

LK1800S 单路达林顿晶体管阵列

描述

LK1800S单路大电流达林顿管阵列,电路由单个独立的达林顿管组成,单个达林顿管带有续流二极管,可用于驱动继电器、步进电机等感性负载。单个达林顿管支持电流 500mA 输出,将达林顿管并联可以得到更大输出电流能力。该电路广泛应用于继电器驱动、照明驱动、显示屏驱动、步进电机驱动和逻辑缓冲器。

LK1800S的单路达林顿管串联一个基极电阻,可直接与TTL/CMOS 电路连接,可直接处理原先需要标准逻辑缓冲器来处理的数据。

LK1800S采用SOT23-6封装。

特征	应用
特征	<u> </u>

•输出耐压高至 50V

•每路 500mA 集电极输出电流

·输入兼容 TTL/CMOS 逻辑信号

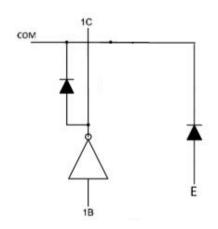
• 小封装

•步进电机驱动

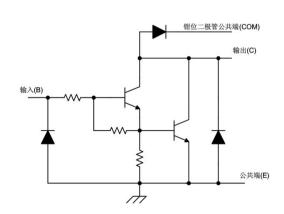
•继电器驱动

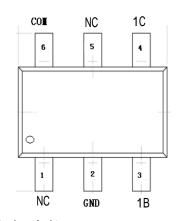
•显示屏驱动

•指示灯驱动


封装信息

种类	封装形式	工作温度(°C)	器件尺寸
	SOT23-6	0°C to +85°C	2.855mm × 1.255mm


传真: 0755-82941023


逻辑图

电路原理图 (单路)

引脚排列

引脚功能

引脚名称	引脚编号	I/0	功能说明
NC	1	I	
GND	2	I	GND
1B	3		1通道输入
1C	4		1 通道输出
NC	5		
COM	6		钳位二极管公共端

绝对最大额定值

(T_A=25℃, 除另有规定外)

参数	符号	值	单位
集电极-发射极电压	V _{CE}	-0.5~50	V
COM 端电压	V _{COM}	30	V
输入电压	V _I	-0.5~7	V
集电极峰值电流	I _{CP}	500	mA/ch
输出钳位二极管正向峰值电流	I _{ok}	500	mA
总发射极最大峰值电流	I _{ET}	-1.0	Α
最高工作结温(2)	T _J	150	°C
焊接温度		260	°C,10s
储存温度范围	T _{stg}	-60 ~ +150	°C
功耗 ⁽¹⁾⁽²⁾	P _D		W

- 注:1、最大功耗可按照下述关系计算 $P_D = (T_j T_A)/\theta_{JA}$
 - 2、T_i(max)为 150℃, T_A 表示电路工作的环境温度;
 - 3、在玻璃环氧树脂 PCB 板上(30×30×1.6mm 铜 50%)。

推荐工作条件

(T_A=25℃, 除另有规定外)

参数	符号	条件		最小值	最大值	单位
集电极-发射极电压	V _{CE}			0	50	V
		TPW=25ms	Duty=10%	0	350	
输出电流	I _{OUT}	T _A =85°C T _J =120°C	Duty=50%	0	70	mA/ch
控制信号输入电压	V _{IN}			0	7	V
输入电压 (输出开启)	V _{IN(ON)}	I ^{out} =250mA		2.7	7	\
输入电压(输出关断)	V _{IN(OFF)}			0	0.6	V
钳位二极管反向电压	V_R				50	V
钳位二极管正向峰值电流	I _F				350	mA
工作温度范围	T _A			-40	+85	$^{\circ}$
功耗	P _D	T _A = 8	85°C			W

注: 在玻璃环氧树脂 PCB 板上(30×30×1.6mm 铜 50%)。

电参数特性表

(T_A=25℃, 除另有规定外)

