MOSFET - Power, Silicon Carbide, Single N-Channel, D2PAK7L, 1200 V, 98 A, 20 mOhm

NTBG020N120SC1

Features

- Typ. $R_{DS(on)} = 20 \text{ m}\Omega$
- Ultra Low Gate Charge ($Q_{G(tot)} = 220 \text{ nC}$)
- High Speed Switching with Low Capacitance ($C_{oss} = 258 \text{ pF}$)
- 100% Avalanche Tested
- $T_I = 175^{\circ}C$
- RoHS Compliant

Typical Applications

- UPS
- DC/DC Converter
- Boost Inverter

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parar	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	1200	V
Gate-to-Source Voltage	e		V _{GS}	-15/+25	V
Recommended Operation Values of Gate-to-Source Voltage		T _C < 175°C	V _{GSop}	-5/+20	V
Continuous Drain Current (Note 2)	Steady State	$T_C = 25^{\circ}C$	۱ _D	98	A
Power Dissipation (Note 2)			PD	468	W
Continuous Drain Current (Notes 1, 2)	Steady State	$T_A = 25^{\circ}C$	۱ _D	8.6	A
Power Dissipation (Notes 1, 2)			PD	3.7	W
Pulsed Drain Current (Note 3)	T _A = 25°C		I _{DM}	392	A
Single Pulse Surge Drain Current Capa- bility	$\begin{array}{l} T_{A} = 25^{\circ}C, t_{p} = 10 \; \mu s, \\ R_{G} = 4.7 \; \Omega \end{array}$		I _{DSC}	807	A
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			I _S	46	А
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 23 A, L = 1 mH) (Note 4)			E _{AS}	264	mJ
Maximum Lead Temperature for Soldering (1/8" from case for 5 s)			ΤL	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted on a FR-4 board using1 in2 pad of 2 oz copper.

2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. 3. Repetitive rating, limited by max junction temperature.

4. EAS of 264 mJ is based on starting $T_J = 25^{\circ}C$; L = 1 mH, $I_{AS} = 23$ A, V_{DD} = 120 V, V_{GS} = 18 V.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
1200 V	28 mΩ @ 20 V	98 A

N-CHANNEL MOSFET

D2PAK-7L CASE 418BJ

MARKING DIAGRAM

ΖZ = Lot Traceability

Α γ

NTBG020120SC1 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTBG020N120SC1	D2PAK-7L	800 ea/ Tape&Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ ext{ heta}JC}$	0.32	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{\theta JA}$	41	

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D =	= 1 mA	1200			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = 1$ mA, referenced to 25°C			0.5		V/∘C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			100	μA
		V _{DS} = 1200 V	T _J = 175°C			1	mA
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +25/-15 V,	V _{DS} = 0 V			±1	μA
ON CHARACTERISTICS (Note 3)	•						
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D =	= 20 mA	1.8	2.7	4.3	V
Recommended Gate Voltage	V _{GOP}			-5		+20	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 20 V, I _D = 60 /	A, T _J = 25°C		20	28	mΩ
		V _{GS} = 20 V, I _D = 60 A	A, T _J = 175°C		35	50	
Forward Transconductance	9 FS	V_{DS} = 20 V, I_D	= 60 A		34		S
CHARGES, CAPACITANCES & GATE RES	SISTANCE						
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 800 V			2943		pF
Output Capacitance	C _{OSS}				258		
Reverse Transfer Capacitance	C _{RSS}				24		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 600 \text{ V},$ $I_D = 80 \text{ A}$			220		nC
Threshold Gate Charge	Q _{G(TH)}				33		
Gate-to-Source Charge	Q _{GS}				66		
Gate-to-Drain Charge	Q _{GD}				63		
Gate-Resistance	R _G	f = 1 MHz			1.6		Ω
SWITCHING CHARACTERISTICS, VGS =	10 V (Note 5)	-		-	-		
Turn-On Delay Time	t _{d(ON)}	$\begin{array}{l} V_{GS}=-5/20 \text{ V},\\ V_{DS}=800 \text{ V},\\ I_{D}=80 \text{ A},\\ R_{G}=2 \ \Omega\\ \text{inductive load} \end{array}$			22	35	ns
Rise Time	t _r				20	32	
Turn-Off Delay Time	t _{d(OFF)}				42	67	
Fall Time	t _f				9	18	
Turn–On Switching Loss	E _{ON}				461		μJ
Turn–Off Switching Loss	E _{OFF}				400		
Total Switching Loss	E _{tot}	1			861		
DRAIN-SOURCE DIODE CHARACTERIST	ICS						
Continuous Drain-Source Diode Forward Current	I _{SD}	V_{GS} = -5 V, T_{J} = 25°C				46	A
Pulsed Drain-Source Diode Forward Current (Note 3)	I _{SDM}					392	
Forward Diode Voltage	V _{SD}	$V_{GS} = -5 \text{ V}, \text{ I}_{SD} = 30$	A, T _J = 25°C		3.7		V
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/20 \text{ V}, \text{ I}_{S}$			31		ns
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/µs			228		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Switching characteristics are independent of operating junction temperature

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 13. Junction-to-Case Transient Thermal Response Curve

DATE 16 AUG 2019

Α F L1 D b2 е h \oplus aaa B A M

LAND PATTERN RECOMMENDATION

Г

GENERIC **MARKING DIAGRAM***

XXXXXXXXXX AYWWG
0

XXXX = Specific Device Code А = Assembly Location Y = Year

- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

B	A
c2 —	
•	
H	
	A

NOTES:

A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.

C OUT OF JEDEC STANDARD VALUE. D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009. E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

DIM	MIL	LIMETER	S
DIM	MIN	NOM	MAX
Α	4.30	4.50	4.70
A1	0.00	0.10	0.20
b2	0.60	0.70	0.80
b	0.51	0.60	0.70
С	0.40	0.50	0.60
c2	1.20	1.30	1.40
D	9.00	9.20	9.40
D1	6.15	6.80	7.15
E	9.70	9.90	10.20
E1	7.15	7.65	8.15
е	~	1.27	~
Н	15.10	15.40	15.70
L	2.44	2.64	2.84
L1	1.00	1.20	1.40
L3	~	0.25	~
aaa	~	~	0.25

DOCUMENT NUMBER:	98AON84234G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK7 (TO-263-7L HV)		PAGE 1 OF 1	

ON Semiconductor and 🔘 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative