

L6392

High voltage high and low-side driver

Datasheet - production data

Features

- High voltage rail up to 600 V
- dV/dt immunity ± 50 V/nsec in full temperature range
- Driver current capability:
 - 290 mA source
 - 430 mA sink
- Switching times 75/35 nsec rise/fall with 1 nF load
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Integrated bootstrap diode
- Operational amplifier for advanced current sensing
- Adjustable deadtime
- Interlocking function
- Compact and simplified layout
- Bill of material reduction
- Flexible, easy and fast design

Applications

- Motor driver for home appliances, factory automation, industrial drives.
- HID ballasts, power supply units.

Description

The L6392 is a high voltage device manufactured with the BCD[™] "offline" technology. It is a single chip half bridge gate driver for the N-channel power MOSFET or IGBT.

The high-side (floating) section is designed to stand a voltage rail up to 600 V. The logic inputs are CMOS/TTL compatible down to 3.3 V for easy interfacing microcontroller/DSP.

The IC embeds an operational amplifier suitable for advanced current sensing in applications such as field oriented motor control.

This is information on a product in full production.

Contents

1	Block diagram	3
2	Pin connection	4
3	Truth table	5
4	Electrical data	6
	4.1 Absolute maximum ratings	6
	4.2 Thermal data	6
	4.3 Recommended operating conditions	7
5	Electrical characteristics	8
	5.1 AC operation	8
	5.2 DC operation	10
6	Waveforms definitions	12
7	Typical application diagram	13
8	Bootstrap driver	14
	C _{BOOT} selection and charging	14
9	Package information	16
	SO-14 package information	16
10	Order codes	18
11	Revision history	19

1 Block diagram

Figure 1. Block diagram

2 Pin connection

Pin no.	Pin name	Туре	Function
1	LIN	I	Low-side driver logic input (active low)
2	SD (1)	I	Shutdown logic input (active low)
3	HIN	I	High-side driver logic input (active high)
4	VCC	Р	Lower section supply voltage
5	DT	I	Deadtime setting
6	OPOUT	0	Opamp output
7	GND	Р	Ground
8	OP+	I	Opamp non inverting input
9	OP-	I	Opamp inverting input
10	LVG ⁽¹⁾	0	Low-side driver output
11	NC		Not connected
12	OUT	Р	High-side (floating) common voltage
13	HVG ⁽¹⁾	0	High-side driver output
14	BOOT	Р	Bootstrapped supply voltage

Table 1. Pin description

 The circuit provides less than 1 V on the LVG and HVG pins (at I_{sink} = 10 mA), with V_{CC} > 3 V. This allows to omit the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low; the gate driver assures low impedance also in SD condition.

3 Truth table

	Inputs	Out	puts				
SD	LIN	HIN	LVG	HVG			
L	X ⁽¹⁾	X ⁽¹⁾	L	L			
Н	L	L	Н	L			
Н	L	Н	L	L			
Н	Н	L	L	L			
Н	Н	Н	L	Н			

Table 2. Truth table

1. X: don't care.

4 Electrical data

4.1 Absolute maximum ratings

Symbol	Doromotor	Va	lue	Unit
Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply voltage	- 0.3	+ 21	V
V _{OUT}	Output voltage	V _{BOOT} -21	V _{BOOT} +0.3	V
V _{BOOT}	Bootstrap voltage	- 0.3	620	V
V _{hvg}	High-side gate output voltage	V _{OUT} - 0.3	V _{BOOT} + 0.3	V
V _{Ivg}	Low-side gate output voltage	-0.3	V _{CC} + 0.3	V
V _{op+}	Opamp non-inverting input	-0.3	V _{CC} + 0.3	V
V _{op-}	Opamp inverting input	-0.3	V _{CC} + 0.3	V
Vi	Logic input voltage	-0.3	15	V
dV _{OUT} /dt	Allowed output slew rate		50	V/ns
P _{tot}	Total power dissipation (T _A = 25 °C)		800	mW
TJ	Junction temperature		150	°C
T _{stg}	Storage temperature	-50	150	°C
ESD	Human body model		2	kV

Table 3. Absolute maximum rating

4.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	SO-14	Unit
R _{th(JA)}	Thermal resistance junction to ambient	120	°C/W

4.3 Recommended operating conditions

Table 5. Recommended operating conditions	Table 5	. Recommended	operating	conditions
---	---------	---------------	-----------	------------

Symbol	Pin	Parameter	Test condition	Min.	Max.	Unit
V _{CC}	4	Supply voltage		12.5	20	V
V _{BO} ⁽¹⁾	14 - 12	Floating supply voltage		12.4	20	V
V _{OUT}	12	DC output voltage		-9 ⁽²⁾	580	V
f _{sw}		Switching frequency	HVG, LVG load C _L = 1 nF		800	kHz
Τ _J		Junction temperature		-40	125	°C

1. $V_{BO} = V_{BOOT} - V_{OUT}$

2. LVG off. V_{CC} = 12.5 V. Logic is operational if V_{BOOT} > 5 V.

57

5 Electrical characteristics

5.1 AC operation

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{on}	1 vs.10	High/low-side driver turn- on propagation delay	V _{OUT} = 0 V	50	125	200	ns
t _{off}	3 vs. 13	High/low side driver turn- off propagation delay	$V_{BOOT} = V_{cc}$ $C_L = 1 \text{ nF}$ $V_i = 0 \text{ to } 3.3 \text{ V}$	50	125	200	ns
t _{sd}	2 vs. 10, 13	Shut down to high/low side propagation delay	See Figure 3	50	125	200	ns
МТ		Delay matching, HS and LS turn-on/off				30	ns
		5 Deadtime setting range ⁽¹⁾	R _{DT} = 0; C _L = 1 nF	0.1	0.18	0.25	
DT			R _{DT} = 37 kΩ;C _L = 1 nF; C _{DT} = 100 nF	0.48	0.6	0.72	
	5		R_{DT} = 136 kΩ;C _L =1 nF; C _{DT} = 100 nF	1.35	1.6	1.85	μS
			R_{DT} = 260 kΩ; C_{L} = 1 nF; C_{DT} = 100 nF	2.6	3.0	3.4	
			R _{DT} = 0 Ω; C _L = 1 nF			80	
MDT		Matching deadtime ⁽²⁾	R _{DT} = 37 kΩ;C _L = 1 nF; C _{DT} = 100 nF			120	20
	MDT Matching		R_{DT} = 136 k Ω ; C_{L} = 1 nF; C_{DT} = 100 nF			250	ns
			R_{DT} = 260 kΩ; C_{L} = 1 nF; C_{DT} = 100 nF			400	
t _r	10, 13	Rise time	C _L = 1 nF		75	120	ns
t _f	10, 13	Fall time	C _L = 1 nF		35	70	ns

1. See Figure 4.

2. MDT = $|DT_{LH} - DT_{HL}|$ see *Figure 5 on page 12*.

Figure 3. Timing characteristics

DocID14494 Rev 6

5.2 DC operation

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
Low supply	y voltage	section			l	l	
V _{cc_hys}		V _{cc} UV hysteresis		1200	1500	1800	mV
V _{cc_thON}		V _{cc} UV turn-ON threshold		11.5	12	12.5	v
V_{cc_thOFF}		V _{cc} UV turn-OFF threshold		10	10.5	11	v
I _{qccu}	4 ed suppl	Undervoltage quiescent supply current	$V_{CC} = 10 \text{ V}; \overline{\text{SD}} = 5 \text{ V}; \overline{\text{LIN}} = 5 \text{ V};$ HIN = GND; R _{DT} = 0 Ω ; OP + = GND; OP - = 5 V		120	150	μA
I _{qcc}		Quiescent current	V _{CC} = 15 V; <u>SD</u> = 5 V; <u>LIN</u> = 5 V; HIN = GND; R _{DT} = 0 Ω; OP + = GND; OP - = 5 V		680	1000	μA
Bootstrapp	ed suppl	ly voltage section ⁽¹⁾					
V _{BO_hys}		V _{BO} UV hysteresis		1200	1500	1800	mV
V _{BO_thON}	14	V _{BO} UV turn-ON threshold		10.6	11.5	12.4	V
$V_{BO_{thOFF}}$		V _{BO} UV turn-OFF threshold		9.1	10	10.9	v
I _{QBOU}		Undervoltage V _{BO} quiescent current	$V_{BO} = 9 V$ SD = 5 V; LIN and HIN = 5 V; R_{DT} = 0 Ω ; OP + = GND; OP - = 5 V		70	110	μA
I _{QBO}		V _{BO} quiescent current	$V_{BO} = 15 V$ $\overline{SD} = 5 V; \overline{LIN} \text{ and } HIN = 5 V;$ $R_{DT} = 0 \Omega; OP + = GND; OP - = 5 V$		150	210	μA
I _{LK}		High voltage leakage current	V _{hvg} = V _{OUT} = V _{BOOT} = 600 V			10	μA
R _{DS(on)}		Bootstrap driver on- resistance ⁽²⁾	LVG ON		120		Ω
Driving buf	fers sect	lion					
I _{so}	10 12	High/low-side source short-circuit current	$V_{i} = V_{ih} (t_{p} < 10 \text{ ms})$	200	290		mA
I _{si}	- 10, 13	High/low side sink short- circuit current	$V_i = V_{il} (t_p < 10 \text{ ms})$	250	430		mA
Logic input	ts						
V _{il}	1, 2, 3	Low level logic threshold voltage		0.8		1.1	V
V _{ih}	1, 2, 3	High level logic threshold voltage		1.9		2.25	V

Table 7. DC operation electrical characteristics (V_{CC} = 15 V; T_J = +25 °C)

Symbol	Table 7. DC operation electrical characteristics ($v_{CC} = 15 v$; $T_J = +25 c$) (continued)SymbolPinParameterTest conditionMin.Typ.Max.					Unit	
V _{il_S}	1, 3	Single input voltage	LIN and HIN connected together and floating			0.8	V
I _{HINh}	2	HIN logic "1" input bias current	HIN = 15 V	110	175	260	μA
I _{HINI}	- 3	HIN logic "0" input bias current	HIN = 0 V			1	μA
I _{LINI}	1	LIN logic "0" input bias current	LIN = 0 V	3	6	20	μΑ
I _{LINh}	1	LIN logic "1" input bias current	LIN = 15 V			1	μΑ
I _{SDh}	2	SD logic "1" input bias current	<u>SD</u> = 15 V	10	30	100	μA
I _{SDI}	2	SD logic "0" input bias current	<u>SD</u> = 0 V			1	μA

Table 7. DC operation electrical characteristics (V_{cc} = 15 V: T₁ = +25 °C) (continued)

1. $V_{BO} = V_{BOOT} - V_{OUT}$.

2. R_{DSon} is tested in the following way: $R_{DSon} = [(V_{CC} - V_{BOOT1}) - (V_{CC} - V_{BOOT2})] / [I_1(V_{CC}, V_{BOOT1}) - I_2(V_{CC}, V_{BOOT2})]$ where I_1 is pin 14 current when $V_{BOOT} = V_{BOOT1}$, I_2 when $V_{BOOT} = V_{BOOT2}$.

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit	
V _{io}		Input offset voltage	$V_{ic} = 0 V, V_{o} = 7.5 V$			6	mV	
I _{io}		Input offset current	V _{ic} = 0 V, V _o = 7.5 V		4	40	nA	
l _{ib}	6, 9	Input bias current ⁽²⁾	$v_{ic} = 0 v, v_0 = 7.5 v$		100	200	nA	
V _{icm}		Input common mode voltage range		0		V _{CC} -4	V	
V _{OPOUT}		Output voltage swing	OPOUT = OP-; no load	0.07		V _{CC} -4	V	
	7	7	Output short-circuit current	Source, V_{id} = +1; V_o = 0 V	16	30		mA
Ι _ο		Output short-circuit current	Sink,V _{id} = -1; V _o = V _{CC}	50	80		mA	
SR		Slew rate	$V_i = 1 \div 4 V; C_L = 100 pF;$ unity gain	2.5	3.8		V/µs	
GBWP		Gain bandwidth product	V _o = 7.5 V	8	12		MHz	
A _{vd}		Large signal voltage gain	$R_L = 2 k\Omega$	70	85		dB	
SVR		Supply voltage rejection ratio	vs. V _{CC}	60	75		dB	
CMRR		Common mode rejection ratio		55	70		dB	

Table 8. Op amp characteristics⁽¹⁾ (V_{CC} = 15 V, T_{J} = +25 °C)

1. The operational amplifier is disabled when V_{CC} is in UVLO condition.

2. The direction of the input current is out of the IC.

6 Waveforms definitions

Figure 5. Deadtime - timing waveforms

7 Typical application diagram

Figure 6. Application diagram

8 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure* 7 a). In the L6392 device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in *Figure* 7 b.

An internal charge pump (*Figure* 7 b) provides the DMOS driving voltage.

C_{BOOT} selection and charging

To choose the proper C_{BOOT} value the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

Equation 1

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

E.g.: if Q_{gate} is 30 nC and V_{gate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop would be 300 mV.

If HVG has to be supplied for a long time, the $\rm C_{BOOT}$ selection has to take into account also the leakage and quiescent losses.

E.g.: HVG steady state consumption is lower than 200 μ A, so if HVG T_{ON} is 5 ms, C_{BOOT} has to supply 1 μ C to C_{EXT}. This charge on a 1 μ F capacitor means a voltage drop of 1 V.

The internal bootstrap driver gives a great advantage: the external fast recovery diode can be avoided (it usually has great leakage current).

This structure can work only if V_{OUT} is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS R_{DSON} (typical value: 120 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account.

The following equation is useful to compute the drop on the bootstrap DMOS:

Equation 2

$$V_{drop} = I_{charge}R_{dson} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}}R_{dson}$$

where Q_{gate} is the gate charge of the external power MOS, R_{dson} is the on-resistance of the bootstrap DMOS, and T_{charge} is the charging time of the bootstrap capacitor.

For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the T_{charge} is 5 $\mu s.$ In fact:

- -

Equation 3

$$V_{drop} = \frac{30nC}{5\mu s} \cdot 120\Omega \sim 0.7V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

SO-14 package information

	Dimensions						
Symbol	mm			inch			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	1.35		1.75	0.053		0.069	
A1	0.10		0.30	0.004		0.012	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.01	
D ⁽¹⁾	8.55		8.75	0.337		0.344	
Е	3.80		4.0	0.150		0.157	
е		1.27			0.050		
Н	5.8		6.20	0.228		0.244	
h	0.25		0.50	0.01		0.02	
L	0.40		1.27	0.016		0.050	
k	0° (min.), 8° (max.)						
ddd			0.10			0.004	

Table 9. SO-14 package mechanical data

1. "D" dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side.

Figure 9. SO-14 footprint

10 Order codes

	Table	10.	Order	codes
--	-------	-----	-------	-------

Order codes	Package	Packaging	
L6392D	SO-14	Tube	
L6392DTR	SO-14	Tape and reel	

11 Revision history

Date Revision		Changes		
29-Feb-2008	1	Initial release		
18-Mar-2008	2	Cover page updated		
17-Sep-2008	3	Updated Table 3 on page 6, Table 3 on page 6,		
17-Feb-2009	4	Updated Table 6 on page 8, Table 7 on page 10, Table 8 on page 11 Added Table 4 on page 9		
11-Aug-2010	5	Updated cover page, <i>Table 1 on page 1</i> , <i>Table 6 on page 8</i> , <i>Table 8 on page 11</i> .		
11-Sep-2015	6	Removed DIP-14 package from the entire document. Updated <i>Table 3 on page 6</i> (added ESD parameter and value, removed note below <i>Table 3</i>). Updated <i>Table 4 on page 6</i> (updated R _{th(JA)} value). Updated <i>Table 6 on page 8</i> (updated DT and MDT test conditions). Updated <i>Table 7 on page 10</i> (updated V _{il} and V _{ih} parameter and values, updated note 1. and 2. below <i>Table 7</i> - minor modifications, replaced V _{CBOTx} by V _{BOTx}). Updated <i>Table 8 on page 11</i> . Named and numbered <i>Equation 1 on page 14</i> , <i>Equation 2 on page 14</i> and <i>Equation 3 on page 15</i> . Updated <i>Section 9 on page 16</i> (added <i>Figure 9 on page 17</i> , minor modifications). Updated <i>Table 10 on page 18</i> (moved from page 1 to page 18, added and updated titles). Minor modifications throughout document.		

Table 11. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14494 Rev 6

