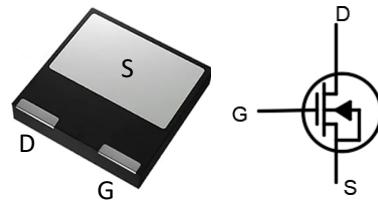


650V GaN Power Transistor (FET)


Features

- Easy to use, compatible with standard gate drivers
- Low Q_{rr} , no free-wheeling diode required
- Excellent $Q_g \times R_{DS(on)}$ product (FOM)
- Low switching loss
- RoHS compliant and Halogen-free

Product Summary		
V_{DSS}	650	V
$R_{DS(on)}$, typ	230	$m\Omega$
Q_g , typ	12.5	nC
Q_{RR} , typ	38	nC

Applications

- Power adapters
- Telecom and datacom
- Automotive
- Servo motors

Packaging

Part Number	Package	Packaging	Base QTY
XG65T230HS1B	DFN 8 x 8mm	Tape and Reel	2500

Maximum ratings, at $T_c=25^\circ\text{C}$, unless otherwise specified

Symbol	Parameter		Limit Value	Unit
I_D	Continuous drain current @ $T_c=25^\circ\text{C}$		11	A
	Continuous drain current @ $T_c=100^\circ\text{C}$		7	A
I_{DM}	Pulsed drain current @ $T_c=25^\circ\text{C}$ (pulse width: 10us)		39	A
	Pulsed drain current @ $T_c=150^\circ\text{C}$ (pulse width: 10us)		30	A
V_{DSS}	Drain to source voltage ($T_j = -55^\circ\text{C}$ to 150°C)		650	V
V_{GSS}	Gate to source voltage		± 20	V
P_D	Maximum power dissipation @ $T_c=25^\circ\text{C}$		50	W
T_c	Operating temperature	Case	-55 to 150	$^\circ\text{C}$
T_j		Junction	-55 to 150	$^\circ\text{C}$
T_s	Storage temperature		-55 to 150	$^\circ\text{C}$
T_{CSOLD}	Soldering peak temperature		260	$^\circ\text{C}$

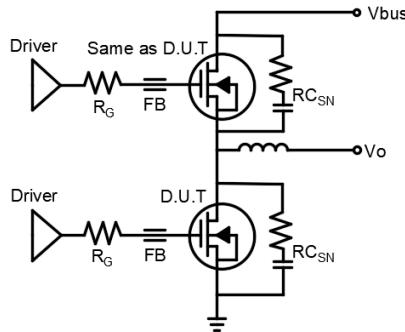
Thermal Resistance

Symbol	Parameter	Typical	Unit
$R_{\theta JC}$	Junction-to-case	2.5	°C/W
$R_{\theta JA}$	Junction-to-ambient ^a	50	°C/W

Notes:

a. Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper area and 70μm thickness)

Electrical Parameters, at $T_J=25\text{ }^\circ\text{C}$, unless otherwise specified


Symbol	Min	Typ	Max	Unit	Test Conditions
Forward Device Characteristics					
$V_{DSS-MAX}$	650	-	-	V	$V_{GS}=0\text{V}$
BV_{DSS}	-	1700	-	V	$V_{GS}=0\text{V}, I_{DSS}=250\mu\text{A}$
$V_{GS(th)}$	-	1.82	-	V	$V_{DS}=V_{GS}, I_D=500\mu\text{A}$
$R_{DS(on)}^a$	-	230	270	$\text{m}\Omega$	$V_{GS}=8\text{V}, I_D=4\text{A}, T_J=25\text{ }^\circ\text{C}$
	-	450	-		$V_{GS}=8\text{V}, I_D=4\text{A}, T_J=150\text{ }^\circ\text{C}$
I_{DSS}	-	8	20	μA	$V_{DS}=700\text{V}, V_{GS}=0\text{V}, T_J=25\text{ }^\circ\text{C}$
	-	25	-	μA	$V_{DS}=700\text{V}, V_{GS}=0\text{V}, T_J=150\text{ }^\circ\text{C}$
I_{GSS}	-	-	150	nA	$V_{GS}=20\text{V}$
	-	-	-150	nA	$V_{GS}=-20\text{V}$
C_{iss}	-	490	-	pF	$V_{GS}=0\text{V}, V_{DS}=650\text{V}, f=1\text{MHz}$
C_{oss}	-	25	-	pF	
C_{rss}	-	4	-	pF	
$C_{O(er)}$	-	30	-	pF	
$C_{O(tr)}$	-	50	-	pF	$V_{GS}=0\text{V}, V_{DS}=0 - 650\text{V}$
Q_G	-	12.5	-	nC	$V_{DS}=400\text{V}, V_{GS}=0 - 8\text{V}, I_D=10\text{A}$
Q_{GS}	-	3	-		
Q_{GD}	-	2.8	-		
$t_{D(on)}$	-	16	-	nS	$V_{DS}=400\text{V}, V_{GS}=0 - 12\text{V}, I_D=10\text{A}, R_G=33\text{ }\Omega$
t_R	-	13	-		
$t_{D(off)}$	-	80	-		
t_F	-	7	-		
Reverse Device Characteristics					
V_{SD}	-	1.7	-	V	$V_{GS}=0\text{V}, I_S=5\text{A}, T_J=25\text{ }^\circ\text{C}$
	-	2.6	-		$V_{GS}=0\text{V}, I_S=10\text{A}, T_J=25\text{ }^\circ\text{C}$
	-	5	-		$V_{GS}=0\text{V}, I_S=10\text{A}, T_J=150\text{ }^\circ\text{C}$
t_{RR}	-	18	-	ns	$I_S=10\text{A}, V_{GS}=0\text{V}, d_i/d_t=1200\text{A/us}, V_{DD}=400\text{V}$
Q_{RR}	-	38	-	nC	

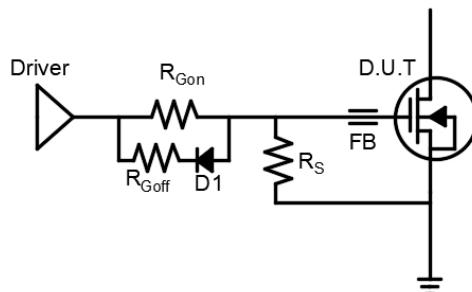
Notes:

a. Dynamic on-resistance

Circuit Implementation

(1) Mostly used in half bridge and full bridge topology

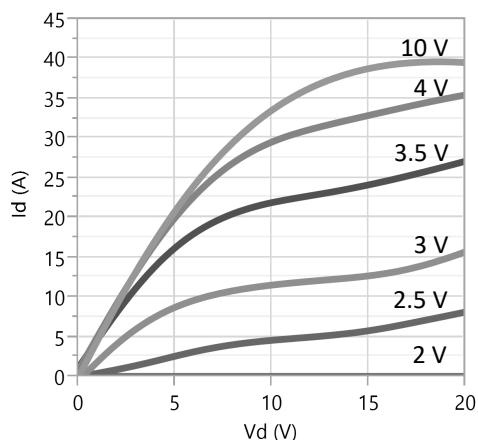
Recommended Half-bridge Drive Circuit


Recommended gate drive: (0 V, 12 V) with $R_G = 33 \Omega$

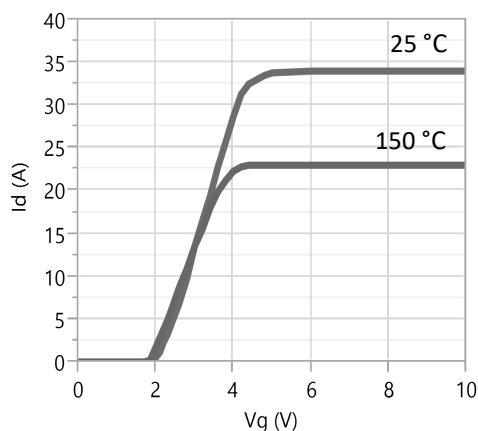
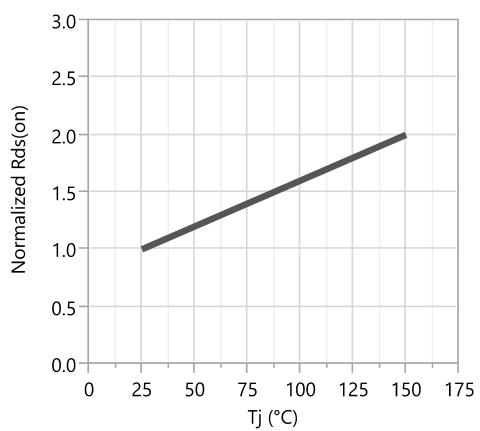
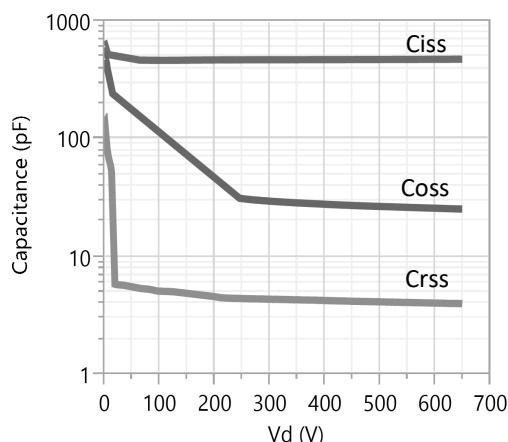
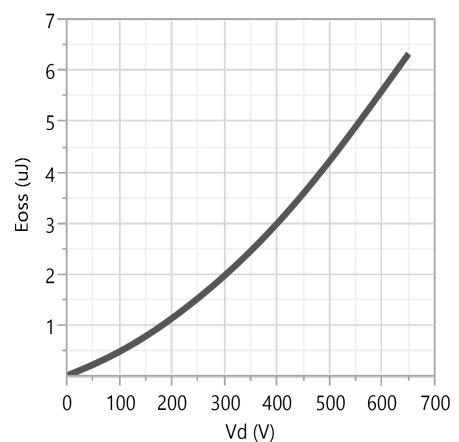
Gate Ferrite Bead (FB)	Gate Resistance (R_G)	RC Snubber (RC_{sn})
MMZ1608S301ATA00	33Ω	$22 \text{ pF} + 15 \Omega$

Notes:

- RC_{sn} should be placed as close as possible to the drain pin
- The layout and wiring of the drive circuit should be as short as possible


(2) Mostly used in flyback, forward and push-pull converters

Recommended Single Ended Drive Circuit





Recommended gate drive: (0 V, 12 V) with $R_{Gon} = 300 - 500 \Omega$, $R_{Goff} = 20 - 50 \Omega$

Gate Ferrite Bead (FB)	Gate Resistance (R_{Gon})	Gate Resistance (R_{Goff})	Gate Source Resistance (R_s)	Gate Diode ($D1$)
MMZ1608S301ATA00	$300 - 500 \Omega$	$20 - 50 \Omega$	$10 \text{ K}\Omega$	1N4148

Typical Characteristics, at $T_c=25^\circ\text{C}$, unless otherwise specified

Figure 1. Typical Output Characteristics $T_c=25^\circ\text{C}$

 Parameter: V_{GS}

Figure 2. Typical Output Characteristics $T_j=150^\circ\text{C}$

 Parameter: V_{GS}

Figure 3. Typical Transfer Characteristics
 $V_{DS}=10\text{V}$, Parameter: T_j

Figure 4. Normalized On-resistance
 $I_D=4\text{A}$, $V_{GS}=8\text{V}$

Figure 5. Typical Capacitance
 $V_{GS}=0\text{V}$, $f=1\text{MHZ}$

Figure 6. Typical Coss Stored Energy

Typical Characteristics, at $T_c=25\text{ }^\circ\text{C}$, unless otherwise specified

