Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

General Description

The MAX16545B/C is a circuit-breaker protection IC with an integrated low-resistance MOSFET and lossless current-sense circuitry featuring PMBus™/SMBus control and reporting. The IC is designed to provide the optimum solution for distribution, control, monitoring and protection of the system's 12V power supply. An internal LDO provides the bias supply voltage for the protection IC.

If no fault is detected, the MAX16545B/C initiates the startup. The device has been designed to provide controlled, monotonic startup. Programmable soft-start ramp and delay is implemented to limit the inrush current during startup. The MAX16545B is set for 16A Startup OCP, and the MAX16545C is set for 24A Startup OCP.

The IC monitors the current and the voltage of the 12V system power rail and provides multiple levels of protection with fast turn off if a fault is detected. Three methods of overcurrent protection are provided. Programmable moderate OCP level allows surge currents for a limited time. User-selectable severe OCP level provides a fast disconnect if a current exceeding the severe OCP threshold is detected. An additional fixed high shutdown OCP level provides instantaneous disconnect to further protect the device.

The lossless current sense provides high-accuracy current sensing over load and temperature, improving overall system energy efficiency, and reducing dissipation. A signal proportional to the load current is reported through an analog output and extensive reporting is provided through the SMBus/PMBus.

Output voltage is monitored at all times. If at any time the output voltage falls below the programmable output undervoltage lockout threshold, the PWRGD signal is asserted low. If at any time the input voltage falls below the programmable input undervoltage lockout threshold, the PWRGD signal is asserted low. The MAX16545B/C can be programmed through PMBus to provide input overvoltage protection. Input overvoltage protection is disabled by default. When enabled through PMBus, if the input voltage exceeds a programmable overvoltage threshold, the MOSFET is latched off and a fault is communicated.

The IC is used to distribute and control power to a system from the +12V power supply. See <u>Basic Application Circuit</u>.

Benefits and Features

- High Density (6.5mm x 4mm for 60A): Less than 25% of the Board Area of Conventional Solutions
 - Monolithic Integration of Power, Control, and Monitoring (Integrated Power MOSFET with 0.95mΩ Total Resistance in 12V Power Path (R_{DSON}), Including Package)
 - Integrated Lossless, Precise Current Sensing
 - Integrated LDO Provides V_{DD} Supply (1.8V Bias Supply)
- Enables Advanced System Power Management
 - PMBus/SMBus Telemetry with Extensive Status Monitoring and Reporting
 - Load Current Indicator (ILOAD) Pin Provides Analog Output Current Reporting With High Accuracy
 - Programmable Soft-Start for Inrush Current
 Limiting
 - Increases Power-Supply Reliability with IC Self-Protection Features
 - Very Fast Fault Detection and Isolation
 - V_{IN} to V_{OUT} Short Protection During Startup
 - Overtemperature Protection
 - Three Levels of Overcurrent Protection
 - Programmable Moderate OCP
 - Programmable Severe OCP Provides Isolation < 5µs.
 - Fail-Safe Safe OCP Provides Isolation < 250ns.

Applications

Servers, Networking, Storage, Communication Equipment and AC/DC Power Supplies

 Integrated Protection IC on 12V: Circuit Breaker, Hot Swap, Inrush Control

Ordering Information appears at end of data sheet.

PMBus is a trademark of SMIF, Inc.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Basic Application Circuit

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Absolute Maximum Ratings

Supply Voltage (V _{IN}) DC	0.3V to +16V
Supply Voltage (V _{IN}) 150µs	+22V
Bias Supply Voltage (V _{DD})	0.3V to +2.5V
PWRGD, FAULT	0.3V to +5.5V
EN/UVLO, ROCP	0.3V to +2.5V
SMBUS_CLK, SMBUS_DATA	0.3V to +6V
SMBUS_ALERT	0.3V to +6V
SMBUS_ID	0.3V to +2.5V

ILOAD_IN, ILOAD	0.3V to +2.5V
Output Voltage (V _{OUT}) DC	0.3V to +16V
V _{BST} (Relative to V _{OUT})	0.3V to +2.5V
SS	0.3V to +16V
Junction Temperature (T _J)	+150°C
Storage Temperature Range	65°C to +165°C
Peak Reflow Temperature	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Ratings

Supply Voltage (VIN)	10.8V to 13.2V
Bias Supply Voltage (V _{DD})	1.76V to 1.94V

Junction Temperature (T_J).....0°C to +125°C

Package Information

PACKAGE TYPE: 22 FCQFN				
Package Code	P224A6F+1			
Outline Number	<u>21-1006</u>			
Land Pattern Number	<u>90-0510</u>			
THERMAL RESISTANCE				
Junction to Case (θ_{JC}) (max)	0.31°C/W			

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
12V SUPPLY (V _{IN})						1
Supply Voltage Range	V _{IN}		10.8	12	13.2	V
		FET off	3.2		6.1	
Supply Current	I _{IN}	FET on: I _{OUT} = 0 (Note 1)	3.7		6.5	mA
		FET on: I _{OUT} = 60A (Note 1)			10	
INTEGRATED 1.8V LINEAR R	EGULATOR					
LDO Output Voltage Range			1.76	1.85	1.94	
V _{DD} UVLO, Falling			1.55	1.6	1.67	V V
V _{DD} UVLO, Rising	V _{DD}		1.62	1.67	1.71	1
V _{DD} UVLO Hysteresis		(Note 1)	30	60	80	mV
V _{DD} UVLO Speed	-	(Note 1)		2		μs
UNDERVOLTAGE LOCKOUT	12V SUPPLY (VI	N)				
V _{IN_} UVLO Rising Threshold	M		0.95	1	1.05	V
V _{IN} UVLO Hysteresis	V _{IN_UVLO}	At EN/UVLO Pin		50		mV
Programmable 12V V _{IN} Undervoltage Threshold for Rising Input	Vin_uvlo	Programmable through resistor-divider, measured at V_{IN} with 1% resistors on the divider.	8			V
Response Time	t _D	From EN/UVLO = 0V To FET Off (Note 1)		2		μs
EN/UVLO PIN INTERNAL PA	RAMETERS					
EN/UVLO Pin Leakage		EN/UVLO Pin = 1.8V	5	7.2	11	μA
EN/UVLO Internal-Pulldown Resistor			110	250	450	kΩ
BOOST VOLTAGE (V _{BST})						
V _{BST} Charging Time to 1.6V above V _{OUT}	^t CHARGE	C _{BST} = 100nF			275	μs
BST Voltage above V _{OUT}	V _{BST}			1.8		V
Rising UVLO Threshold above V_{OUT}			0.8	1.2	1.6	
Falling UVLO Threshold above V_{OUT}	BOOST UVLO		0.7	1.1	1.5	— V
UVLO Hysteresis			60	130	400	mV
Falling-Lockout Response Time	t _D				2.3	μs
INTEGRATED MOSFET CHA	RACTERISTICS	· · · · · · · · · · · · · · · · · · ·				
On-Resistance	R _{DS(ON)}	(Note 1)		0.95		mΩ

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
OVERCURRENT PROTECTIO	ON (OCP)					
Gain from ROCP Pin Current to I _{OUT}	G _{OCP}	(Note 1)		8		A/µA
Moderate OCP Voltage Threshold		Referred to voltage over R_{OCP} (Note 1)		0.8		V
Moderate OCP Threshold Accuracy	V _{OCPM}	Referred to I _{OUT} using Equation 1 (Note 1)		±12		%
Moderate OCP Threshold Range	I _{OCP} (MODERATE)	(Note 1)	30		70	A
Allowable Range for No Fault Detection	R _{OCP}		26		380	kΩ
		I _{OUT} > Moderate OCP, I _{OUT} < Severe OCP		20 100		μs
Moderate OCP Timeout	toopu	PMBus Programmable, default 100µs		100		
	^t OCPM	(Note 1)		250		ms
Moderate OCP Fault Detect Delay Timeout Accuracy		(Note 1)		±25		%
Severe OCP Threshold, % above Moderate OCP	- I _{OCP} (SEVERE)	PMBus Programmable, default 130% (Note 1)		130 150		%
Severe OCP Threshold Accuracy		(Note 1)		±15		%
Severe OCP Delay	^t D(SEVERE)	From fault threshold exceeded to FET off		10		μs
Safe OCP Threshold				120		A
Safe OCP Threshold Accuracy	I _{OCP} (SAFE)			±20		%
Safe OCP Delay	^t D(SAFE)	From fault threshold exceeded to FET off			250	ns
		PMBus programmable,		16		
Startup OCP Threshold		MAX16545B default = 16A,		24		A
Startup OCP Threshold Accuracy	IOCP(STARTUP)	MAX16545C default = 24A (Note 1) (Note 1)		8 ±20		%
Startup OCP Delay	^t D(STARTUP)				10	μs
SOFT-START AND COUT						1
Soft-Start Discharge Resistance	SS			1	2	kΩ
Soft-Start Charging Current	I _{SS}		20		38	μA
Soft-Start Time	t _{SS}	C _{SS} = 0nF, I _{OUT} = 0A			1.5	ms

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Soft-Start Capacitor Discharge Threshold			0.10	0.21	0.29	V
C _{SS} Discharge Check Duration During Startup				2.2		s
FET V _{GS} UNDERVOLTAGE L	оскоит					
V _{GS} Rising UVLO Threshold			0.87	1.3	1.61	V
V _{GS} Falling UVLO Threshold			0.74	1.17	1.47	V
V _{GS} UVLO Hysteresis	V _{GS_UVLO}		87	100	466	mV
V _{GS} UVLO Masking Time		V _{GS} UVLO masking time at startup	90	100	110	ms
PASS FET SHORT DETECTIO	ON DURING STA	RTUP				1
Duration of V _{OUT} Discharge Check	^t DISCHARGE			2.2		s
Pulldown Resistance on V _{OUT} During Self-Check	R _{DISCHARGE}		400	455	560	Ω
			5.8	6	6.2	
Threshold for Self-Check	V _{OUT} _	PMBus Programmable, default 9V	6.8	7	7.2	v
Procedure	SELFCHECK	(Note 1)	7.8	8	8.2	3.2 V
			9.0	9.2	9.4	
Delay from Self-Check Pass to	+	PMBus Programmable default 0.02ms	0.02		_	
Start V _{OUT} Ramp	t _D	(Note 1)		10 20		ms
PWRGD PIN						I
PWRGD Output-High Voltage	V _{OH}	External pullup leakage below 1µA			5.5	V
PWRGD Output-Low Voltage	V _{OL}	Sinking 4mA			0.4	V
Propagation Delay from V _{OUT_UVLO} Detect to PWRGD Pin Asserted Low	t _D				5	μs
				8		
Rising Threshold for PWRGD		PMBus Programmable, default 11V (Note		9		
Asserted High		1)		10		V
				11		
Accuracy			-5		+5	%
PWRGD Assertion Delay After V _{OUT} Settles	V _{TH(PWRGD)}	(Note 1)		5		ms
PWRGD Hysteresis		8V	0.36	0.41	0.46	
PWRGD Hysteresis		9V	0.42	0.47	0.52	
PWRGD Hysteresis		10V	0.45	0.51	0.56	V
PWRGD Hysteresis		11V	0.50	0.55	0.61	1

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OVERTEMPERATURE PROT	ECTION (OTP)		•			
Overtemperature Protection Threshold	T _{OTP}	PMBus programmable (Note 1)		135		°C
SMBus DATA (SMBUS_DATA) AND CLOCK (S	SMBUS_CLOCK) PINS				
Leakage Current		For pullup voltage = 5.5V		6.2	10	μA
Input-Low Voltage	V _{IL}				0.8	V
Input-High Voltage	VIH		2.1			V
Output-Low Voltage	V _{OL}	SMBUS_DATA, sinking 4mA			0.4	V
External-Pullup Voltage	V _{OH} Max				5.5	V
SMBUS_ALERT PIN						
Output-Low Voltage	V _{OL}	Sinking 4mA			0.4	V
Leakage Current		For pullup = 5.5V			1	μA
External-Pullup Voltage	V _{OH} Max				5.5	V
FAULT ISOLATION DELAY			•			
Fault-Detection Time	t _D	From fault detection to start of gate pulldown		60		ns
Pass FET Turn-Off Time	t _F	From start of gate pulldown to pass FET off		50		ns
FAULT PIN			•			
FAULT Input-High Voltage	VIH		1			V
FAULT Input-Low Voltage	V _{IL}				0.66	V
FAULT Output-High Voltage	V _{OH}	External pullup, leakage below 1µA			5.5	V
FAULT Output-Low Voltage	V _{OL}	Sinking 4mA			0.4	V
Propagation Delay from Fault Detect to FAULT Asserted Low	t _d				140	ns
VIN OVERVOLTAGE PROTEC	CTION (OVP)					
				14		
Programmable Threshold for	V _{IN_OVP}	PMBus programmable, default 16V		16		V
OVP		(Note 1)		17		
				18		
Deglitching Time	t _{FILTER_OVP}			20		μs
Deglitching Time Accuracy				±5		%

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Electrical Characteristics (continued)

 $(V_{IN} = 12V \pm 10\%, T_A = T_J = 0$ °C to +125°C, unless otherwise noted. Specifications are 100% production tested at $T_A = T_J = +32$ °C. Limits over operating temperature are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
CURRENT REPORTING (ILO	AD) PIN		•			
Linear I _{OUT} Reporting Range		Current reporting range from single MAX16545B/C device.	0		70	A
Linear-Voltage Range			0		1.35	V
Offset Current		I _{OUT} = 0A		0.65		μA
Current-Reporting Gain	G _{ILOAD}	ILOAD current divided by I _{OUT} current (Note 1)		5		µA/A
Bandwidth		No capacitor in parallel with R _{LOAD} resistor.	100			kHz
CURRENT REPORTING (ILO	AD_IN) PIN					
Linear Current Range. Gain from ILOAD_IN Pin to ILOAD Pin = 1	ILOAD_IN	Only when used with VT503 (Note 2)	0		350	μA
ANALOG CURRENT REPOR	TING ACCURACY					
Analog Current-Reporting	lour	I _{OUT} = 60A (Note 2)	-1.3	+	+1.3	- %
Accuracy	IOUT	I _{OUT} = 8A (Note 2)	-1.8		+1.8	
SMBus/PMBus TELEMETRY	ACCURACY					
Digital Current-Reporting	READ_IOUT (8Ch),	I _{OUT} = 60A (Note 2)	-1.6		+1.6	%
Accuracy	READ_IIN (89h)	I _{OUT} = 8A (Note 2)	-2.3		+2.3	
Digital Power-Reporting		I_{OUT} = 8A, V_{IN} = 12V, R_{LOAD} = 4.5k Ω (Note 2)	-3		+3	%
Accuracy	READ_PIN (97h)	I_{OUT} = 60A, V_{IN} = 12V, R_{LOAD} = 4.5k Ω (Note 2)	-2		+2	70
Digital Input-Voltage Reporting Accuracy	READ_VIN (88h)		-1		+1	%
Digital Output-Voltage	READ_VOUT	10.8V < V _{OUT} < 13.2V	-1		+1	0/
Reporting Accuracy	(8Bh)	8V < V _{OUT} < 10.8V	-3		+3	%
Digital-Temperature Reporting Accuracy	READ_ TEMPERATURE _1 (8Dh)	(Note 2)	-6		+6	°C
Digital-Energy Reporting		I _{OUT} = 60A	-2.5		+2.5	0/
Accuracy	READ_EIN (86h)	I _{OUT} = 8A	-4.6		+4.6	%

Note 1: Denotes specifications that apply for typical operating junction temperature ($T_A = T_J = +32^{\circ}C$).

Note 2: Reporting accuracy presented includes 0.1% external resistor tolerance contribution.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Typical Operating Characteristics

Conditions: I_{OUT} = 0A to 60A 1: I_{OUT} (20A/div) 2: V_{ILOAD} (500mV/div)

Output Current Monitoring and Reporting - Linearity

800

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Typical Operating Characteristics (continued)

 ons: CSS = 4/nF COUT = 2 x 180µF + 6 x 10µF + 2 x 2.2µF 1. VOUT (5V/div) 2. EN/UVLO (1V/div) 3. PWRGD (2V/div) 4. FAULT (2V/div)

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Typical Operating Characteristics (continued)

- 1. VOUT (5V/div)
- 2. IOUT (20A/div)
- 3. PWRGD (2V/div)
- 4. FAULT (2V/div)

- 3. PWRGD (2V/div)
- 4. FAULT (2V/div)

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Typical Operating Characteristics (continued)

Time/Div: 50ms

Conditions: C_{SS} = 47nF

- No Input Capacitors C_{OUT} = 2 x 180µF + 6 x 10µF + 2 x 2.2µF No Load Present at Startup
- 1. V_{OUT} (5V/div)
- 2. V_{IN} (5V/div)
- 3. PWRGD (2V/div)
- 4. FAULT (2V/div)

Time/Div: 5ms

 $\begin{array}{l} \mbox{Conditions: } C_{SS} = 22nF \\ No Input Capacitors \\ C_{OUT} = 4 \times 330 \mu F + 2 \times 180 \mu F + 1 \times 10 \mu F + 1 \times 2.2 \mu F \\ R_{LOAD} = 1\Omega \mbox{ Present at Startup} \\ 1. \mbox{ V}_{OUT} \ (5V/div) \\ 2. \mbox{ I}_{OUT} \ (5V/div) \\ 3. \mbox{ PWRGD} \ (2V/div) \\ 4. \mbox{ FAULT} \ (2V/div) \end{array}$

Integrated FET Self-Check Function

Time/Div: 50ms

Conditions: Css = 47nF PWRGD Threshold = 8V VIN_UVLO Threshold = 6.2V No Load 1. VOUT (5V/div) 2. VIN (2V/div) 3. PWRGD (2V/div)

4. FAULT (2V/div)

Time/Div: 500ms

Conditions: $V_{\mbox{OUT}}$ Shorted to $V_{\mbox{IN}}$ Prior to Startup

- 1. VOUT (5V/div)
- 2. EN/UVLO (1V/div)
- 3. PWRGD (2V/div)
- 4. FAULT (2V/div)

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Typical Operating Characteristics (continued)

Time/Div: 500ms

Conditions: CSS = 47nF

- SS Shorted to VIN Prior to Startup 1. VOUT (5V/div)
 - 2. SS (5V/div)
 - 3. EN/UVLO (1V/div)
 - 4. FAULT (2V/div)

Time/Div: 200ms

Conditions: OCPM High = 68A OCPM_LOW = 40A IOUT = 20A to 45A 0.05A/µs t = 600ms Moderate OCP Timeout = 100ms 2. IOUT (10A/div) 3. PWRGD (2V/div) 4. FAULT (2V/div)

Shutdown Controlled by VIN - No Load

- 2. IOUT (20A/div)
- 3. PWRGD (2V/div)
- 4. FAULT (2V/div)

Time/Div: 1s

Conditions: IOUT = 0A FAULT and PWRGD Pullup Voltages Derived From 12V Supply 1. VOUT (5V/div) 2. VIN (5V/div) 3. PWRGD (2V/div) 4. FAULT (2V/div)

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Typical Operating Characteristics (continued)

Shutdown Controlled by V_{IN} , 1 Ω Resistive Load

Time/Div: 20ms Conditions: R_{LOAD} = 1Ω 1. V_{OUT} (5V/div) 2. I_{OUT} (20A/div) 3. PWRGD (2V/div) 4. FAULT (2V/div)

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Pin Configuration

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Pin Description

PIN	NAME	FUNCTION
1	SMBUS_CLK	SMBus Clock Node.
2	ILOAD	Analog Current Representation of the Load Current. Connect this pin to ground through a properly sized resistor for proper voltage representation. Always keep this pin connected to ground through a resistor. A capacitor parallel to the R _{ILOAD} resistor is required (see Figure 6 for the recommended value).
3	SS	Soft-Start Node. A capacitor is connected from SS to GND to program soft-start. The soft-start program capacitor should not exceed 75nF. If a fast-load transient (di/dt > 2.5A/ms) resulting in fast and large transient output voltage deviation is possible in the application, an additional capacitor between SS and V _{OUT} is recommended to keep the pass FET V _{GS} above its UVLO threshold.
4	V _{BST}	Charge-Pump Supply for Pass FET Gate Drive. Connect this node to V _{OUT} through a 220nF bypass capacitor. This supply is designed to be used by the MAX16545B/C and the MAX16543 only. No additional load or external components other than a bypass capacitor are allowed on the BST pin.
5-8	V _{OUT}	12V Output Power—Load Side.
9-12	V _{IN}	12V Input Power—Power Supply Side.
13	GND	Ground. Connect this node to GND plane through vias for proper operation.
14	EN/UVLO	12V Input Voltage UVLO pin. Normally connected to the center node of a resistor-divider connected from V _{IN} to ground. A properly sized capacitor can be placed in parallel to the bottom resistor of the resistor-divider for additional filtering. In addition to 12V UVLO programming, this node can be used to enable/disable the MAX16545B/C.
15	SMBUS_ALERT	SMBus Alert. Open-drain, active-low pin.
16	FAULT	Fault Communication (Bidirectional) Pin. This pin is used to indicate/receive detection of latching fault. See the <i>FAULT Reporting</i> section for more details. Connect this pin to the system bias supply rail through a $10k\Omega$ resistor. 5V compliant, active-low pin.
17	PWRGD	Report V _{IN} and V _{OUT} status. See the <i>Power Good (PWRGD) Output</i> section for more details. Connect this pin to system bias supply rail through a $10k\Omega$ resistor. 5V compliant.
18	ROCP	Moderate OCP Threshold Programming Input. Connect this pin to GND using an appropriate programming resistor. See the <i>Moderate OCP Threshold</i> section for additional details. No other components are allowed on this pin.
19	SMBUS_DATA	SMBus Data Node.
20	SMBUS_ID	SMBus Address Programming and Current Hysteresis Flag. Connect this pin to GND through a properly sized resistor to select desired address setting.
21	ILOAD_IN	System Current Reporting Input Pin. If current reporting from a single MAX16545B/C device is desired, connect this pin to GND through a $10k\Omega$ resistor. Use this pin to sum currents from up to two MAX16543 devices if used in higher-current applications. In this case, the connection from the ILOAD pin of MAX16543 to ILOAD_IN of MAX16545B/C should be made through a 500Ω resistor. Refer to the <i>MAX16543 Follower Device</i> section for details.
22	V _{DD}	Internal 1.8V Linear Regulator (LDO) Output. Connect this pin to GND through a 1μ F (or higher) capacitor. See Figure 6 for the correct value. No additional loads or components other than up to two MAX16543 devices and external properly sized capacitor are allowed on the V _{DD} pin.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Block Diagram

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Theory of Operation

The MAX16545B/C integrated circuit-breaker IC is designed to provide a complete single-chip circuit-breaker protection solution for the 12V power bus, in applications where a power supply is either permanently connected (no removable assemblies), or is connected and disconnected at the input side only. It combines power monitoring and control functions with a low on-resistance pass FET device that acts as a disconnect switch to limit maximum power distributed to the load. The IC implements proprietary integrated lossless current sensing techniques to provide a highly accurate and compact circuit-breaker protection solution. The device integrates PMBus/SMBus interface for digital control and monitoring.

An integrated N-channel power MOSFET is driven by the FET control circuit that includes a boost circuit to provide a gate drive. An internal LDO provides V_{DD} bias supply, enabling effective use of the device in input hot-swap applications. See the <u>Block Diagram</u>.

Startup

The MAX16545B/C enables the integrated 1.8V V_{DD} LDO once the 12V supply voltage is high enough to guarantee LDO operation. Once V_{DD} is valid, the device reads the SMBus_ID programming resistor value to set the SMBus address, and initiates itself. During this period, the gate drive supply capacitor becomes fully charged. Once these two functions are complete, the device can be controlled through the enable input.

The enable input (EN/UVLO) has a precise threshold and provides a V_{IN}_{UVLO} function, where the enable voltage is derived from V_{IN} through a resistor-divider, with an optional control signal used in conjunction with the divider as shown in Figure 1 and Figure 5. The EN/UVLO pin must not be pulled high externally other than to pull the EN/UVLO pin high through a properly sized resistor-divider from the input supply. Though the enable signal can be pulled low to disable the part, this should only be allowed to occur when the input voltage supply is within operating range specified in *Electrical Characteristics* table.

Safe Operating Area (SOA)

During soft-start, it is important to keep the FET within its safe operating area. The peak current allowed during startup is shown in <u>Figure 2</u>. In case resistive short is possible in the application, it is required to use startup OCP feature to protect the device. The MAX16545B has a default startup OCP of 16A, and the MAX16545C has a default startup OCP of 24A. The startup OCP threshold must be programmed to a value lower than safe peak current. <u>Figure 2</u> assumes pure capacitive or RC load on the output. During normal operation, V_{GS_UVLO} ensures FET is operating in deep triode region while three levels of OCP limit the device operating current within safe boundaries. Refer to the SOA curves under <u>Typical Operating</u> *Characteristics* for more detail.

Self-Check

Once VBST UVLO has been cleared, the internal VDD LDO is fully enabled and the EN/UVLO pin is above the enable threshold, the MAX16545B/C initiates a timed output discharge as a self-check procedure. By default, the device initiates this procedure immediately after VBST UVLO has been cleared and the internal $V_{DD LDO}$ is fully enabled. If the output does not fall below the programmed selfcheck threshold after a fixed period, the pass FET could be potentially shorted and the IC asserts both FAULT and PWRGD pins low. The latched fault condition remains until restart (EN/UVLO, VIN toggling or restarting through the OPERATION command). The threshold for the selfcheck procedure can be programmed to one of four different values through the SMBus. See the Config Register (D0h) for more details. If the output voltage is below the programmed self-check threshold, the self-check is considered passed and the device proceeds with startup.

Because the device actively discharges the output when disabled, it should not be used in applications where the output can remain powered through another path.

In addition a soft-start capacitor discharge procedure is performed during every restart. The MAX16545B/C utilizes an integrated resistive element, with resistance approximately 1k Ω , to discharge the C_{SS} capacitor. The device checks if the voltage across the C_{SS} capacitor is below the soft-start threshold shown in the <u>Electrical</u> <u>Characteristics</u> table after a fixed period of time. If the voltage across the C_{SS} capacitor is not below the soft-start threshold, the device latches the pass FET OFF and asserts the FAULT pin low.

The MAX16545B/C checks the R_{OCP} value at all times, including startup (after the bias supply is valid). This check ensures proper moderate OCP threshold selection. If the wrong R_{OCP} value is detected, the device reports the fault by asserting the FAULT signal low. Each latched fault condition is kept until restart (EN/UVLO, V_{IN} toggling or restarting through the OPERATION command).

Soft-Start

Once the self-check procedure is complete, the output voltage soft-start ramp is initiated. During startup, the C_{SS} capacitor is charged using a constant current source. Since the integrated FET is configured as a source follower, the output voltage is ramped monotonically at a rate determined by the external soft-start capacitor. The soft-start capacitor should not exceed 75nF.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Figure 1. Configuration Example

Figure 2. Startup SOA

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Figure 3. Startup Timing Diagram

V_{DD} Undervoltage Lockout

The MAX16545B/C implements V_{DD_UVLO} fault monitor and protection. V_{DD} is monitored at all times. Startup procedures are not initiated until V_{DD_UVLO} is cleared. If V_{DD} falls below V_{DD_UVLO} during normal operation, the part shuts down. Once V_{DD} returns to acceptable values, the part performs a turn-on procedure from soft-start delay phase.

Current Hysteresis

SMBUS_ID pin is used as current hysteresis flag after R_{SMBus_ID} decoding is done. If output current is greater than MFR_SPECIFIC_HYSTH level, the current hysteresis flag is set to high. If output current is less than MFR_SPECIFIC_HYSTL level, then the current hysteresis flag is set to low.

SMBus_ID Resistor Out of Range

After V_{DD_UVLO} is cleared, the SMBus_ID programming resistor is read. If it is out of range, a latching fault is tripped. This fault can be cleared by EN/UVLO, V_{IN}

toggling, or restarting through the OPERATIONS command. The EN/UVLO toggling may mean pulling EN/ UVLO above the threshold and then low after the fault is detected to reset the fault latch. The value is read again when EN/UVLO goes high for the second time.

V_{BST} and V_{GS} UVLO

 V_{BST_UVLO} is checked when EN/UVLO is above the enable threshold and remains active while the device is enabled. The V_{BST_UVLO} can also be tripped before the FET is turned on, the latching fault can still be reset by EN/UVLO or V_{IN} toggling or restarting through the OPERATION command. The gate drive (V_{GS}) UVLO protection has 10µs internal deglitching filter to prevent false tripping due to output voltage overshoot if a large, fast-unloading transient is present. If additional filtering is desired, an external capacitor can be placed between V_{OUT} and V_{SS} pins. V_{BST} and V_{GS} UVLO are latching faults, which result in the pass FET being latched off and FAULT asserted low. V_{GS_UVLO} is masked for 100ms during startup to avoid tripping a latching fault.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

VIN_UVLO

The V_{IN} is sensed at the EN/UVLO pin through a resistordivider that is used to program the desired V_{IN_UVLO} threshold. The V_{IN_UVLO} circuit has hysteresis, and if the EN/UVLO pin voltage falls below the programmed value during operation, the device turns the integrated FET off and PWRGD is deasserted. The integrated FET turns on again if the positive threshold is exceeded and performs self-test and soft-start. The MAX16545B/C supports V_{IN_} UVLO warning and fault reporting through PMBus.

Overvoltage Protection (OVP)

The device includes V_{IN} overvoltage protection (OVP) to protect the system from an overvoltage event that can harm the downstream circuitry. Overvoltage protection is disabled by default and can be enabled and programmed through OTP. The input voltage is constantly monitored, and if at any time it rises above PMBus programmed threshold, the pass FET is latched off, FAULT asserted low and a fault reported.

