Digital Transistors (BRT) R1 = 47 k Ω , R2 = 47 k Ω

PNP Transistors with Monolithic Bias Resistor Network

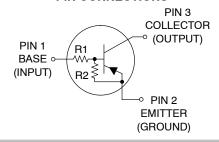
This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

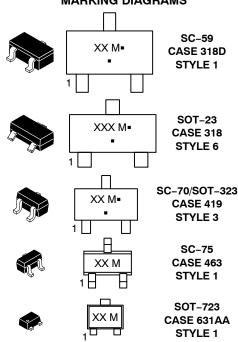
Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C)

Rating	Symbol	Max	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V_{CEO}	50	Vdc
Collector Current – Continuous	I _C	100	mAdc
Input Forward Voltage	$V_{IN(fwd)}$	40	Vdc
Input Reverse Voltage	V _{IN(rev)}	10	Vdc


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


ON Semiconductor®

www.onsemi.com

PIN CONNECTIONS

MARKING DIAGRAMS

STYLE

XXX = Specific Device Code

IX MIL 1

M = Date Code*
■ Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking, and shipping information in the package dimensions section on page 2 of this data sheet.

SOT-1123

CASE 524AA STYLE 1

Table 1. ORDERING INFORMATION

Device	Part Marking	Package	Shipping [†]
MUN2113T1G, SMUN2113T1G*	6C	SC-59 (Pb-Free)	3000 / Tape & Reel
MMUN2113LT1G, SMMUN2113LT1G*	A6C	SOT-23 (Pb-Free)	3000 / Tape & Reel
MMUN2113LT3G, NSVMMUN2113LT3G*	A6C	SOT-23 (Pb-Free)	10000 / Tape & Reel
MUN5113T1G, SMUN5113T1G*	6C	SC-70/SOT-323 (Pb-Free)	3000 / Tape & Reel
MUN5113T3G	6C	SC-70/SOT-323 (Pb-Free)	10000 / Tape & Reel
DTA144EET1G, NSVDTA144EET1G*	6C	SC-75 (Pb-Free)	3000 / Tape & Reel
DTA144EM3T5G	6C	SOT-723 (Pb-Free)	8000 / Tape & Reel
NSBA144EF3T5G	Е	SOT-1123 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

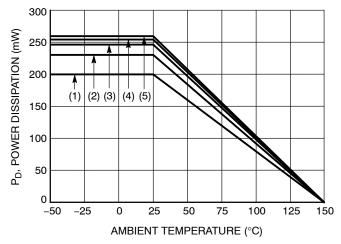


Figure 1. Derating Curve

- (1) SC-75 and SC-70/SOT-323; Minimum Pad
- (2) SC-59; Minimum Pad
- (3) SOT-23; Minimum Pad
- (4) SOT-1123; 100 mm², 1 oz. copper trace
- (5) SOT-723; Minimum Pad

Table 2. THERMAL CHARACTERISTICS

	Characteristic	Symbol	Max	Unit
THERMAL CHARACTERISTI	CS (SC-59) (MUN2113)			
Total Device Dissipation T _A = 25°C (Note 1) (Note 2)		P _D	230 338	mW
Derate above 25°C (Note 2)	(Note 1)		1.8 2.7	mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	540 370	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	$R_{ hetaJL}$	264 287	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTIC	CS (SOT-23) (MMUN2113L)			
Total Device Dissipation T _A = 25°C (Note 1)		P _D	246	mW
(Note 2) Derate above 25°C (Note 2)	(Note 1)		400 2.0 3.2	mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	508 311	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	$R_{ hetaJL}$	174 208	°C/W
Junction and Storage Temper	rature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTI	CS (SC-70/SOT-323) (MUN5113)			
Total Device Dissipation T _A = 25°C (Note 1)		P _D	202	mW
(Note 2) Derate above 25°C (Note 2)	(Note 1)		310 1.6 2.5	mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	618 403	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	$R_{ hetaJL}$	280 332	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTI	CS (SC-75) (DTA144EE)			
Total Device Dissipation T _A = 25°C (Note 1)		P _D	200	mW
(Note 2) Derate above 25°C (Note 2)	(Note 1)		300 1.6 2.4	mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	600 400	°C/W
Junction and Storage Temper	rature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTIC	CS (SOT-723) (DTA144EM3)	-		
Total Device Dissipation T _A = 25°C (Note 1)		P _D	260	mW
(Note 2) Derate above 25°C (Note 2)	(Note 1)		600 2.0 4.8	mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	480 205	°C/W
Junction and Storage Temper	rature Range	T _J , T _{stg}	-55 to +150	°C