Figure 7. Typical Qoss

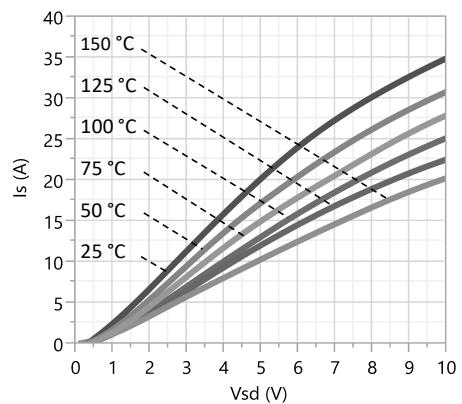


Figure 8. Forward Characteristic of Rev. Diode

$Is=f(V_s)$, Parameter T_J

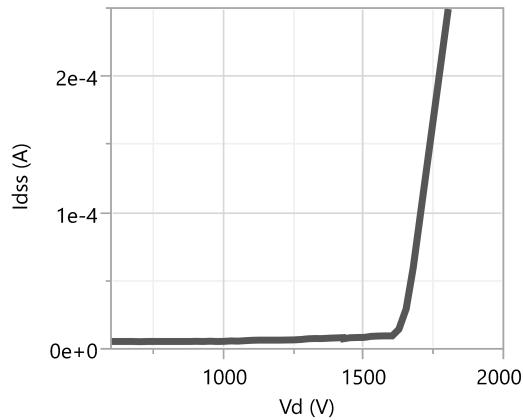


Figure 9. Drain-Source Breakdown Voltage

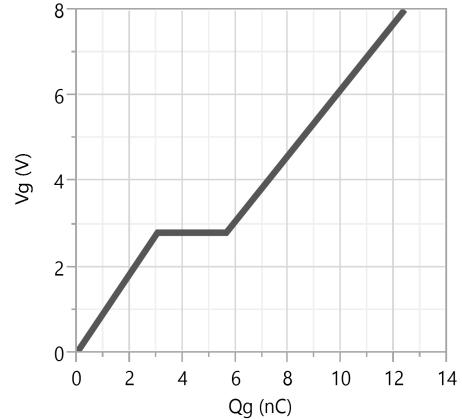


Figure 10. Typical Gate Charge

$I_{DS}=10\text{A}$, $V_{DS}=400\text{V}$

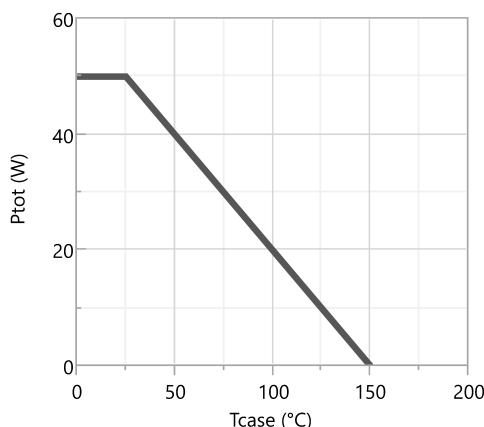


Figure 11. Power Dissipation

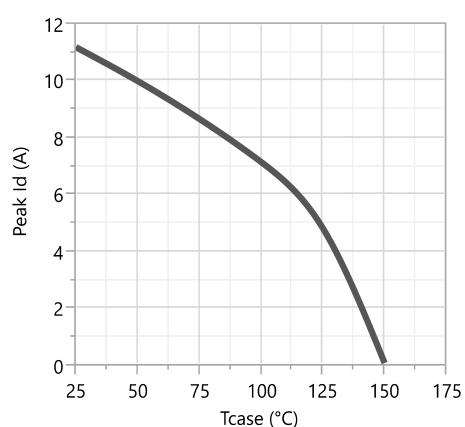
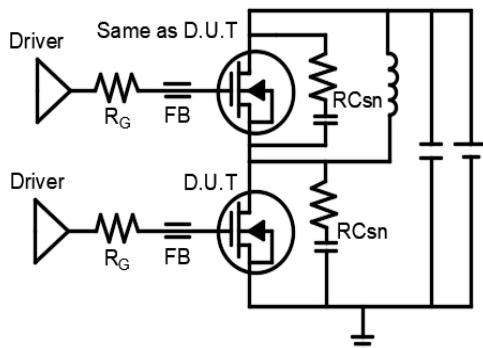
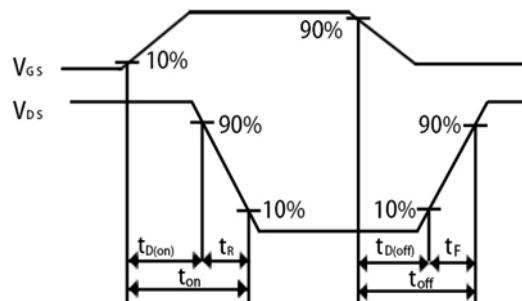
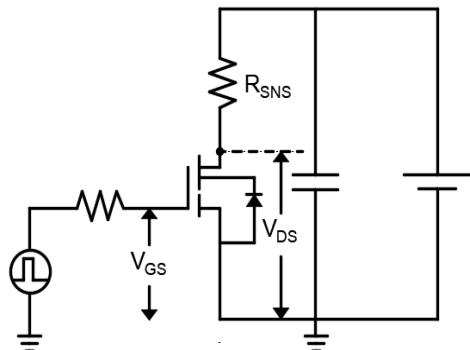
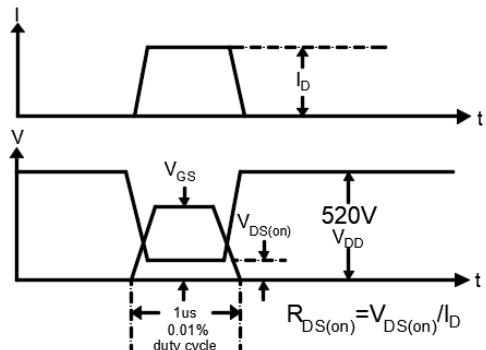
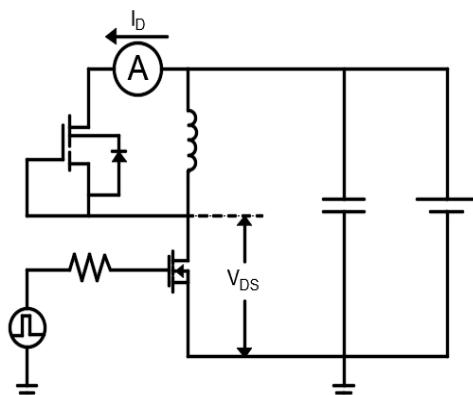
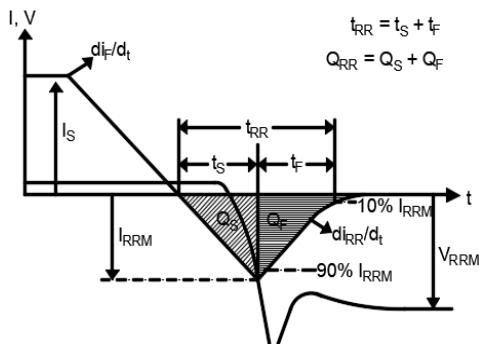








Figure 12. Current Derating

Test Circuits and Waveforms

Figure 13. Switching Time Test Circuit

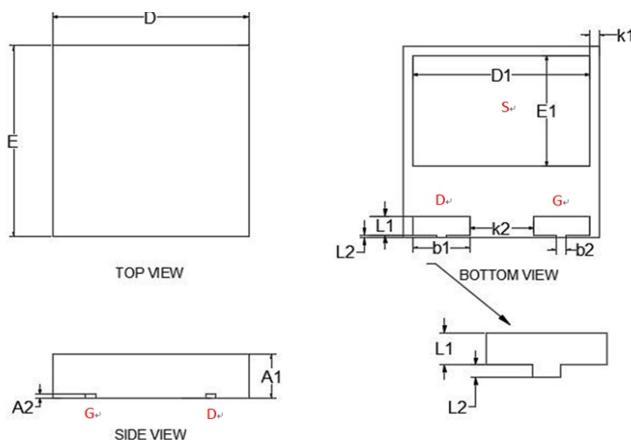
Figure 14. Switching Time Waveform

Figure 15. Dynamic $R_{DS(on)eff}$ Test Circuit

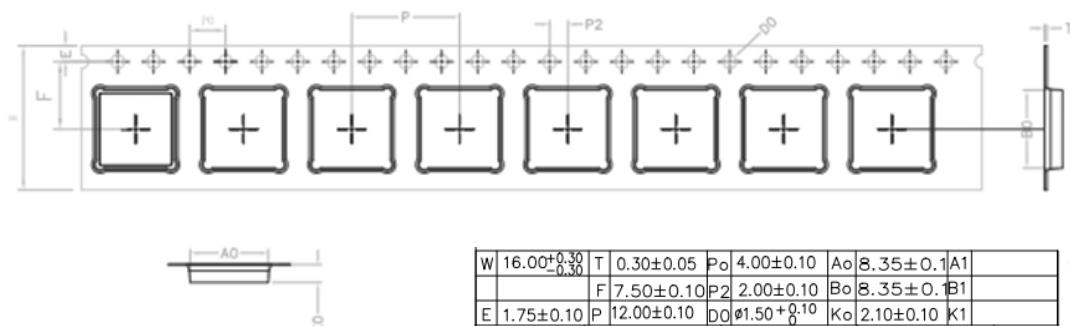
Figure 16. Dynamic $R_{DS(on)eff}$ Waveform

Figure 17. Diode Characteristic Test Circuits

Figure 18. Diode Recovery Waveform


Design Considerations

Fast switching GaN device can reduce power conversion losses, and thus enable high frequency operations. Certain PCB design rules and instructions, however, need to be followed to take full advantages of fast switching GaN devices.


Before evaluating Xinguan's GaN devices, please refer to the table below which provides some practical rules that should be followed during the evaluation.

When Evaluating Xinguan's GaN Devices:

DO	DO NOT
Make sure the traces are as short as possible for both drive and power loops to minimize parasitic inductance	Using Xinguan's devices in GDS board layouts
Use the test tool with the shortest inductive loop, and make sure test points should be placed close enough	Use differential mode probe or probe ground clip with long wires
Minimize the lead length of TO packages when installing them to PCB	Use long traces in drive circuit, or long lead length of the devices

Mechanical

DFN 8 x 8mm (HS) Package

Symbol	Dimensions in Millimeters		
	MIN	NOM	MAX
A1	1.750	1.850	1.950
A2	0.185	0.203	0.230
D	7.000	8.000	9.000
E	7.950	8.000	8.050
D1	7.050	7.200	7.350
E1	4.450	4.600	4.750
K1	0.375	0.400	0.425
K2	2.575	2.600	2.625
b1	2.250	2.300	2.350
b2	0.375	0.400	0.425
L1	0.700	0.800	0.900
L2	0.075	0.100	0.125

Package Outlines
Dimensions are show in millimeters

Revision History

Version	Date	Change(s)
1.0	5/20/2020	Release formal datasheet
1.1	6/1/2020	Added Package Outlines
1.2	7/30/2020	Update test method of RoHS
1.3	3/1/2021	Added recommended single ended drive circuit Update Mechanical