Overcurrent Detection

The IC actively monitors load current on a 12V power bus at all times, including startup. Startup overcurrent proection (OCP) is active during startup. The startup OCP threshold can be changed to one of three programmable options using PMBus. Note that changing the startup OCP to a higher value can violate the startup SOA, in such cases, t_{SS} needs to be lowered to remain in SOA (Figure 2). If, at any time during startup, the load current exceeds the programmed startup OCP threshold, the integrated pass FET is turned off within 10µs and the FAULT pin is asserted low. This is a latching fault. The device provides three levels of overcurrent protection during normal operation (after the startup procedure is complete and the PWRGD flag is set high). The moderate OCP threshold is set using an external resistor and is therefore programmable over a wide continuous range. Moderate OCP threshold can be exceeded for a limited, programmable, timeout period without resulting in a fault condition. If the load current on the 12V power bus exceeds the moderate OCP threshold for the entire timeout period, but its magnitude is less than a programmable severe overcurrent threshold (Table 3), the integrated pass FET is latched off at the end of the timeout period and the FAULT pin will be asserted low to indicate a moderate OCP fault condition. Restarting the system requires EN/UVLO or VIN toggling or restarting through the OPERATION command. Moderate OCP

timeout is user programmable through PMBus with four different values.

Severe OCP is the second level of OCP. Severe OCP threshold is programmed relative to moderate OCP threshold. Fixed 10µs timeout is supported for the severe OCP. If at any time the load current exceeds the severe OCP threshold and the timeout is disabled, the device turns the integrated pass FET OFF and asserts the FAULT low. If timeout is enabled, the MAX16545B/C tolerates current exceeding the severe OCP threshold for the duration of the timeout. If the current is still higher than the severe OCP threshold by the end of the timeout, the device turns off and asserts FAULT low. Severe overcurrent protection is a latching fault.

The device features a third level of protection against severe overload faults, called safe OCP with internally-fixed threshold. If at any time the load current on a 12V power bus exceeds the safe OCP threshold, the device turns the pass FET OFF within 250ns and asserts the FAULT low. The severe OCP threshold should be set to a value less than the safe OCP threshold.

Table 1. Timing Diagram Example Shownin Figure 6

POINT/PERIOD	DESCRIPTION
tO	12V V _{IN} applied.
t1	The LDO has enough headroom to start up.
t2	The internal 1.8V LDO is ready and MAX16545B/C logic is fully operational. External bypass capacitors connected to the V_{DD} pin is fully charged.
t3-t14	SMBus ID resistor reading and V _{BST} charging. EN/UVLO signal status is ignored from T3 to T4.
t4	EN/UVLO is active. Startup check-up procedures can be started after the EN/ UVLO is cleared.
t4-t5	User-programmable startup delay.
t5-t6	Self-test procedure. C _{SS} discharge.
t6-t7	V _{OUT} ramp
t7	Power good (PWRGD) output asserted.
t7+	PWRGD is high, normal operation starts.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

The IC supports on-the-fly moderate OCP threshold changes. The concept is shown in <u>Figure 4</u>. If the resistance seen by the ROCP pin is changed during operation, the device adjusts the moderate OCP threshold matching the value selected by external resistive network.

Wrong ROCP Protection

The MAX16545B/C is protected against out of range R_{OCP} values. Protection is enabled at any time, including startup. If the R_{OCP} resistor value is detected out of the permitted range, the device latches the integrated FET OFF, and it asserts the FAULT pin Iow. A EN/UVLO or V_{IN} toggling or a restart through the OPERATION command must be performed in order to clear the fault and restart the device. If R_{OCP} is changing during operation by the system (Figure 4), the design must be such that R_{OCP} is within range at all times.

Note: If the switch that changes OCP threshold is slower to transition, the effective resistance on the ROCP pin can cause severe OCP to trigger during on-the-fly transitions.

Overtemperature Protection (OTP)

The IC includes protection against overtemperature conditions (OTP). If the junction temperature exceeds the programmable fault threshold, the IC latches the integrated FET OFF and asserts the FAULT output low. To reenable the IC, the following options are available:

- Toggle EN/UVLO or VIN
- · Restart through the OPERATION command

Overtemperature fault and warning thresholds are userprogrammable through the PMBus. Exceeding the overtemperature warning threshold does not latch the FET off.

Figure 4. On-the-Fly Analog Programmable Moderate OCP Threshold

FAULT Reporting

The device provides a dedicated pin for fault reporting, <u>FAULT</u>. If at any time a latching fault is detected, the <u>FAULT</u> pin is immediately latched low. EN/UVLO or V_{IN} toggling, or a restart through the OPERATION command is required to reset the device after latching fault detection.

Fault Input and FAULT Pullup

The FAULT pin is a bidirectional open-drain pin that can be used for fault communication, from an external circuitry to the MAX16545B/C. To communicate a fault to the device, the external circuitry must pull the FAULT pin low. If FAULT is externally pulled low, the device treats it as a latching fault. Therefore, the pullup voltage source must be considered to ensure the rail is operational and pulled high before the device startup cycle.

These are the options for the pullup rail:

- V_{DD}: 1.8V internal LDO rail. This rail is limited to 1.8V, thus the external system has to be compliant with it.
- System 3.3V or 5V rail. FAULT is 5V compliant, and therefore, an external higher voltage rail can be used for pullup. This rail has to be stable when the device is initiating its startup procedure. If it is not, a false fault communication can occur.

Power Good (PWRGD) Output

The MAX16545B/C provides a dedicated pin for power good reporting (PWRGD). PWRGD is asserted high after startup, when the output voltage exceeds the programmed PWRGD threshold and the FET is fully enhanced and operating in its resistive region. In all the other conditions, the PWRGD pin is deasserted low.

PWRGD is an open-drain pin, thus an external pullup resistor connected to pullup supply rail is needed. Different options are available for the pullup rail:

- V_{DD}: 1.8V internal LDO rail. This rail is limited to 1.8V, thus the external system has to be compliant with it.
- System 3.3V or 5V rail. PWRGD is 5V compliant, and therefore an external higher voltage rail can be used for pullup.

Analog Load Current Signal Output

The IC includes an output pin, ILOAD to allow the user to monitor the load current device. The current sourced by the ILOAD pin is proportional to the current through the device with the ratio shown in the <u>Electrical</u> <u>Characteristics</u> table. A properly sized resistor between the ILOAD pin and GND should be added. A capacitor parallel to this resistor is required for proper operation. The MAX16545B/C reports zero current on the ILOAD pin

MAX16545BIntegrated Protection IC on 12V Bus with an IntegratedMAX16545CMOSFET, Lossless Current Sensing, and PMBus Interface

PARAMETER	DESCRIPTION	FAULT ASSERTED	LATCHING
V _{DD_UVLO}	Internal V _{DD} LDO UVLO	No	No
V _{BST_UVLO}	UVLO for V _{BST}	Yes (Note 1)	Yes
V _{GS_UVLO}	UVLO for V _{GS}	Yes	Yes
VIN_UVLO	EN/UVLO pin below UVLO threshold	N/A (Note 2)	N/A (Note 2)
V _{IN_UV}	V _{IN} below PMBus programmed threshold	Yes	Yes
ROCP_FAULT	R _{OCP} detected out of valid range	Yes	Yes
R_SMBus_ID FAULT	SMBus_ID resistor detected out of range	Yes	Yes
CSS Discharge FAULT	Soft-start capacitor discharge failed	Yes	Yes
FET Short	Pass FET short detected during startup self-check	Yes	Yes
Startup OCP	Startup overcurrent fault detected	Yes	Yes
Moderate OCP	Moderate overcurrent fault detected	Yes	Yes
Severe OCP	Severe overcurrent fault detected	Yes	Yes
Safe OCP	Safe overcurrent fault detected	Yes	Yes
OTP	Overtemperature fault threshold exceeded	Yes	Yes
V _{IN_OVP}	V _{IN} overvoltage detected	Yes	Yes

Table 2. Faults Detected and Actions

Note 1: If V_{BST_UVLO} fault occurs before startup, FAULT is not reported and status registers are not updated. **Note 2:** V_{IN_UVLO} clears FAULT and the latching event.

during soft-start, it starts reporting load current 5ms after the pass FET $\rm V_{GS}$ is above its UVLO threshold.

If another device reports the current to the MAX16545B/C through the ILOAD_IN pin, the MAX16545B/C reports the total current on the ILOAD pin. When choosing a load resistor to provide a current reporting voltage, the total system current must be considered.

MAX16543 Follower Device

Up to two MAX16543 protection ICs can be used in parallel with the MAX16545B/C to increase total current capability. Specifically,

- MAX16545B/C + 1 × MAX16543, 90A current capability
- MAX16545B/C + 2 × MAX16543, 120A current capability

In these configurations, connect the ILOAD pins of MAX16543 to the ILOAD_IN pin of MAX16545B/C through 500 Ω resistors for total current reporting. Refer to the MAX16543 datasheet for more details.

PMBus/SMBus Reporting and Warning

The MAX16545B/C provides PMBus-compliant digital telemetry through the SMBus as shown in <u>Table 4</u>. The IC supports input power and input energy reporting. For average values the sample size is programmable. Peak values for input/output voltage, output current, input

Table 3. Requirements for PWRGDAssertion

PARAMETER	CONDITION
V _{OUT}	V _{OUT} > PWRGD threshold
V _{IN}	$V_{IN} > V_{IN}_{UVLO}$
Self-Check	$\ensuremath{MOSFET}(V_{\ensuremath{IN}}\xspace$ to $V_{\ensuremath{OUT}}\xspace$) short not detected during startup
V _{GS}	FET is on and in triode region. There's a minimum delay of 5ms before PWRGD assertion after this condition is met.

power and temperature are stored in dedicated manufacturer-specific registers. The device also provides warning functions based on programmable warning thresholds, as per the PMBus specification. The sample size for warning flags is also programmable.

The device supports fault and status reporting except for V_{BST_UVLO} fault at startup. If the V_{BST_UVLO} occurs at startup the device latches off, FAULT is not reported, and status registers are not updated.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Configuration

The MAX16545B/C is configured using both analog programming resistors and PMBus. See <u>Table 5</u> and Table 6 for programmable parameters.

Moderate OCP Threshold

The moderate overcurrent protection (OCP) threshold is externally programmable through a resistor connected to the ROCP pin. The moderate OCP threshold is programmed as shown in Equation 1 and Equation 2. See the *Electrical Characteristics* table for V_{OCPM} and GOCP.

Equation 1:

$$I_{OCP} = \frac{V_{OCPM}}{R_{OCP}} \times GOCP$$

where:

I_{OCP} = moderate overcurrent protection threshold (A)

V_{OCPM} = overcurrent protection reference voltage shown in *Electrical Characteristics* table (V)

GOCP = overcurrent protection gain shown in <u>Electrical</u> Characteristics table (A/A)

 R_{OCP} = Value of overcurrent protection programming resistor (Ω)

Equation 2:

$$R_{OCP} = \frac{V_{OCPM}}{I_{OCP}} \times GOCP$$

where:

I_{OCP} = moderate overcurrent protection threshold (A)

V_{OCPM} = overcurrent protection reference voltage shown in *Electrical Characteristics* table (V)

GOCP = overcurrent protection gain shown in *Electrical Characteristics* table (A/A)

 R_{OCP} = Value of overcurrent protection programming resistor (Ω)

Design Example

To set moderate OCP to 68.7A nominal, using Equation 2: **Equation 3**:

$$R_{OCP} = \frac{0.8V}{68.7A} \times \left(8 \times 10^6\right)$$
$$= 93.1 k\Omega$$

PARAMETER	DESCRIPTION
V _{IN}	Input voltage (PMBus compliant)
V _{OUT}	Output voltage (PMBus compliant)
I _{OUT}	Output current (PMBus compliant)
P _{IN}	Input power (PMBus compliant)
E _{IN}	Input energy (PMBus compliant)
Temperature	MAX16545B/C chip temperature (PMBus compliant)
Peak V _{IN}	Peak value of input voltage (direct reading)
Peak V _{OUT}	Peak value of output voltage (direct reading)
Peak I _{OUT}	Peak value of output current (direct reading)
Peak P _{IN}	Peak value of input power (direct reading)
Peak Temperature	Peak value of IC temperature (direct reading)

Table 4. PMBus/SMBus Reporting

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Soft-Start Capacitor CSS

During startup, the pass FET device is operated as a source follower. The soft-start capacitor, C_{SS} is connected between the MOSFET's gate and ground and is charged from a fixed current source. The external C_{SS} capacitor therefore charges linearly and this produces a linear monotonic ramp for V_{OUT} . The ramp rate is programmable by selecting the appropriate value for C_{SS} .

The ramp rate for the voltage across C_{SS} and, hence, V_{OUT} is given by Equation 4.

Equation 4:

$$\frac{\mathrm{dV}}{\mathrm{dt}} = \frac{\mathrm{I}_{\mathrm{SS}}}{\mathrm{C}_{\mathrm{SS}}}$$

where:

dV/dt = voltage ramp rate of V_{OUT} (V/µs) I_{SS} = MAX16545B/C soft-start current source (mA)

C_{SS} = external C_{SS} capacitor value (nF)

Assuming V_{IN} = 12V, Equation 4 can be used to derive the soft-start time (Equation 5).

Equation 5:

$$t_{SS} = \frac{12V \times C_{SS}}{I_{SS}}$$

where:

 t_{SS} = ramp duration (µs) I_{SS} = MAX16545B/C soft-start current (mA) C_{SS} = external soft-start capacitor value (nF)

Table 5. MAX16545B/C Programmability

PARAMETER	PROGRAMMABILITY TYPE	COMPONENT	I/O
Moderate OCP Threshold	Analog	ROCP	ROCP
Softstart Ramp Rate	Analog	CSS	SS
Input UVLO Threshold	Analog	Divider	EN/UVLO
SMBus Address	Programming Resistor	RSMBus_ID	SMBus_ID
Moderate OCP Timeout	Digital	SMBus	SMB_DATA
Startup OCP Threshold	Digital	SMBus	SMB_DATA
Severe OCP Threshold	Digital	SMBus	SMB_DATA
Startup Delay	Digital	SMBus	SMB_DATA
Input OVP Threshold	Digital	SMBus	SMB_DATA
Output PWRGD Threshold (Sets V _{OUT_UVLO} and Self-Test Thresholds)	Digital	SMBus	SMB_DATA
Self-Check Threshold	Digital	SMBus	SMB_DATA
Overtemperature Warning and Fault Thresholds	Digital	SMBus	SMB_DATA
Input Overpower Warning Threshold	Digital	SMBus	SMB_DATA
Reporting and Warning Averaging Sample Size	Digital	SMBus	SMB_DATA
V _{IN} Undervoltage Warning	Digital	SMBus	SMB_DATA
V _{OUT} Undervoltage Warning	Digital	SMBus	SMB_DATA
V _{IN} Undervoltage Fault	Digital	SMBus	SMB_DATA
Overcurrent Warning	Digital	SMBus	SMB_DATA
Overcurrent Hysteresis	Digital	SMBus	SMB_DATA

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Table 6. MAX16545B/C Reporting External Components

PARAMETER	PROGRAMMABILITY TYPE	COMPONENT	I/O
ILOAD Voltage Gain	Analog	R _{ILOAD}	ILOAD

Assuming the load inrush current is due to the output capacitance only, the load current is given by Equation 6 and Equation 7.

Equation 6:

$$I_{VIN} = I_{OUT} = C_{OUT} \times \frac{dV}{dt}$$

where:

I_{OUT} = load inrush current(A)

 C_{OUT} = load capacitance (µF)

Equation 7:

$$I_{VIN} = I_{OUT} = \frac{C_{OUT} \times I_{SS}}{C_{SS}}$$

where:

I_{OUT} = load inrush current(A)

 C_{OUT} = load capacitance (µF)

C_{SS} = external soft-start capacitor value (nF)

I_{SS} = MAX16545B/C soft-start current (mA)

Therefore, the soft-start capacitor can be selected based on the design value of inrush current using Equation 8.

Equation 8:

$$C_{SS} = \frac{C_{OUT} \times I_{SS}}{I_{INRUSH}}$$

where:

 I_{INRUSH} = desired maximum inrush current due to C_{LOAD} (A)

C_{OUT} = load capacitance (mF)

C_{SS} = external soft-start capacitor value (nF)

I_{SS} = MAX16545B/C soft-start current (µA)

The max value of t_{SS} is 30ms to guarantee linear startup as specified in the <u>Electrical Characteristics</u> table, select C_{SS} to meet this requirement.

Note that unloading transients with di/dt > 2.5A/ms can be large enough to cause output voltage transients > ~100mV. Under these conditions, an additional capacitor between SS and V_{OUT} is recommended to ensure the pass FET V_{GS} remains above its UVLO threshold. This capacitor has no noticeable effect on soft-start ramp time as the differential voltage from V_{OUT} to SS remains approximately constant during soft-start.

Design Example

Assume a maximum design value for inrush current of 10A, and a load capacitance of 2mF.

$$C_{SS} = \frac{2mF \times 30\mu A}{10A}$$

= 6nF minimum (to meet inrush maximum)

Use Equation 5 to show that corresponding $t_{\mbox{SS}}$ in this example is 2.4ms.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Input UVLO

The input UVLO is set using a resistor-divider, as shown in <u>Figure 5</u>. The enable threshold, V_{IN_UVLO} is given in the <u>Electrical Characteristics</u> table. The corresponding value for the V_{IN} rail is given by Equation 9.

Equation 9:

$$V_{IN} = \frac{V_{IN} UVLO}{K}$$

or

Equation 10:

$$K = \frac{V_{IN}_UVLO}{V_{IN}}$$

where:

V_{IN} = 12V rail input voltage to enable device (V)

VIN UVLO = EN/UVLO threshold (V)

K = resistor-divider ratio, R2/(R1 + R2)

Design Example

To set input UVLO to 10.8V. Using Equation 10. **Equation 11:**

$$K = \frac{1.0V}{10.8V}$$

= 0.0926

where:

R2 is set to 2.26kΩ

R1 = $20k\Omega$ to guarantee startup at min supply voltage

SMBus Address Programming

The SMBus address is programmed to one of sixteen values using the external resistor as shown in Table 7.

Figure 5. Programming Resistors for Input UVLO

ILOAD Reporting

The current reporting voltage is set using an external resistor connected from ILOAD to ground. The maximum voltage is shown in the <u>Electrical Characteristics</u> table. The reporting voltage gain is given by Equation 12. Assuming a maximum signal voltage of 1.35V, Equation 13 can be used to select a value for R_{ILOAD} based on a desired full-scale current.

Equation 12:

$$V_{ILOAD} = R_{ILOAD} \times I_{LOAD} \times G_{ILOAD}$$

Equation 13:

$$R_{ILOAD} = \frac{1.35V}{I_{LOAD}FSD \times G_{ILOAD}}$$

where:

V_{ILOAD} = current reporting voltage (V)

 R_{ILOAD} = external current reporting resistor (Ω)

 I_{LOAD} = load current I_{OUT} = I_{VIN} (A)

ILOAD FSD = desired full scale of current reporting (A)

G_{ILOAD} = current reporting gain from the <u>Electrical</u> <u>Characteristics</u> table

Table 7. SMBus Address ProgrammingResistor Values

	R _{SMBus_ID} (kΩ)	SMBus Address
0	1.78	40h
1	2.37	41h
2	3.16	42h
3	4.22	43h
4	5.62	44h
5	7.5	45h
6	9.76	46h
7	13	47h
8	17.4	10h
9	23.2	11h
10	30.9	12h
11	41.2	13h
12	54.9	50h
13	73.2	51h
14	97.6	52h
15	127	53h

Note: R_{SMBus ID} resistor tolerance should be 1% or better.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

For example, to set the full-scale current reported to 67.5A.

$$\mathsf{R}_{\mathsf{ILOAD}} = \frac{1.35\mathsf{V}}{67.5\mathsf{A} \times \left(5 \times 10^{-6}\right)}$$

= 4KΩ

Note: R_{ILOAD} tolerance should be 0.1% or better.

PMBus Reporting and Warning Settings

The MAX16545B/C provides single sample, averaged and peak values for voltage, current and power reporting, and single reading or averaged readings for warnings. The limits for these parameters and warnings should be set through PMBus prior to operation if a value other than the default is required.

Averaging for voltage, power, and current uses an accumulate and dump technique, whereas temperature uses a shifting window/rolling average. Power is calculated for every voltage and current sample (as opposed to using averaged voltage and current), and the result is accumulated in a dedicated register for averaging.

Two independently programmable averaging sample sizes are used for reporting and warning/status register use for voltage, current, and power.

 Reporting: 2^N samples, with N = 0 to 16 (1 sample to 32K samples)

> Sample size is set using Reg_DDh (CONFIG_2, manufacturer-specific register)

• Warning: 2^M samples, with M = 0 to 3 (1 sample to 8 samples)

Sample size is set using Reg D0h (CONFIG, manufacturer-specific register)

Setting SMBus Programmable Parameters

See <u>Table 8</u> for parameters that are programmed through the SMBus. If a setting other than the default shown below is required, it must be programmed through SMBus. Note that some parameters have an enable bit as well as value bits.

Table 8. Parameters ProgrammedThrough SMBus and Default Values

PARAMETER	DEFAULT VALUE	
Overtemperature Protection Threshold	135°C	
V _{OUT} PWRGD/Self Check Thresholds	11V/9V	
Moderate OCP Timeout	100µs	
Startup Delay	0µs	
Severe OCP Threshold	130%	
Input OVP Threshold	16V (disabled by default)	
Overtemperature Warning Threshold	220°C (disabled by default)	
Input Power Warning Threshold	(Disabled by default)	
Overcurrent Warning	(Disabled by default)	
V _{IN} Undervoltage Warning	(Disabled by default)	
V _{OUT} Undervoltage Warning	(Disabled by default)	
Current Hysteresis	(Disabled by default)	
Startup OCP	MAX16545B = 16A MAX16545C = 24A	

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

ADDRESS (HEX)	NAME	TYPE	BYTES	DEFAULT (HEX)	ADDRESS (HEX)	N
1	OPERATION	RW	1	80	86	READ_
3	CLEAR_FAULTS	WO	0	0	88	READ_
19	CAPABILITY	RO	1	B0	89	READ_
1B	SMBALERT_ MASK	(Note 2)	2	0000	8B	READ_
43	VOUT_UV_ WARN_LIMIT	RW	2	0000	8C 8D	READ_ READ_ TEMPE
4A	IOUT_OC_ WARN_LIMIT	RW	2	03FF	97	READ_
4F	OT_FAULT_LIMIT	RW	2	0358	98	PMBUS REVISI
51	OT_WARN_LIMIT	RW	2	03FF	99	MFR_ID
58		RW	2	0000	9A	_ MFR_M
	WARN_LIMIT				9B	MFR_R
59	VIN_UV_ FAULT_LIMIT	RW	2	0000	D0	CONFIG
6B	PIN_OP_ WARN_LIMIT	RW	2	7FFF	D1 D2	PEAK_\ PEAK_I
78	STATUS_BYTE	RO	1	0	D3	PEAK_F
79	STATUS_WORD	RO	2	0	D4	PEAK_1
7A	STATUS_VOUT	RO	1	0	D5	CLEAR
7B	STATUS_IOUT	RO	1	0	DD	CONFIG
7C	STATUS_INPUT	RO	1	0	F2	MFR_SI HYSTL
7D	STATUS_ TEMPERATURE	RO	1	0	F3	MFR_SI HYSTH
7E	STATUS_CML	RO	1	0	F4	MFR_SI
80	STATUS_MFR_ SPECIFIC	RO	1	0	Г4	HYST_S

Table 9. PMBus/SMBus Registers (Note 1)

ADDRESS (HEX)	NAME	TYPE	BYTES	DEFAULT (HEX)
86	READ_EIN	RO	2	0
88	READ_VIN	RO	2	0
89	READ_IIN	RO	2	0
8B	READ_VOUT	RO	2	0
8C	READ_IOUT	RO	2	0
8D	READ_ TEMPERATURE	RO	2	0
97	READ_PIN	RO	2	0
98	PMBUS_ REVISION	RO	1	22
99	MFR_ID	BLK	5	VLTR
9A	MFR_MODEL	BLK	6	VT505
9B	MFR_REVISION	BLK	2	3
D0	CONFIG	RW	2	0
D1	PEAK_VIN	RO	2	0
D2	PEAK_IOUT	RO	2	0
D3	PEAK_PIN	RO	2	0
D4	PEAK_TEMP	RO	2	0
D5	CLEAR_PEAKS	WO	0	0
DD	CONFIG2	RW	1	0
F2	MFR_SPEC_ HYSTL	RW	2	03FF
F3	MFR_SPEC_ HYSTH	RW	2	03FF
F4	MFR_SPEC_ HYST_STAT	RO	1	0

Note 1: Registers shown in bold (1h–9Dh) comply with PMBus Power Management Management Protocol Specifications. Refer to the PMBus specification and <u>Table 15</u> for more details.

Note 2: SMBALERT_MASK is written to a write_word command and read with a read from a write_block_read_process_call with a num_bytes field of 1.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

SMBUS_ALERT Behavior

Any of the STATUS bits (with some exception) asserts the alert line $\overline{(SMBUS_ALERT)}$ low.

Exceptions are:

- Bit off of STATUS_BYTE/STATUS_WORD
- Bit POWERGOOD# of STATUS_WORD

Alert line can be configured to mask any of the STATUS bits using the SMBALERT_MASK register.

The only ways to release the alert line are:

- CLEAR_FAULTS command
- ARA (see SMBUS spec v2.0)

Table 10. Register 80h (STATUS_MFR_SPECIFIC) Interpretation

BIT #	BIT NAME	DESCRIPTION	READING	INDICATION
[7]		Pass FET and soft-start	0	Pass
[7]	SELFCHECK_FAULT	self-check	1	Fail
[6]	ROCP_FAULT	Raaa shook	0	Pass
[6]	ROOF_FAULT	R _{OCP} check	1	Fail
[5]	R_SMBUSID_FAULT	SMBus_ID programming	0	Pass
[5]		resistor check	1	Fail
[4]	FOLLOWER FAULT	Fault input	0	No Fault Input
[4]	FOLLOWER_FAULT	Fault input	1	Fault Input
[2]	GATE_UVLO_FAULT	V _{GS_UVLO} fault	0	No Fault
[3]		VGS_UVEO laut	1	Fault
[2]	BST_UVLO_FAULT	V _{BST_UVLO} fault	0	No Fault
	AB21-0AFO lagit	1	Fault	
[4]		Not used	0	_
[1]		NUL USEU	1	_
[0]	—	Always read as 0	0	—

Table 11. MAX16545B/C PMBus Register Map

ADDRESS	UEC.	NAMF	TVPF	NIDTH					I OW BYTE	IVTE							HIGH RVTF	XTE			
						b7	99	p5	7	Ed Ed	b2	b1	0q	b15	b14	b13	b12	b11	b10	69	b8
01	-	OPERATION	RW	-	80	enable	0	0	0	0	0	0	0								
03	m	CLEARFAULTS	Ø	0	0																
19	25	CAPABILITY	N	-	BO	-	0	-	-	0	0	0	0								
18	27	SMBALERT_ MASK	*	7	0000																
43	67	VOUT_UV_ WARN_LIMIT	RW	2	0	vout_uv_w am_th[7]	vout_uv_w am_th[6]	vout_uv_w arn_th[5]	vout_uv_w arn_th[4]	vout_uv_w v am_th[3]	vout_uv_w v am_th[2]	vout_uv_w v am_th[1]	vout_uv_w am_th[0]	0	0	0	0	0	0	vout_uv_w am_th[9]	vout_uv_w arn_th[8]
4A	74	IOUT_OC_ WARN_LIMIT	RW	2	03FF	ocp_warn_ th[7]	ocp_warn_ th[6]	ocp_warn_ th[5]	ocp_warn_ th[4]	ocp_warm_ th[3]	ocp_wam_ th[2]	ocp_wam_ th[1]	ocp_warn_ th[0]	0	0	0	0	0	0	ocp_wam_ th[9]	ocp_warn_ th[8]
4F	79 0	OT_FAULT_ LIMIT	RW	5	0358	ovt_fault_t h[7]	ovt_fault_t h[6]	ovt_fault_t h[5]	ovt_fault_t h[4]	ovt_fault_t h[3]	ovt_fault_t o	ovt_fault_t h[1]	ovt_fault_t h[0]	0	0	0	0	0	0	ovt_fault_t h[9]	ovt_fault_t h[8]
51	81 0	OT_WARN_LIMIT	RW	2	03FF	ovt_warn_t o	ovt_warn_t h[6]	ovt_warm_t h[5]	ovt_warn_t h[4]	ovt_warn_t h[3]	ovt_warn_t o h[2]	ovt_warn_t o h[1]	ovt_warn_t h[0]	0	0	0	0	0	0	ovt_warn_t h[9]	ovt_warn_t h[8]
47	87 V	VIN_OV_WARN_ LIMIT	RW	2	03FF	ov_wam_t h[7]	ov_warm_t h[6]	ov_warn_t h[5]	ov_warn_t h[4]	ov_warn_t h[3]	ov_warn_t h[2]	ov_warn_t h[1]	ov_warn_t h[0]	0	0	0	0	0	0	ov_warn_t	ov_wam_t h[8]
58	88	VIN_UV_WARN_	RW	2	0	uv_warm_t h[7]	uv_wam_t h[6]	uv_warn_t h[5]	uv_warn_t h[4]	uv_warn_t h[3]	uv_warn_t u h[2]	uv_warn_t u h[1]	uv_warm_t h[0]	0	0	0	0	0	0	uv_warn_t h[9]	uv_warn_t h[8]
59	89 V	VIN_UV_FAULT_ LIMIT	RW	2	0	vin_uv_ fault_th[7]	vin_uv_ fault_th[6]	vin_uv_ fault_th[5]	vin_uv_ fault_th[4]	vin_uv_ fault_th[3]	vin_uv_ fault_th[2]	vin_uv_ fault_th[1]	vin_uv_ fault_th[0]	0	0	0	0	0	0	vin_uv_ fault_th[9]	vin_uv_ fault_th[8]
68	107 P	PIN_OP_WARN_ LIMIT	RW	2	FFFF	op_warn_t h[7]	op_warn_t h[6]	op_warn_t h[5]	op_warn_t h[4]	op_warn_t h[3]	op_wam_t h[2]	op_wam_t h[1]	op_warn_t h[0]	op_wam_t h[15]	op_warn_t h[14]	op_warn_t h[13]	op_warn_t h[12]	op_warn_t h[11]	op_warn_t h[10]	op_warn_t h[9]	op_warn_t h[8]
78	120	STATUS_BYTE	RO	+	0	0	OFF	0	IOUT_OC_ FAULT		TEMPER- ATURE	CML	NOA								
62	121	STATUS_ WORD_	Ro	5	0	0	OFF		IOUT_OC_ FAULT		TEMPER- ATURE	CML	NOA	VOUT	IOUT/ POUT	INPUT	MFR_ SPE CIFIC	POWER- GOOD#	0	0	BAD_ FET_ HEALTH
7A	122	STATUS_VOUT	ß	-	26	0	0		0	0	0	0	0								
78	123	STATUS_IOUT	RO	-	0	IOUT_OC_ FAULT	0	IOUT_OC_ WARNING	0	0	0	0	0								
7C	124 8	STATUS_INPUT	RO	1	0	VIN_OV_ FAULT	0	VIN_UV		Unit off for I low in V			PIN_OP_ WARNING								
1 D2	125 1	STATUS TEMPERATURE	RO	+	0		OT_ WARNING	0	0	0	0	0	0								
ΣΕ	126	STATUS_CML	о Ко	-	0	invalid/ unsup- ported cmd	invalid/ unsup- ported data	PEC Failed	0	0	0	Other com- munication fault	0								
80	128	STATUS_MFR_ SPECIFIC	ß	-	0	SELFCHE CK_FAULT	FA ULT	R_SMBUS _ID_FAULT	FOLLOWE R_FAULT	GATE UVL FAULT	BST_UVL 0_FAULT	0	0								
86	134	READ_EIN	BLK	7	0	8'h06	enrgy_ cnt[7:0]	enrgy_ cnt[15:8]	roll_ cnt[7:0]	samp_ cnt[7:0]	samp_ cnt[15:8] 6	samp_ cnt[23:16]									
88	136	READ_VIN	ß	7	0	vadc_ ave[7]	vadc_ ave[6]	vadc_ ave[5]	vadc_ ave[4]	vadc_ ave[3]	vadc_ ave[2]	vadc_ ave[1]	vadc_ ave[0]	0	0	0	0	0	0	vadc_ ave[9]	vadc_ ave[8]
89	137	READ_IIN	RO	2	0	iadcave[7]	iadc ave[6]	iadc_ ave[5]	iadc_ ave[4]	iadc_ ave[3]	iadc_ ave[2]	iadc_ ave[1]	iadc_ ave[0]	0	0	0	0	0	0	iadcave[9]	iadcave[8]

MAX16545B MAX16545C

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

vadc_ peak[8] hysth[8] iadc_ peak[8] pwr_ peak[8] tadc_ peak[8] hystl[8] tadc_ ave[8] pwr_ calc[8] owrgd_ cfg[0] vout_ beak[8] vadc_ ave[8] iadc_ ave[8] 89 hysth[9] vadc_ peak[9] iadc_ beak[9] pwr_ peak[9] tadc_ beak[9] hystl[9] vout_ oeak[9] vadc_ ave[9] iadc_ ave[9] tadc_ ave[9] pwr_ calc[9] owrgd_ cfg[1] 6q pwr_ calc[10] otp_cfg pwr_ peak[10] b10 0 0 0 0 0 0 0 pwr_ peak[11] pwr_ calc[11] ss_cfg[0] b1 0 0 0 0 0 0 0 HIGH BYTE pwr_ calc[12] ss_cfg[1] pwr_ peak[12] b12 0 0 0 0 0 0 0 pwr_ peak[13] pwr_ calc[13] lisable_ iadc b13 0 0 0 0 0 0 0 pwr__ alc[14] pwr_ peak[14] b14 0 0 0 0 0 0 0 pwr_ peak[15] b15 0 0 0 0 0 0 0 0 num_aves_ reporting[0] um_aves_ alert[0] HYST < reg_F2 pwr_ peak[0] vadc_ peak[0] iadc____ peak[0] hysth[0] tadc_ peak[0] vadc_ ave[0] iadc_ ave[0] tadc_ ave[0] pwr_ calc[0] hystl[0] vout_____ g 0 num_aves_ reporting[1] um_aves_ alert[1] hystl[1] hysth[1] vadc_ peak[1] iadc_ peak[1] pwr_ peak[1] tadc_ peak[1] HYST > reg_F3 vout_ peak[1] iadc_ ave[1] pwr_ calc[1] vadc_ ave[1] tadc_ ave[1] þ ~ num_aves____ ovp_th[0] HYST pin status hysth[2] able 11: MAX16545B/C PMBus Register Map (continued) vadc_ peak[2] iadc_ beak[2] pwr_ peak[2] tadc_ oeak[2] hystl[2] vout_ beak[2] /adc_ ave[2] iadc_ ave[2] tadc_ ave[2] pwr_ alc[2] **p**2 0 ڀ² num_aves____ ovp_th[1] vadc_ peak[3] tadc_ peak[3] hysth[3] lout > oc_warn_ limit iadc_ peak[3] pwr_ peak[3] hystl[3] vout_ peak[3] vadc_ ave[3] iadc_ ave[3] tadc_ ave[3] pwr_ alc[3] b3 Ľ "O 0 -OW BYTE ocp_su_ cfg [0] hysth[4] vadc_ peak[4] pwr_ peak[4] hystl[4] iadc_ beak[4] vadc_ ave[4] iadc_ ave[4] tadc_ ave[4] pwr__ calc[4] tadc_ peak[4] vout_ eak[4] b4 Ļ <u>ڀ</u> 0 0 ocp_su_cfg [1] vadc_ peak[5] iadc_ peak[5] pwr__ peak[5] tadc_ peak[5] hystl[5] hysth[5] vout_ peak[5] vadc_ ave[5] iadc_ ave[5] tadc_ ave[5] pwr_ calc[5] nocp_ cfg[0] Ļ Ļ ~ 0 b5 hysth[6] vadc_ peak[6] tadc_ peak[6] iadc_ peak[6] pwr__ peak[6] hystl[6] vout_ beak[6] pwr_ calc[6] vadc_ ave[6] adc_ ave[6] tadc_ ave[6] nocp_ cfg[1] 9q Ş Ş ÷ 0 0 0 hysth[7] ocp_cfg vadc_ peak[7] iadc_ beak[7] pwr_ peak[7] tadc_ beak[7] vout_ beak[7] hystl[7] /adc_ ave[7] iadc_ ave[7] tadc_ ave[7] pwr_ calc[7] 8'h05 8'h04 8'h01 0 b7 0 0 TYPE WIDTH DEFAULT "VLTR" "VT505" 03FF 03FF 0 0 ÷ 0 0 0 0 0 0 0 0 8 0 0 0 N 2 9 2 . 2 2 2 2 2 2 2 2 2 0 2 N 2 BLK BLK å ß ß õ õ Ň ß å ß В Ŵ ΝŇ ΝŇ Š å å MFR_SPECIFIC_ HYST_STATUS MFR_REVISION MFR_SPECIFIC_ HYSTL R_SPECIFIC_ HYST H READ TEMPERATURE_1 CLEAR_PEAKS CONFIG_2 READ_VOUT MFR_MODEL PEAK_TEMP PEAK_VOUT NIC. PMBUS_ REVISION MFR_ID PEAK_IOUT R PEAK_VIN CONFIG NAME READ_I PEAK READ MFR DEC 154 155 210 139 140 141 152 153 208 209 212 213 242 243 244 151 211 221 253 ADDRESS 8B 8 8 97 98 66 9A <u>9</u>B â 5 D2 ñ 4 D5 8 Ę £ F4 Ē

MAX16545B MAX16545C

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

CONFIG Register (D0h)

This is a 2-byte register used to configure the MAX16545B/C. The default value is 0000h. The meaning of the bits of this register is shown in <u>Table 12</u>.

CONFIG_2 Register (DDh)

This single-byte register allows the selection of the number of samples to average for voltage, current and power reporting. It also sets the threshold for startup OCP. Only bits 5:0 are used; bits 7:6 have no effect and should be left as 00b. The meaning of the bits of this register is shown in Table 13

Table 12. Register D0h

BIT #	BIT NAME	SETTINGS (BINARY)	DESCRIPTION
[13]	I-ADC disable	0	I-ADC enabled (default value)
	usable	1	I-ADC dsabled
		00	Soft-start delay = 0ms (default value)
[12:11]	ss_cfg[1:0]	01	Soft-start delay = 10ms
		10	Soft-start delay = 20ms
		11	Not used
[10]		Not l	Jsed
		00	Power good threshold = 11V, self-check threshold = 9V
10-01	pwrgd	01	Power good threshold = 10V, self-check threshold = 8V
[9:8]	th[1:0]	10	Power good threshold = 9V, self-check threshold = 7V
		11	Power good threshold = 8V, self-check threshold = 6V
[7]	ocp_cfg	0	Severe OCP = 130% of Moderate OCP (default value)
		1	Severe OCP = 150% of moderate OCP

BIT #	BIT NAME	SETTINGS (BINARY)	DESCRIPTION
		00	Moderate OCP timeout = 100µs (default value)
[6:5]	mocp_	01	Moderate OCP timeout = 250ms
[6:5]	cfg[1:0]	10	Moderate OCP timeout = 100ms
		11	Moderate OCP timeout = 10µs
		00	Set V _{IN_OVP} threshold = 16V (default value)
[2,0]	ovp_th[1:0]	01	Set V _{IN_OVP} threshold = 14V
[3:2]		10	Set V _{IN_OVP} threshold = 17V
		11	Set V _{IN_OVP} threshold = 18V
		00	Sets averaging for PMBus warning levels to one sample (default value)
[4:0]	num aves	01	Sets averaging for PMBus warning levels to two samples
[1:0]	alert[1:0]	10	Sets averaging for PMBus warning levels to four samples
		11	Sets averaging for PMBus warning levels to eight samples

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Peak Voltage, Current, Power, and Temperature Reporting

The two-byte registers shown in <u>Table 14</u> provide readings of the peak values for input/output voltage, output current, input power and temperature in 10 bits direct format.

These registers can be reset with the CLEAR_PEAKS command (send byte D5h) or power cycling the part.

BITS #	BIT NAME	SETTING (BINARY)	STARTUP OCP SETTING/AVERAGING SAMPLE SIZE		
[5:4]	su_ocp_ cfg	00 01 10 11	16A 24A 8A Not Used		
	num_ aves_ reporting	0	1 sample		
		1	2 samples		
		10	4 samples		
		11	8 samples		
		100	16 samples		
		101	32 samples		
		110	64 samples		
[3:0]		111	128 samples		
[3.0]		1000	256 samples		
		1001	512 samples		
		1010	1024 samples		
		1011	2048 samples		
		1100	4096 samples		
		1101	8192 samples		
		1110	16384 samples		
		1111	32768 samples		

Table 13. Register DDh

Note: One sample for voltage/power/energy reporting is 2ms and 1ms for current reporting.

Table 14. Manufacturer-Specific DirectReporting Registers

REGISTER ADDRESS	REGISTER NAME	PARAMETER
D1h	PEAK_VIN	Peak Input Voltage
D2h	PEAK_IOUT	Peak Output Current
D3h	PEAK_PIN	Peak Input Power
D4h	PEAK_TEMP	Peak Temperature
FDh	PEAK_VOUT	Peak Output Voltage

PMBus Reporting Format

The MAX16545B/C uses the PMBus DIRECT number format; the actual readings in their respective units correlate with the numerical values read from registers, as shown in Equation 14.

- Current/Voltage/Temperature: 10-bit resolution
- Power: 16-bit two's complement representation **Equation 14:**

$$X = \frac{1}{m} \left(Y \times 10^{-R} - b \right)$$

where:

X = the calculated, real-world value in the appropriate units (A, V, $^{\circ}$ C, etc.);

m = the slope coefficient, is a two byte, two's complement integer;

Y = is a two byte two's complement integer received from the PMBus device;

b = the offset is a two byte, two's complement integer

R = the exponent is a one byte, two's complement integer. The values used in the MAX16545B/C for the parameters above are shown in <u>Table 15</u>. Note that current and power readings depend on the value of R_{LOAD}, the external current reporting resistor connected between ILOAD and GND.

Table 15. PMBus Equation Parameters

PMBUS REGISTER	FORMAT	DATA BYTES	m	b	R	UNITS
READ_IOUT (8Ch)*, READ_IIN (89h)*	Direct	2	3.824 x R _{LOAD}	-4300	-3	А
READ_VOUT (8Bh), READ_VIN (88h)	Direct	2	7578	0	-2	V
READ_ TEMPERATURE_1 (8Dh)	Direct	2	205	6545	-2	°C
READ_PIN (97h)	Direct	2	0.895 x R _{LOAD}	-9100	-2	W
READ_EIN (86h)**	Direct	2	3.505 x R _{LOAD}	0	-5	**

*Digital current reporting is available even if the FET is OFF. **Refer to the PMBus specifications for more details on definition and calculation.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Input Capicitance (CIN) Selection

Use of input capacitors is highly recommended to guarantee the input voltage is stable and noise free. For applications requiring no input capacitors before the MAX16545B/C, the input-voltage ripple should be less than 300mV peak-to-peak.

Output Capacitance (COUT) selection

The maximum output capacitance can be calculated as shown in Equation 15.

Equation 15:

$$C_{OUT} = \frac{(I_{INRUSH} \times C_{SS})}{I_{SS}}$$

where:

C_{SS} = Soft-start programming capacitance.

I_{SS} = Soft-start current, 30µA (typ).

 C_{OUT} = Maximum load capacitance that can be used at soft-start with a purely capacitive load.

 I_{INRUSH} = Desired maximum inrush current during startup. Select I_{INRUSH} lower than startup OCP ($I_{OCP(STARTUP)}$) and within startup SOA, refer to Figure 2.

Design Example

Assume a design value for maximum inrush current of 10A, and a soft-start capacitance of 25nF.

Assume 12V application and $30\mu A$ (typ) soft-start current; soft-start time in this case is 0.01ms. The maximum safe operating output current is 22A at 0.01ms (refer to the Startup SOA in Figure 2) and the default Startup OCP level is 16A (refer to Table 8).

The designed maximum inrush current of 10A is lower than 16A startup OCP and within startup SOA. The designed value is valid. Hence, the maximum load capacitance is calculated as shown in Equation 16.

Equation 16:

$$C_{OUT} = \frac{(10A \times 25nF)}{30\mu A} = 8.33mF$$

Additionally, the recommended output capacitance should be less than 10mF to prevent false triggering of self-check during startup into precharged output.

Input TVS Diode Selection

The use of a transient voltage suppression (TVS) diode at input is necessary to clamp input-voltage transient within rating of V_{IN} pin of MAX16545B/C (see the <u>Absolute</u> Maximum Ratings section).

A general guide to select the proper TVS diode is listed below:

- Choose TVS diode reverse-standoff voltage (V_{RWM})
 ≥ operating voltage of MAX16545B/C, 12V (typ).
- Choose TVS diode peak-pulse current (I_{PPM})
 ≥ maximumt transient peak-pulse current of the MAX16545B/C, 60A (typ).
- Choose TVS clamping voltage (V_C) ≤ maximum voltage handling capability of the MAX16545B/C, 22V (typ) for 150µs.

Recommend SMCJ13A based on selection criteria above.

Output Schottky diode selection

The use of a Schottky diode at output is necessary to clamp the negative output-voltage spike within the rating of V_{OUT} pin of the MAX16545B/C (see the <u>Absolute</u> <u>Maximum Ratings</u> section). Select the proper Schottky diode with low forward-voltage drop (V_F) and peak forward-surge current (I_{FSM}) higher than the expected inductive current.

Reverse Current is Not Allowed During Output "Hot-Plug"

The MAX16545B/C devices must not be used in applications where a removable load assembly can be connected while there is stored energy on the input of the removable load. This is because stored energy in a load device can force current backwards through the pass-FET body diode, and the MAX16545B/C was not designed for this condition.

However, output load cards and devices (such as disk drives) may be removed and replaced while the system is powered, provided that the system design guarantees that the load device cannot be reconnected while there is still electrical charge on the input capacitance of the load device.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Figure 6. Reference Schematic

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

MAX16545B Layout Recommendations

Please request Maxim Application Note 6848, Optimal Application Circuit and Layout Guidelines for the MAX16545 and MAX16543, for detailed information on circuit board layout. Important layout details are summarized here.

VIN and VOUT

- Minimize input and output trace inductance by using wide and multiple V_{IN} and V_{OUT} planes for optimal thermal performance.
- Use multiple vias to connect interlaying power planes.
- Place input capacitors (where applicable) as close to the IC as possible.
- Place output capacitors as close to the IC as possible.

Example

The EV kit layout in Figure 7 shows use of large, wide power planes for V_{IN} and V_{OUT} on the top layer. C_{IN} and C_{OUT} are close to the IC. The other V_{IN} and V_{OUT} power layers are connected with multiple vias between the pins.

Ground

• Use a trace approximately 0.1mm wide by 0.7mm long from the ground pin (pin 13) on the top layer to the second-layer AGND island.

V_{BST} and SS

Place the $V_{\mbox{\scriptsize BST}}$ and SS capacitors on the top layer as close to the pins as possible.

VDD

Add a V_{DD} plane on the top layer to decouple the V_{DD} caps close to the IC to form a tighter loop to ground.

ROCP and ILOAD

The ROCP and ILOAD resistors should be placed as close to the IC as possible.

ILOAD_IN

Connect a 10k resistor to ground.

Figure 7. Top Layer (Power)

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Ordering Information

PART NUMBER	DESCRIPTION	PACKAGE	DRAWING NUMBER	SHIPPING METHOD	PACKAGE MARKING	
MAX16545BGPF+	Startup OCP = 16A	22 FCQFN	ES AP-3236	2.5kµ Tape & Reel	MAX16545B	
MAX16545BGPF+T	Startup OCF - TOA				WAX 10040B	
MAX16545CGPF+*	Startup OCP = 24A				MAX16545C	
MAX16545CGPF+T*	Startup OCP - 24A				WIAX 10343C	

+Denotes a lead(Pb)-free/RoHS-compliant part.

T = Tape and reel.

*Future product—Contact factory for availability.

Integrated Protection IC on 12V Bus with an Integrated MOSFET, Lossless Current Sensing, and PMBus Interface

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/17	Initial release	—
1	12/18	Add new MAX16545C version, Improved Figure 2, Startup SOA	1, 5, 18, 19, 21, 28, 34, 35, 38
2	2/19	Revised application use-case and circuit layout guidelines. Clarified TOC titles and descriptions.	1, 9, 12-14, 18, 35, 37
3	4/19	Revised title of "Output Hot-Plug" warning in the Detailed Description section	35
4	6/19	Added "future product" note to the Ordering Information table.	38

For information on other Maxim Integrated products, visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.