

仪表总线(M-BUS)从站收发电路

产品简述

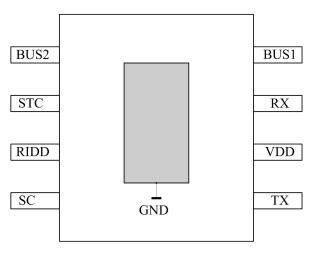
MS726 是为 M-Bus 标准(EN1434-3)的应用而开发的单片收发电路。MS726 接口电路可以适应从站与主站之间的电压差,总线的连接没有极性要求,电路由主站通过总线供电,对于从站电池不会增加额外的负载,作为接收端,内置动态电平识别电路,集成了 5.5V 与 3.3V 的直流稳压源。

与 MS721 相比, MS726 具有更小的封装体积(SOP8-pp), 更简单的外围电路(8 管脚), 同时集成 5.5V 与 3.3V 电压源具有更大的输出能力。

主要特点

- 符合 EN1434-3 标准(从站)
- 3.3V 逻辑电平接口
- 无极性连接
- 提供 5.5V 与 3.3V 稳压源
- 复用电流源
- 远程供电
- 支持高达 9600 波特率的半双工的 UART 协议

SOP8_pp

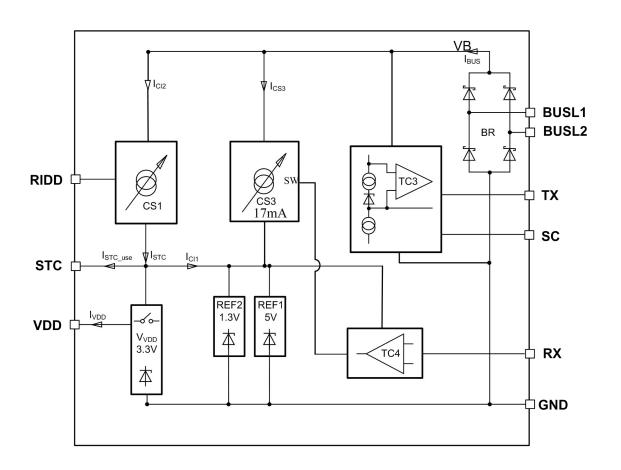

应用

- M-Bus从站接口电路
- 水表,热表,气表

产品抑格分类	米
--------	---

/ PD//01H/4/	•	
产品	封装形式	丝印名称
MS726	SOP8_PP	MS726

管脚排列图


SOP8-PP 封装

管脚排列

管脚编号	管脚名称	管脚属性	功能描述
1	BUSL2	POWER	仪表总线接入端口 2
2	STC	10	5.5V 电压源输出
3	RIDD	10	电流调整输入
4	SC	10	接收电平采样电容端口
5	TX	0	数据接收输出端口
6	VDD	10	3.3V 电压源输出
7	RX	I	数据发送输入端口
8	BUS1	POWER	仪表总线接入端口1
散热片	GND	GND	地

内部框图

极限参数

绝对最大额定值

注意:应用中任何情况下都不允许超过下表中的最大额定值

参数	测试调节	最小值	最大值	单位	
VMB	总线电压, BULS2-BUSL1	接收发送	10.8	42 42	V
TA	环境工作温度	-25	85	$^{\circ}$	

注: 1. 所有的电压都是相对 GND 端口测量的,除非另有说明。

电气参数

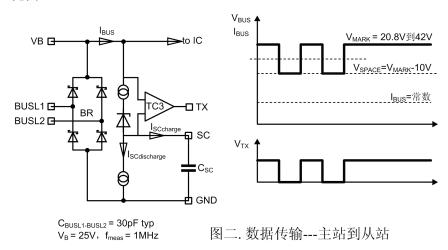
所有参数在室温范围内测得(除非另有说明)

符号	参数	测	试 条 件	最小值	典型值	最大值	单位
Δ VBR	镇流器 BR 上的压降	IB	IBUS = 3 mA			1.5	V
IBUS	总线电流	V	BUS=30V		0.37		mA
Δ IBUS	总线电流精 度	∆ VBUS	S = 10 V,IMC = 0 mA			2	%
3.3V 稳压源输出							
VVDD	VDD 端输出 电压	-IV	DD = 1 mA	3.15	3.3	3.7	V
VDD 纹波	最大输出纹波	不外接输出电容				0.7	V
RVDD	VDD 端输出 阻抗	-IVDD = 2 to 8 mA				5	Ω
5.5V 稳压源 STC 轴	俞 出						
VSTC	STC 电压			4.5	5.5	6.5	V
VDDon	STC 开启 VDD 的电压	١	VDD = on		5.0		V
VDDoff	STC 关 断 VDD 的电压	VDD = off			3.9		V
	STC 可用电	VSTC = 5	RRIDD = 30 k Ω	0.65		1.1	
ISTC_use	流	V	RRIDD = 13 k Ω	1.85		2.4	mA

接收电气特性

符号	参数	测试条件	最小值	典型值	最大值	单位
VT			MARK-8.2		MARK-5.7	V
VSC	SC 端电压				Vbus	V
ISCcharge	SC 端充电电流	VSC = 24 V, VVB = 36	-15		-40	μΑ
ISCdischarge	SC 端放电电流	VSC = VVB = 24 V	0.3		-0.033× ISCcharge	μА
VOH	高电平输出电 压(TX 端)	ITX = –100 μA		3.3		V
VOL	低电平输出电 压(TX 端)	ITX = 100 μA	0		0.5	V

发送电气特性

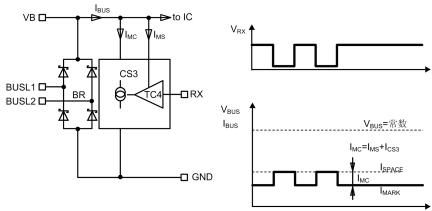

符号	参数	测试条件	最小值	典型值	最大值	单位
IMC	MC 电流		15		23	mA
VIH	高电平输入电 压(RX 端)		1.8		5.5	V
VIL	低电平输入电 压(RX 端)		0		1.5	V
IRX RX 电流		VRX = VBAT = 3V, VVB C = 0 V	-0.5		0.5	μА
IIVA	NA 电机	VRX = 0 V, VBAT = 3 V	-10		-40	μА

功能描述

数据传输,主站到从站

总线上的传号电压VBUS = MARK定义为:从站端BUSL1和BUSL2的电压差。它取决主站到从站的距离,因为距离影响了线缆上的压降。为使接收端不受影响,电压比较器TC3在SC端使用了动态参考电平(见图二)。

SC管脚的电容CSC由ISCcharge充电,由ISCdischarge放电。


$$I_{\text{SCdischarg e}} = \frac{I_{\text{SCcharge}}}{40}$$

这个比例对于任何数据内容不确定的UART协议来说都是很重要的(例如:最坏情况,一个11位的UART协议所有的数据为0,那么只有结束位为1)。这样就有足够的时间对电容CSC进行充电。根据VBUS=空号电压/传号电压的条件,输入电平监测比较器TC3比较总线上的调制电压,转换后输出到TX。

数据传输,从站到主站

芯片采用电流调制的方式从从站往主站传输数据,用电流源调制总线电流,主站监测调制电流,在调制过程中,总线电压不变。电流源CS3调制总线电流,而主站检测这个调制信号。电流源CS3由输入RX控制,电流源CS3的电流20mA。调制期间,调制电路消耗的电流为IMS加上电流源CS3的电流。

图三. 数据传输---从站到主站

5.5V 输出电源

MS726内部集成一个5.5V的稳压源供MCU及外围使用,稳压源的输出脚STC需要接10uF的滤波电容来储存电荷。稳压源的输出驱动电流能力由RIDD脚的外接电阻Ridd决定,极限电流30mA,参考公式如下:

$$R_{_{RIDD}} = 25 \frac{V_{_{RIDD}}}{I_{_{STC}}} = 25 \frac{V_{_{RIDD}}}{I_{_{STC_use}} + I_{_{IC1}}}$$

ISTC: 电流源CS1的电流

ISTC_use: 电源电容充电电流

ICI: 内部电流

VRIDD: RIDD管脚电压

当RX接'低'时,STC输出驱动电流能力增加20mA左右。

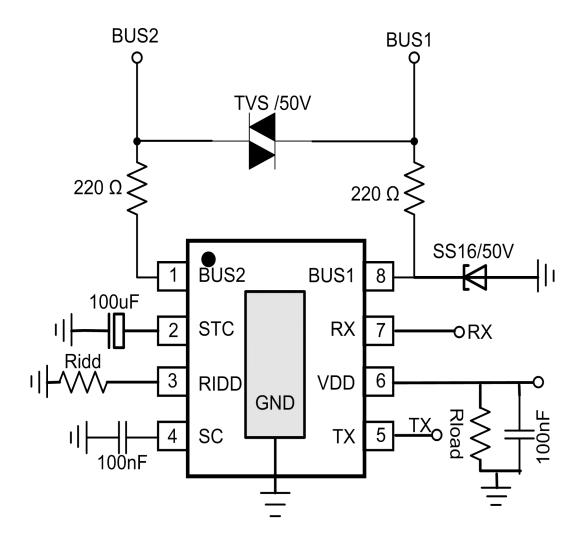
3.3V 输出电源

MS726还集成一个3.3V的稳压电源,此电源由5.5V STC供电;此电流源的驱动能力与5.5V输出电源一致,同样可以在RX接'低'时,增加一个20mA左右的电流驱动能力。

逻辑电平接口

MS726输出逻辑TX采用3.3V接口,最高输出电平3.3V;输入逻辑RX也采用3.3V接口,输入最高电平可以到5.5V。

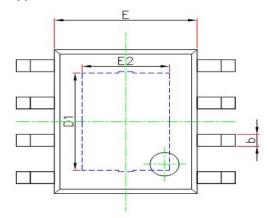
20mA 复用电流源

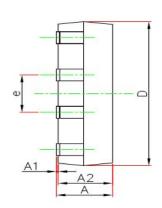

如前面 5.5V, 3.3V 电压源描述,由于电流源 CS3 接到 STC, 当 RX 接低时,CS3 的 20mA 电流可以 复用到 5.5V, 3.3V 的 LDO 电压源,增强 LDO 电流驱动能力。

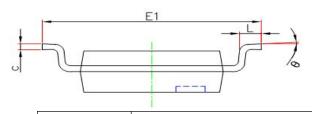
背部 gnd 管脚

MS726 采用的 sop8pp 封装,常规的 8 个管脚中,没有接'地'脚,而是通过芯片背部的散热片接'地',所以在 PCB 版布线时注意散热片需要设计金属连线,同时焊线时注意底部 gnd 不要虚焊。

典型应用图

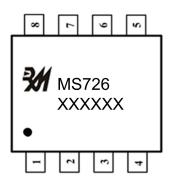



请注意: 1.为保证发送数据时系统稳定, STC 外接电容大于等于 10uF, 推荐 100uF 2. 背部散热金属片必须接'地'电位, 不能悬空



封装外形图

SOP8-pp(背部带接地的散热片):



符号	尺寸 (毫米)		尺寸 (英寸)		
10 5	最小	最大	最小	最大	
А	1.300	1.700	0.051	0.067	
A1	0.000	0.100	0.000	0.004	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
D1	3.202	3.402	0.126	0.134	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
E2	2.313	2.513	0.091	0.099	
e	1.27 BSC		0.050	50 BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0 °	8°	

包装规范

一、印章内容介绍

MS726: 产品型号 XXXXXXX: 生产批号

二、印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

三、包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS726	SOP8-pp	2500	1	2500	8	20000

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com