IS41LV16105D

1Mx16 16Mb DRAM WITH FAST PAGE MODE

MARCH 2020

FEATURES

- TTL compatible inputs and outputs; tristate I/O
- Refresh Interval: — 1,024 cycles/16 ms
- Refresh Mode: — RAS-Only, CAS-before-RAS (CBR), and Hidden
- JEDEC standard pinout
- Byte Write and Byte Read operation via two CAS
- Industrial Temperature Range -40°C to 85°C

DESCRIPTION

The ISSI IS41LV16105D is a 1,048,576 x 16-bit high-performance CMOS Dynamic Random Access Memories. Fast Page Mode allows 1,024 random accesses within a single row with access cycle time as short as 20 ns per 16-bit word. It is asynchronous, as it does not require a clock signal input to synchronize commands and I/O.

These features make the IS41LV16105D ideally suited for high-bandwidth graphics, digital signal processing, highperformance computing systems, and peripheral applications that run without a clock to synchronize with the DRAM.

The IS41LV16105D is packaged in a 400-mil 50/44-pin TSOP (Type II).

-50	Unit				
50	ns				
13	ns				
25	ns				
20	ns				
84	ns				
	50 13 25				

KEY TIMING PARAMETERS

Copyright © 2020 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

Integrated Silicon Solution, Inc. Rev. B 03/06/2020

.....

PIN CONFIGURATIONS

44(50)-Pin TSOP (Type II)

PIN DESCRIPTIONS

A0-A9	Address Inputs	
I/O0-15	Data Inputs/Outputs	
WE	Write Enable	
ŌĒ	Output Enable	
RAS	Row Address Strobe	
UCAS	Upper Column Address Strobe	
LCAS	Lower Column Address Strobe	
Vdd	Power	
GND	Ground	
NC	No Connection	

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE⁽⁵⁾

Function		RAS	LCAS	UCAS	WE	ŌĒ	Address tr/tc	I/O
Standby		Н	Х	Х	Х	Х	Х	High-Z
Read: Word		L	L	L	Н	L	ROW/COL	Dout
Read: Lower Byte		L	L	Н	Н	L	ROW/COL	Lower Byte, Dou⊤ Upper Byte, High-Z
Read: Upper Byte		L	Н	L	Н	L	ROW/COL	Lower Byte, High-Z Upper Byte, Dout
Write: Word (Early Write)		L	L	L	L	Х	ROW/COL	Din
Write: Lower Byte (Early W	ite)	L	L	Н	L	Х	ROW/COL	Lower Byte, Dın Upper Byte, High-Z
Write: Upper Byte (Early W	ite)	L	Н	L	L	Х	ROW/COL	Lower Byte, High-Z Upper Byte, Dın
Read-Write ^(1,2)		L	L	L	H→L	L→H	ROW/COL	Dout, Din
Hidden Refresh Read ⁽¹⁾)	L→H→L	L	L	Н	L	ROW/COL	Dout
Write ^{(1,1})	L→H→L	L	L	L	Х	ROW/COL	Dout
RAS-Only Refresh		L	Н	Н	Х	Х	ROW/NA	High-Z
CBR Refresh ⁽⁴⁾		H→L	L	L	Н	Х	Х	High-Z

Notes:

These WRITE cycles may also be BYTE WRITE cycles (either LCAS or UCAS active).
These READ cycles may also be BYTE READ cycles (either LCAS or UCAS active).
EARLY WRITE only.
At least one of the two CAS signals must be active (LCAS or UCAS).

5. Commands valid only after initialization.

Functional Description

The IS41LV16105D is a CMOS DRAM optimized for highspeed bandwidth, low power applications. During READ or WRITE cycles, each bit is uniquely addressed through the 16 address bits. These are entered ten bits (A0-A9) at a time. The row address is latched by the Row Address Strobe (RAS). The column address is latched by the Column Address Strobe (CAS). RAS is used to latch the first nine bits and CAS is used the latter nine bits.

The IS41LV16105D has two \overline{CAS} controls, \overline{LCAS} and \overline{UCAS} . The \overline{LCAS} and \overline{UCAS} inputs internally generates a \overline{CAS} signal functioning in an identical manner to the single \overline{CAS} input on the other 1M x 16 DRAMs. The key difference is that each \overline{CAS} controls its corresponding I/O tristate logic (in conjunction with \overline{OE} and \overline{WE} and \overline{RAS}). \overline{LCAS} controls I/O0 through I/O7 and \overline{UCAS} controls I/ O8 through I/O15.

The IS41LV16105D \overline{CAS} function is determined by the first \overline{CAS} (LCAS or UCAS) transitioning LOW and the last transitioning back HIGH. The two \overline{CAS} controls give the IS41LV16105D both BYTE READ and BYTE WRITE cycle capabilities.

Memory Cycle

A memory cycle is initiated by bring RAS LOW and it is terminated by returning both RAS and CAS HIGH. To ensures proper device operation and data integrity any memory cycle, once initiated, must not be ended or aborted before the minimum tRAS time has expired. A new cycle must not be initiated until the minimum precharge time tRP, tCP has elapsed.

Read Cycle

A read cycle is initiated by the falling edge of \overline{CAS} or \overline{OE} , whichever occurs last, while holding \overline{WE} HIGH. The column address must be held for a minimum time specified by tAR. Data Out becomes valid only when tRAC, tAA, tCAC and tOEA are all satisfied. As a result, the access time is dependent on the timing relationships between these parameters.

Write Cycle

A write cycle is initiated by the falling edge of \overline{CAS} and \overline{WE} , whichever occurs last. The input data must be valid at or before the falling edge of \overline{CAS} or \overline{WE} , whichever occurs last.

Refresh Cycle

To retain data, 1,024 refresh cycles are required in each 16 ms period. There are two ways to refresh the memory.

- By clocking each of the 1,024 row addresses (A0 through A9) with RAS at least once every tREF max. Any read, write, read-modify-write or RAS-only cycle refreshes the addressed row.
- 2. Using a CAS-before-RAS refresh cycle. CAS-before-RAS refresh is activated by the falling edge of RAS, while holding CAS LOW. In CAS-before-RAS refresh cycle, an internal 9-bit counter provides the row addresses and the external address inputs are ignored.

CAS-before-RAS is a refresh-only mode and no data access or device selection is allowed. Thus, the output remains in the High-Z state during the cycle.

Power-On

During Power-On, \overline{RAS} , \overline{UCAS} , \overline{LCAS} , and \overline{WE} must all track with V_{DD} (HIGH) to avoid current surges, and allow initialization to continue. An initial pause of 200 µs is required followed by a minimum of eight initialization cycles (any combination of cycles containing a \overline{RAS} signal).

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameters	Rating	Unit
Vт	Voltage on Any Pin Relative to GND	-0.5 to +4.6	V
Vdd	Supply Voltage	-0.5 to +4.6	V
Ιουτ	Output Current	50	mA
Pd	Power Dissipation	1	W
Та	Industrial Temperature	-40 to +85	°C
Тѕтс	Storage Temperature	-55 to +125	°C

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages are referenced to GND.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage		3.0	3.3	3.6	V
VIH	Input High Voltage		2.0	_	Vdd + 0.3	V
VIL	Input Low Voltage		-0.3	_	0.8	V
lı∟	Input Leakage Current	Any input $0V \le V \le V \ge V$	-5		5	μA
		Other inputs not under test = 0V				
lio	Output Leakage Current	Output is disabled (Hi-Z)	-5		5	μA
		$0V \leq V \text{out} \leq V \text{dd}$				
Vон	Output High Voltage Level	Іон = -2.0 mA	2.4		—	V
Vol	Output Low Voltage Level	lo∟ = 2.0 mA			0.4	V

CAPACITANCE^(1,2)

Symbol	Parameter	Max.	Unit
CIN1	Input Capacitance: A0-A9	5	pF
CIN2	Input Capacitance: RAS, UCAS, LCAS, WE, OE	7	pF
Сю	Data Input/Output Capacitance: I/O0-I/O15	7	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

2. Test conditions: $TA = 25^{\circ}C$, f = 1 MHz,

ELECTRICAL CHARACTERISTICS⁽¹⁾ (Recommended Operation Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition	Max.	Unit
IDD1	Stand-by Current: TTL	$\overline{\text{RAS}}$, $\overline{\text{LCAS}}$, $\overline{\text{UCAS}} \ge V_{\text{IH}}$	2	mA
DD2	Stand-by Current: CMOS	$\overline{\text{RAS}}$, $\overline{\text{LCAS}}$, $\overline{\text{UCAS}} \ge V_{\text{DD}} - 0.2V$	1	mA
DD3	Operating Current:	RAS, LCAS, UCAS,	90	mA
	Random Read/Write ^(2,3,4)	Address Cycling, tRc = tRc (min.)		
	Average Power Supply Current			
DD4	Operating Current:	$\overline{RAS} = V_{IL}, \overline{LCAS}, \overline{UCAS},$	30	mA
	Fast Page Mode ^(2,3,4)	Cycling tPc = tPc (min.)		
	Average Power Supply Current			
DD5	Refresh Current:	$\overline{\text{RAS}}$ Cycling, $\overline{\text{LCAS}}$, $\overline{\text{UCAS}} \ge V_{\text{IH}}$	60	mA
	RAS-Only ^(2,3)	tRC = tRC (min.)		
	Average Power Supply Current			
DD6	Refresh Current:	RAS, LCAS, UCAS Cycling	60	mA
	CBR ^(2,3,5)	trc = trc (min.)		
	Average Power Supply Current			

Notes:

1. An initial pause of 200 µs is required after power-up followed by eight RAS refresh cycles (RAS-Only or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tREF refresh requirement is exceeded.

2. Dependent on cycle rates.

3. Specified values are obtained with minimum cycle time and the output open.

4. Column-address is changed once each EDO page cycle.

5. Enables on-chip refresh and address counters.

AC CHARACTERISTICS^(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

		-50		-(-60		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units	
tRC	Random READ or WRITE Cycle Time	84	—	104	_	ns	
trac	Access Time from RAS ^(6, 7)	_	50	_	60	ns	
tcac	Access Time from CAS ^(6, 8, 15)	—	13	_	15	ns	
taa	Access Time from Column-Address ⁽⁶⁾		25	_	30	ns	
tras	RAS Pulse Width	50	10K	60	10K	ns	
tRP	RAS Precharge Time	30	—	40	_	ns	
tcas	CAS Pulse Width ⁽²⁶⁾	8	10K	10	10K	ns	
tCP	CAS Precharge Time ^(9, 25)	9	—	9	_	ns	
tcsн	CAS Hold Time ⁽²¹⁾	38	—	40		ns	
trcD	RAS to CAS Delay Time ^(10, 20)	12	37	14	45	ns	
tasr	Row-Address Setup Time	0	—	0	_	ns	
t RAH	Row-Address Hold Time	8	—	10	_	ns	
tasc	Column-Address Setup Time ⁽²⁰⁾	0	—	0	_	ns	
tCAH	Column-Address Hold Time ⁽²⁰⁾	8	—	10	_	ns	
tar	Column-Address Hold Time (referenced to RAS)	30		40	—	ns	
trad	RAS to Column-Address Delay Time ⁽¹¹⁾	10	25	12	30	ns	
tral	Column-Address to RAS Lead Time	25	—	30		ns	
tRPC	RAS to CAS Precharge Time	5	—	5		ns	
trsh	RAS Hold Time ⁽²⁷⁾	8	_	10		ns	
t RHCP	RAS Hold Time from CAS Precharge	37	—	37	_	ns	
tcLZ	CAS to Output in Low-Z ^(15, 29)	0	—	0	_	ns	
tCRP	CAS to RAS Precharge Time ⁽²¹⁾	5	—	5		ns	
tod	Output Disable Time ^(19, 28, 29)	3	15	3	15	ns	
toe	Output Enable Time ^(15, 16)	—	13	_	15	ns	
toed	Output Enable Data Delay (Write)	20	_	20		ns	
toehc	OE HIGH Hold Time from CAS HIGH	5	_	5		ns	
toep	OE HIGH Pulse Width	10		10		ns	
toes	OE LOW to CAS HIGH Setup Time	5		5		ns	
tRCS	Read Command Setup Time ^(17, 20)	0		0		ns	
trrh	Read Command Hold Time (referenced to RAS) ⁽¹²⁾	0		0		ns	
trch	Read Command Hold Time (referenced to \overline{CAS}) ^(12, 17, 21)	0		0	—	ns	
twcн	Write Command Hold Time ^(17, 27)	8	_	10		ns	

AC CHARACTERISTICS (Continued)(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

			50		60	
Symbol	Parameter	Min.	Max.	Min.	Max.	Units
twcr	Write Command Hold Time (referenced to RAS) ⁽¹⁷⁾	40		50	—	ns
twp	Write Command Pulse Width ⁽¹⁷⁾	8	_	10		ns
twpz	WE Pulse Widths to Disable Outputs	10	_	10	_	ns
trwl	Write Command to RAS Lead Time ⁽¹⁷⁾	13	_	15	_	ns
tcwL	Write Command to CAS Lead Time ^(17, 21)	8	_	10	_	ns
twcs	Write Command Setup Time ^(14, 17, 20)	0	—	0	—	ns
TDHR	Data-in Hold Time (referenced to \overline{RAS})	39	_	39	_	ns
tасн	Column-Address Setup Time to CAS Precharge during WRITE Cycle	15		15	—	ns
toeн	OE Hold Time from WE during READ-MODIFY-WRITE cycle ⁽¹⁸⁾	8	_	10	_	ns
tDS	Data-In Setup Time ^(15, 22)	0	_	0	_	ns
tdн	Data-In Hold Time ^(15, 22)	8	—	10		ns
trwc	READ-MODIFY-WRITE Cycle Time	108	—	133		ns
trwd	RAS to WE Delay Time during READ-MODIFY-WRITE Cycle ⁽¹⁴⁾	64	—	77	—	ns
tcwD	CAS to WE Delay Time ^(14, 20)	26	_	32	_	ns
tawd	Column-Address to WE Delay Time ⁽¹⁴⁾	39	_	47	_	ns
tPC	Fast Page Mode READ or WRITE Cycle Time ⁽²⁴⁾	20		25	—	ns
trasp	RAS Pulse Width	50	100K	60	100K	ns
tcpa	Access Time from CAS Precharge ⁽¹⁵⁾		30	_	35	ns
tprwc	READ-WRITE Cycle Time ⁽²⁴⁾	56	_	68	_	ns
tсон	Data Output Hold after CAS LOW	5	_	5	_	ns
toff	Output Buffer Turn-Off Delay from CAS or RAS ^(13,15,19, 29)	1.6	12	1.6	15	ns
twнz	Output Disable Delay from WE	3	10	3	10	ns
tclch	Last CAS going LOW to First CAS returning HIGH ⁽²³⁾	10	—	10	—	ns
tcsr	CAS Setup Time (CBR REFRESH) ^(30, 20)	5	_	5		ns
tCHR	CAS Hold Time (CBR REFRESH) ^(30, 21)	8	_	10		ns
tord	OE Setup Time prior to RAS during HIDDEN REFRESH Cycle	0		0		ns
twrp	WE Setup Time (CBR Refresh)	5		5		ns
twrн	WE Hold Time (CBR Refresh)	8	_	10	_	ns
tref	Auto Refresh Period (1,024 Cycles)		16	_	16	ms
tτ	Transition Time (Rise or Fall) ^(2, 3)	1	50	1	50	ns

Note:

The -60 timing parameters are shown for reference only. The -50 speed option supports 50ns and 60ns timing specifications.

AC TEST CONDITIONS

Output load: One TTL Load and 50 pF

Input timing reference levels:	VIH = 2.0V, VIL = 0.8V
--------------------------------	------------------------

Output timing reference levels: VOH = 2.4V, VOL = 0.4V

Notes:

- 1. An initial pause of 200 µs is required after power-up followed by eight RAS refresh cycle (RAS-Only or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tREF refresh requirement is exceeded.
- 2. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times, are measured between VIH and VIL (or between VIL and VIH) and assume to be 1 ns for all inputs.
- 3. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 4. If \overline{CAS} and \overline{RAS} = VIH, data output is High-Z.
- 5. If CAS = VIL, data output may contain data from the last valid READ cycle.
- 6. Measured with a load equivalent to one TTL gate and 50 pF.
- 7. Assumes that tRCD_tRCD (MAX). If tRCD is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the value shown.
- 8. Assumes that tRCD ž tRCD (MAX).
- 9. If CAS is LOW at the falling edge of RAS, data out will be maintained from the previous cycle. To initiate a new cycle and clear the data output buffer, CAS and RAS must be pulsed for tcp.
- 10. Operation with the tRCD (MAX) limit ensures that tRAC (MAX) can be met. tRCD (MAX) is specified as a reference point only; if tRCD is greater than the specified tRCD (MAX) limit, access time is controlled exclusively by tCAC.
- 11. Operation within the tRAD (MAX) limit ensures that tRCD (MAX) can be met. tRAD (MAX) is specified as a reference point only; if tRAD is greater than the specified tRAD (MAX) limit, access time is controlled exclusively by tAA.
- 12. Either tRCH or tRRH must be satisfied for a READ cycle.
- 13. toff (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.
- 14. twcs, tRwb, tAWD and tcwb are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycle only. If twcs ž twcs (MIN), the cycle is an EARLY WRITE cycle and the data output will remain open circuit throughout the entire cycle. If tRWD ž tRWb (MIN), tAWD ž tAWD (MIN) and tcwb ž tcwb (MIN), the cycle is a READ-WRITE cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of I/O (at access time and until CAS and RAS or OE go back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE WRITE (OE-controlled) cycle.
- 15. Output parameter (I/O) is referenced to corresponding CAS input, I/O0-I/O7 by LCAS and I/O8-I/O15 by UCAS.
- 16. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, I/O goes open. If OE is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE is not possible.
- 17. Write command is defined as $\overline{\text{WE}}$ going low.
- 18. LATE WRITE and READ-MODIFY-WRITE cycles must have both toD and toEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The I/Os will provide the previously written data if CAS remains LOW and OE is taken back to LOW after toEH is met.
- 19. The I/Os are in open during READ cycles once toD or tOFF occur.
- 20. The first $\chi \overline{CAS}$ edge to transition LOW.
- 21. The last χCAS edge to transition HIGH.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. Last falling $\chi \overline{CAS}$ edge to first rising $\chi \overline{CAS}$ edge.
- 24. Last rising $\chi \overline{CAS}$ edge to next cycle's last rising $\chi \overline{CAS}$ edge.
- 25. Last rising $\chi \overline{CAS}$ edge to first falling $\chi \overline{CAS}$ edge.
- 26. Each $\chi \overline{CAS}$ must meet minimum pulse width.
- 27. Last χ^{CAS} to go LOW.
- 28. I/Os controlled, regardless UCAS and LCAS.
- 29. The 3 ns minimum is a parameter guaranteed by design.
- 30. Enables on-chip refresh and address counters.

FAST-PAGE-MODE READ CYCLE

Note:

1. toff is referenced from rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

FAST PAGE MODE READ-MODIFY-WRITE CYCLE

FAST-PAGE-MODE EARLY WRITE CYCLE (OE = DON'T CARE)

FAST-PAGE-MODE READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE Cycles)

FAST PAGE MODE EARLY WRITE CYCLE

AC WAVEFORMS

READ CYCLE (With WE-Controlled Disable)

RAS-ONLY REFRESH CYCLE (OE, WE = DON'T CARE)

CBR REFRESH CYCLE (Addresses; OE = DON'T CARE)

HIDDEN REFRESH CYCLE⁽¹⁾ (WE = HIGH; OE = LOW)

Notes:

- 1. A Hidden Refresh may also be performed after a Write Cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH. 2. toFF is referenced from rising edge of RAS or CAS, whichever occurs last.

ORDERING INFORMATION :

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
50	IS41LV16105D-50TLI	400-mil TSOP (Type II), Lead-free

Note:

The -50 speed option supports 50ns and 60ns timing specifications.

IS41LV16105D

