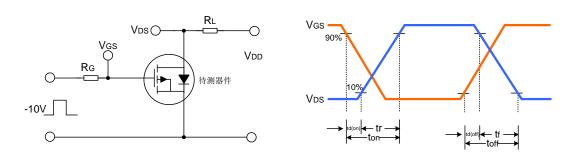

典型特性曲线



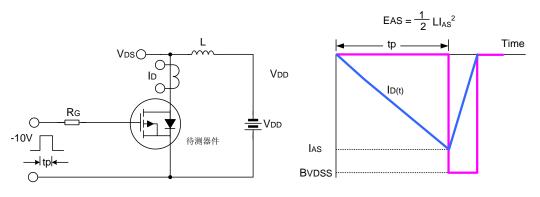


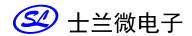

典型特性曲线 (续)



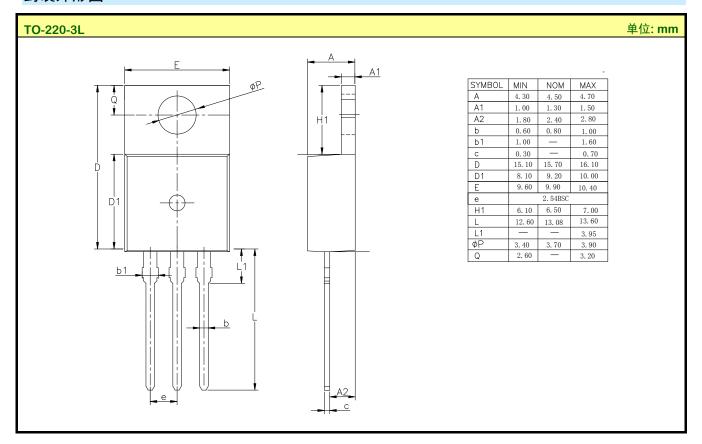


典型测试电路

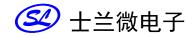

栅极电荷量测试电路及波形图



开关时间测试电路及波形图



EAS测试电路及波形图


封装外形图

声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- ◆ 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

产品	名称:	SVD9Z24NT	文档类型:	说明	书	
版	权:	杭州士兰微电子股份有限公司	公司主页:	http:	//www.s	silan.com.cn
11	1.			"	-14	rd No
版 修改	本: 记录:	1.1		作	者:	殷资
	1. 修改	y T0-220-3L 封装信息				
版 修改	本: 记录:	1.0		作	者:	殷资
	L. 正式	、 发布版本				