(1 _A -25	参数 测试图 测试条件			最小	典型	最大	单位	
				I _C =200mA			2.4	
V _{I(ON)}	导通状态输入电压	图 4	V _{CE} =2.0V	I _C =250mA			2.7	V
				I _C =350mA			3.0	
			I _I =250uA	I _C =100mA		0.9	1.1	
			I _I =350uA	I _C =200mA		1.0	1.3	
V _{CE(SAT)}	集电极-发射极饱和压降	图 5	I _I =500uA	I _C =350mA		1.3	1.6	V
		17-1 -	_					
V_{F}	钳位二极管正向压降	图 8	ļ	_F =350mA		1.7	2.0	V
I _{CEX}	 集电极关断漏电流	图 1	V_{CE}	=50V I _I =0		-	50	μΑ
ICEX	来它次/M 它加	图 2	V _{CE} =50V	$T_A=85^{\circ}C$ $V_I=0V$		-	100	μΛ
1,	 输入电流	图 4	V _{IN} =3.3V	I _C =250mA			4.5	mA
'	Alido C. Cloid	1 121 1	V _{IN} =2.4V	10 2301171			3.0	''"`
I _R	钳位二极管反向电流	图 7	V _R =50V			-	100	μΑ
C _{IN}	输入电容					15		pF
t _{PLH}	传输延迟 低-高	图 9	VL=5	V RL=45Ω		0.15	1	μs
t _{PHL}	传输延迟 高-低	图 9	VL=5	V RL=45Ω		0.15	1	μs

参数测试原理图

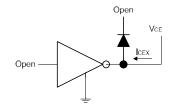


图1 I_{CEX}测试电路

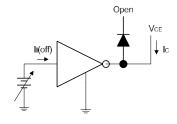


图3 I_{I (off)}测试电路

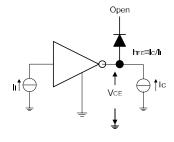


图5 H_{FE},V_{CE(sat)}测试电路

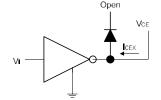


图2 I_{CEX}测试电路

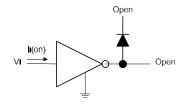


图 4 1,测试电路

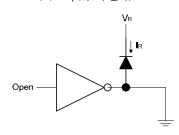
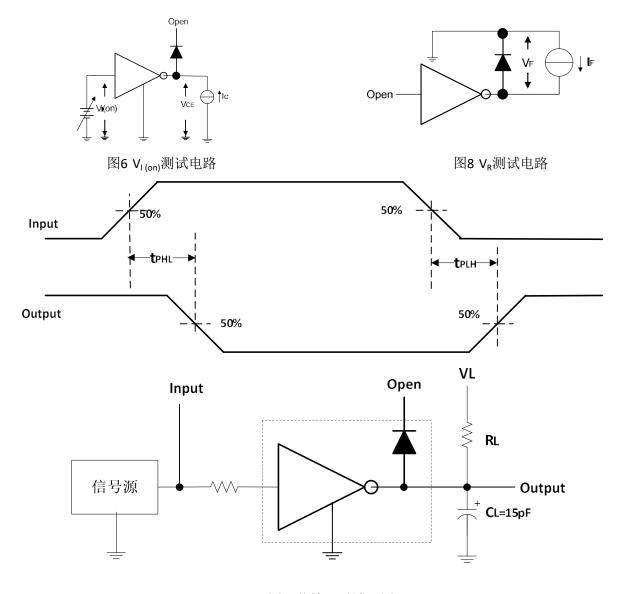
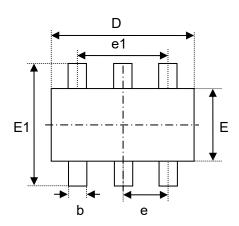
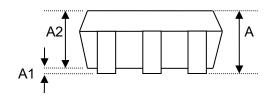
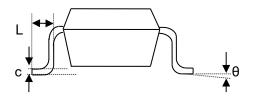


图7 I_R测试电路


图 9 传输延时波形图


备注:图9中电容负载为示波器探头寄生电容

SOT23-6

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037 BSC		
e1	1.900	1.900 BSC		BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

传真:0755-82941023