- 1. FR-4 @ Minimum Pad.
- 2. FR-4 @ 1.0 x 1.0 Inch Pad.
- FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.

Table 2. THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit			
THERMAL CHARACTERISTICS (SOT-1123) (NSBA144EF3)						
Total Device Dissipation T _A = 25°C (Note 3) (Note 4) Derate above 25°C (Note 3) (Note 4)	P _D	254 297 2.0 2.4	mW mW/°C			
Thermal Resistance, (Note 3) Junction to Ambient (Note 4)	$R_{ hetaJA}$	493 421	°C/W			
Thermal Resistance, Junction to Lead (Note 3)	$R_{ hetaJL}$	193	°C/W			
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C			

- FR-4 @ Minimum Pad.
 FR-4 @ 1.0 x 1.0 Inch Pad.
 FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.

Table 3 ELECTRICAL CHARACTERISTICS (T. = 25°C unloss others

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	I _{CBO}	-	_	100	nAdc
Collector–Emitter Cutoff Current (V _{CE} = 50 V, I _B = 0)	I _{CEO}	-	-	500	nAdc
Emitter-Base Cutoff Current (V _{EB} = 6.0 V, I _C = 0)	I _{EBO}	-	_	0.1	mAdc
Collector–Base Breakdown Voltage $(I_C = 10 \mu A, I_E = 0)$	V _(BR) CBO	50	-	-	Vdc
Collector–Emitter Breakdown Voltage (Note 5) (I _C = 2.0 mA, I _B = 0)	V _(BR) CEO	50	_	-	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 5) (I _C = 5.0 mA, V _{CE} = 10 V)	h _{FE}	80	140	-	
Collector–Emitter Saturation Voltage (Note 5) (I _C = 10 mA, I _B = 0.3 mA)	V _{CE(sat)}	-	_	0.25	Vdc
Input Voltage (off) ($V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$)	V _{i(off)}	-	1.2	0.8	Vdc
Input Voltage (on) $(V_{CE} = 0.3 \text{ V, } I_{C} = 2.0 \text{ mA})$	V _{i(on)}	3.0	1.6	-	Vdc
Output Voltage (on) ($V_{CC} = 5.0 \text{ V}$, $V_B = 3.5 \text{ V}$, $R_L = 1.0 \text{ k}\Omega$)	V _{OL}	-	-	0.2	Vdc
Output Voltage (off) (V _{CC} = 5.0 V, V _B = 0.5 V, R _L = 1.0 k Ω)	V _{OH}	4.9	-	-	Vdc
Input Resistor	R1	32.9	47	61.1	kΩ
Resistor Ratio	R ₁ /R ₂	0.8	1.0	1.2	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%.

TYPICAL CHARACTERISTICS MUN2113, MMUN2113L, MUN5113, DTA144EE, DTA144EM3

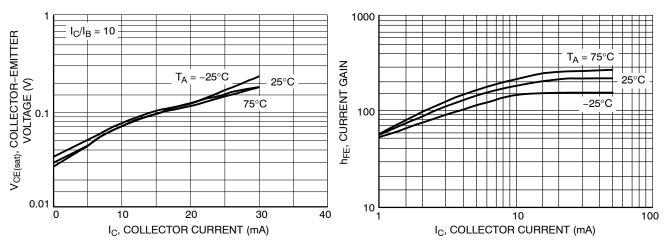


Figure 2. V_{CE(sat)} vs. I_C

Figure 3. DC Current Gain

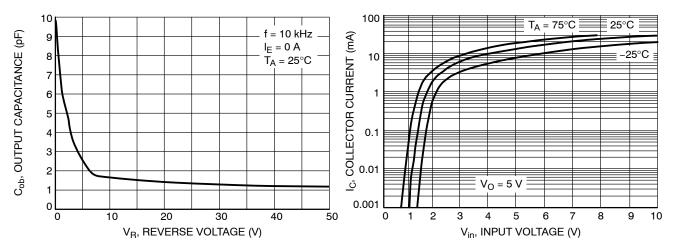


Figure 4. Output Capacitance

Figure 5. Output Current vs. Input Voltage

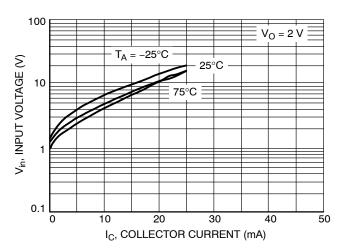
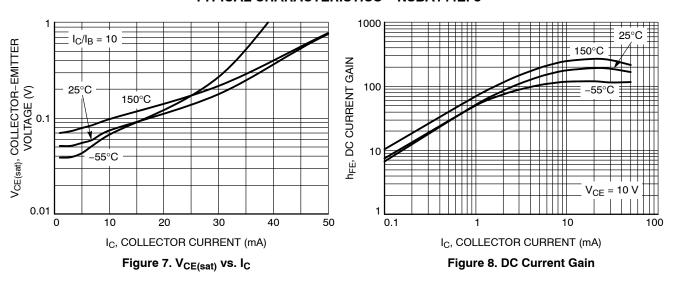



Figure 6. Input Voltage vs. Output Current

TYPICAL CHARACTERISTICS - NSBA144EF3

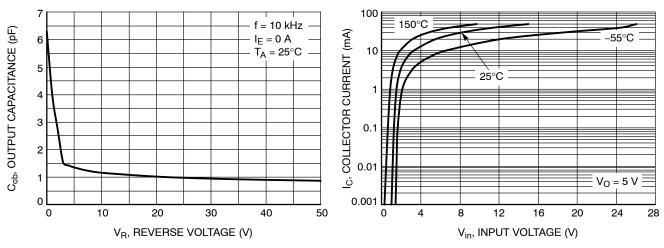


Figure 9. Output Capacitance

Figure 10. Output Current vs. Input Voltage

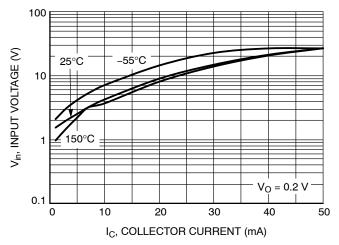


Figure 11. Input Voltage vs. Output Current

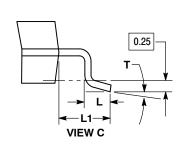
SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

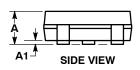
DATE 30 JAN 2018

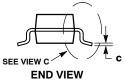
0.017

0.021

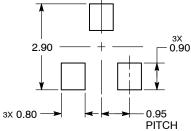
0.094


0.022


0.027


0.104

10°


SCALE 4:1 D Ε – 3X h **TOP VIEW**

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

PIN 1. RETURN

3. INPUT

3. ANODE

STYLE 28: PIN 1. ANODE 2. ANODE

2. OUTPUT

NOTES:

0.43

0.54

2.40

0.30

0.35

2.10

0°

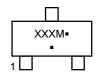
ΗE

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
Е	1.20	1.30	1.40	0.047	0.051	0.055
е	1 78	1.90	2 04	0.070	0.075	0.080

0.55

0.69


2.64

10° 0° **GENERIC MARKING DIAGRAM***

0.012

0.014

0.083

XXX = Specific Device Code

= Date Code

PIN 1. ANODE 2. CATHODE

3. GATE

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	N	
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE		PIN 1. SOURCE	PIN 1. CATHODE
2. ANODE	2. SOURCE	2. CATHODE		2. DRAIN	2. GATE
3. CATHODE	3. GATE	3. CATHODE-ANODE		3. GATE	3. ANODE
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	N PIN 1. CATHODE	PIN 1. CATHODE
2. CATHODE	2. CATHODE	2. ANODE	2. CATHODE	2. ANODE	2. ANODE
3. ANODE	3. CATHODE	3. CATHODE	3. ANODE	3. CATHODE-ANODI	3. GATE
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:

PIN 1. ANODE

ANODE

CATHODE

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 1

PIN 1. GATE 2. DRAIN

3. SOURCE

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PIN 1. GATE

2. SOURCE

3. CATHODE

DRAIN

STYLE 27: PIN 1. CATHODE 2. CATHODE

PIN 1. CATHODE 2. ANODE

3. NO CONNECTION

SCALE 2:1

SC-59 CASE 318D-04 ISSUE H

DATE 28 JUN 2012

NOTES:

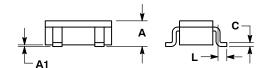
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	MOM	MAX
Α	1.00	1.15	1.30	0.039	0.045	0.051
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.35	0.43	0.50	0.014	0.017	0.020
С	0.09	0.14	0.18	0.003	0.005	0.007
D	2.70	2.90	3.10	0.106	0.114	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
е	1.70	1.90	2.10	0.067	0.075	0.083
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.80	3.00	0.099	0.110	0.118

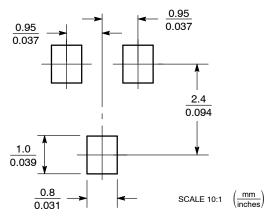
GENERIC MARKING DIAGRAM

XXX = Specific Device Code

Μ = Date Code = Pb-Free Package*


(*Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.



TYLE 4:	STYLE 5:	STYLE 6:
PIN 1. CATHODE	PIN 1. CATHODE	PIN 1. ANODE
2. N.C.	CATHODE	2. CATHODE
3 VNODE	3 ANODE	2 ANODE/CATHODE

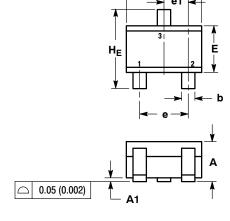
Ε ΗE

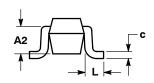
SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42664B	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-59		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

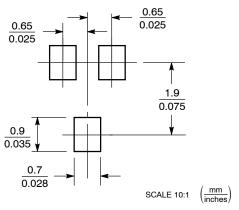



SC-70 (SOT-323) CASE 419-04 ISSUE N

DATE 11 NOV 2008

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF		0.028 REF		
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC			0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
He	2 00	2 10	2 40	0.079	0.083	0.095


GENERIC MARKING DIAGRAM

XX = Specific Device Code Μ = Date Code = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

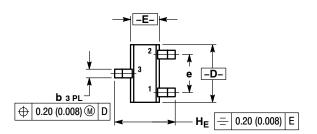
SOLDERING FOOTPRINT*

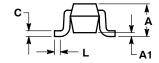
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6: PIN 1. EMITTER 2. BASE	STYLE 7: PIN 1. BASE 2. EMITTER	STYLE 8: PIN 1. GATE 2. SOURCE	STYLE 9: PIN 1. ANODE 2. CATHODE	STYLE 10: PIN 1. CATHODE 2. ANODE	STYLE 11: PIN 1. CATHODE 2. CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHOD

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


MECHANICAL CASE OUTLINE



SC-75/SOT-416 CASE 463-01 ISSUE G

DATE 07 AUG 2015

STYLE 1: PIN 1. BASE 2. EMITTER

3. COLLECTOR STYLE 4:

PIN 1. CATHODE 2. CATHODE 3. ANODE

STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 5: PIN 1. GATE 2. SOURCE

3. DRAIN

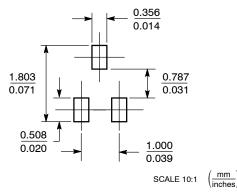
STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

		MILLIMETERS			INCHES		
D	MIC	MIN	NOM	MAX	MIN	NOM	MAX
	Α	0.70	0.80	0.90	0.027	0.031	0.035
	41	0.00	0.05	0.10	0.000	0.002	0.004
	b	0.15	0.20	0.30	0.006	0.008	0.012
	С	0.10	0.15	0.25	0.004	0.006	0.010
	D	1.55	1.60	1.65	0.061	0.063	0.065
	Е	0.70	0.80	0.90	0.027	0.031	0.035
	е	1.00 BSC			0.04 BSC		
	L	0.10	0.15	0.20	0.004	0.006	0.008
H	ΙE	1.50	1.60	1.70	0.060	0.063	0.067

GENERIC MARKING DIAGRAM*


XX= Specific Device Code

Μ = Date Code

= Pb-Free Package

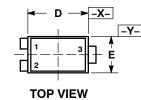
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

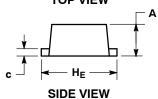
SOLDERING FOOTPRINT*

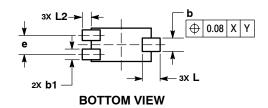
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB15184C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-75/SOT-416		PAGE 1 OF 1	

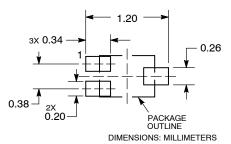
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.






SOT-1123 CASE 524AA ISSUE C

DATE 29 NOV 2011


SCALE 8:1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE
- MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
 FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.34	0.40		
b	0.15	0.28		
b1	0.10	0.20		
С	0.07	0.17		
D	0.75	0.85		
E	0.55	0.65		
е	0.35	0.40		
HE	0.95	1.05		
Ĺ	0.185 REF			
L2	0.05	0.15		

GENERIC MARKING DIAGRAM*

= Specific Device Code

Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	2. SOURCE
COLLECTOR	CATHODE	CATHODE	ANODE	3. DRAIN

DOCUMENT NUMBER:	98AON23134D	8AON23134D Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-1123, 3-LEAD, 1.0X0	.6X0.37, 0.35P	PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-723 CASE 631AA-01 ISSUE D

DATE 10 AUG 2009

NOTES:

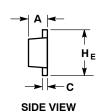
- NOTES.

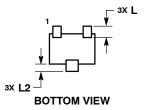
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
- FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS						
DIM	MIN	MIN NOM MAX					
Α	0.45	0.50	0.55				
b	0.15	0.21	0.27				
b1	0.25	0.31	0.37				
С	0.07	0.12	0.17				
D	1.15	1.20	1.25				
E	0.75	0.80	0.85				
е	0.40 BSC						
ΗE	1.15	1.20	1.25				
L	0.29 REF						
L2	0.15	0.20	0.25				

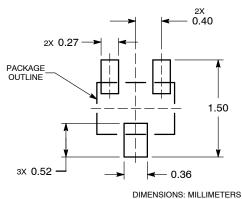

GENERIC MARKING DIAGRAM*



= Specific Device Code XX Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

-X-2X b ⊕ 0.08 X Y **TOP VIEW**



STYLE 1:
PIN 1. BASE
EMITTER
COLLECTOR

STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON12989D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-723		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative