## Monolithic Digital IC Half-pre Motor Driver Single-Phase Full-Wave Drive, for Fan Motor



www.onsemi.com

### Overview

The LB11660RV is a single-phase bipolar half pre-driver that can achieve high-efficient direct PWM drive with ease. It is ideal for driving small-sized cooling fans used in servers. The LB11660RV is provided with the RD (lock detection) output pin and the LB11660FV the FG (rotational speed detection) output pin, respectively.

#### Features

- Single-phase full-wave drive (15V-1.5A output transistor built in) upper output Tr incorporated half pre-driver.
- Variable speed control by an external signal.
- →Separately-excited upper TR direct PWM control method, enabling silent, low-vibration variable speed control.
- Lowest speed setting possible.
- Current limiter circuit

(the circuit actuated at  $I_0 = 1A$  when  $Rf = 0.5\Omega$ , Rf determines the limiter value.)

- Kickback absorption circuit built in.
- Soft switching circuit achieves low power consumption, low loss, and low noise driving at a time of phase change.
- HB built in.
- Lock protection and automatic reset functions incorporated (including a circuit that changes the ON/OFF ratio according to the power supply voltage).
- RD (lock detection) output.
- Thermal protection circuit incorporated (design guaranteed).



#### SSOP16 (225mil)

## **ORDERING INFORMATION**

See detailed ordering and shipping information on page 9 of this data sheet.

## Absolute Maximum Ratings at $Ta = 25^{\circ}C$

| Parameter                                    | Symbol                | Conditions                      | Ratings    | Unit |
|----------------------------------------------|-----------------------|---------------------------------|------------|------|
| V <sub>CC</sub> maximum power supply voltage | V <sub>CC</sub> max   |                                 | 20         | V    |
| VM maximum power supply voltage              | VM max                |                                 | 20         | V    |
| OUT pin maximum output current               | I <sub>OUT</sub> max  | Rf≥0.39Ω                        | 1.5        | А    |
| OUT pin output withstand voltage 1           | V <sub>OUT</sub> max1 |                                 | 20         | V    |
| OUT pin output withstand voltage 2           | V <sub>OUT</sub> max2 | T≤0.4μs                         | 26.5       | V    |
| PRE pin maximum source current               | IPSO max              |                                 | 30         | mA   |
| PRE pin maximum sink current                 | IPSI max              |                                 | -7         | mA   |
| PRE pin output withstand voltage             | VP max                |                                 | 20         | V    |
| HB maximum output current                    | HB                    |                                 | 10         | mA   |
| VTH input pin withstand voltage              | VTH max               |                                 | 7          | V    |
| RD output pin output withstand voltage       | VRD max               |                                 | 18         | V    |
| RD output current                            | IRD max               |                                 | 10         | mA   |
| Allowable power dissipation                  | Pd max                | Mounted on a specified board *1 | 0.8        | W    |
| Operating temperature range                  | Topr                  | *2                              | -30 to 95  | °C   |
| Storage temperature range                    | Tstg                  |                                 | –55 to 150 | °C   |

\*1 A circuit board for mounting (114.3mm×76.1mm×1.6mm, glass epoxy resin)

\*2 Tj max = 150 C. Must be used within the operating temperature range in which Tj does not exceed 150 C.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### **Recommended Operating Range** at Ta = 25 °C

| Parameter                                   | Symbol          | Conditions | Ratings    | Unit |
|---------------------------------------------|-----------------|------------|------------|------|
| V <sub>CC</sub> power supply voltage        | V <sub>CC</sub> |            | 4 to 15    | V    |
| VM power supply voltage                     | V <sub>CC</sub> |            | 3 to 15    | V    |
| Current limiter operating range             | ILIM            |            | 0.6 to 1.2 | А    |
| VTH input level voltage range               | VTH             |            | 0 to 6     | V    |
| Hall input common phase input voltage range | VICM            |            | 0.2 to 3   | V    |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

### Electrical Characteristics at Ta = 25°C, V<sub>CC</sub> = 12V, unless otherwise specified

| Deremeter                                    | Symbol | Conditions                                        |      | 11-14 |      |      |  |
|----------------------------------------------|--------|---------------------------------------------------|------|-------|------|------|--|
| Parameter                                    |        |                                                   | min  | typ   | max  | Unit |  |
| Circuit current                              | ICC1   | During driving                                    |      | 9     | 12   | mA   |  |
| HB voltage                                   | VHB    | IHB=5mA                                           | 1.05 | 1.25  | 1.40 | V    |  |
| 6VREG voltage                                | V6VREG | 6VREG=5mA                                         | 5.80 | 6     | 6.20 | V    |  |
| CT pin H level voltage                       | VCTH   |                                                   | 3.4  | 3.6   | 3.8  | V    |  |
| CT pin L level voltage                       | VCTL   |                                                   | 1.4  | 1.6   | 1.8  | V    |  |
| ICT pin charge current 1                     | ICTC1  | V <sub>CC</sub> =12V                              | 1.7  | 2.2   | 2.7  | μA   |  |
| ICT pin charge current 2                     | ICTC2  | V <sub>CC</sub> =6V                               | 1.3  | 1.8   | 2.3  | μA   |  |
| ICT pin discharge current 1                  | ICTD1  | V <sub>CC</sub> =12V                              | 0.11 | 0.15  | 0.19 | μA   |  |
| ICT pin discharge current 2                  | ICTD2  | V <sub>CC</sub> =6V                               | 0.34 | 0.44  | 0.54 | μA   |  |
| ICT charge/discharge ratio 1                 | RCT1   | V <sub>CC</sub> =12V                              | 12   | 15    | 18   |      |  |
| ICT charge/discharge ratio 2                 | RCT2   | V <sub>CC</sub> =6V                               | 3    | 4     | 5    |      |  |
| ICT charge/discharge ratio threshold voltage | VRCT   |                                                   | 6    | 6.6   | 7.3  | V    |  |
| VTH bias current                             | IBVTH  |                                                   | -2   | -1    | 0    | μA   |  |
| OUT output H saturation voltage              | VOH    | I <sub>O</sub> =200mA, R <sub>L</sub> =1Ω         |      | 0.6   | 0.8  | V    |  |
| PRE output L saturation voltage              | VPL    | I <sub>O</sub> =5mA                               |      | 0.2   | 0.4  | V    |  |
| PRE output H saturation voltage              | VPH    | I <sub>O</sub> = -20mA                            |      | 0.9   | 1.2  | V    |  |
| Current limiter                              | VRf    | V <sub>CC</sub> – VM                              | 450  | 500   | 550  | mV   |  |
| PWM output H level voltage                   | VPWMH  |                                                   | 2.2  | 2.5   | 2.8  | V    |  |
| PWM output L level voltage                   | VPWML  |                                                   | 0.4  | 0.5   | 0.7  | V    |  |
| PWM external C capacitor charge current      | IPWM1  |                                                   | -23  | -18   | -14  | μA   |  |
| PWM external C capacitor discharge current   | IPWM2  |                                                   | 18   | 24    | 30   | μA   |  |
| PWM oscillation frequency                    | FPWM   | C=200pF                                           | 19   | 23    | 27   | kHz  |  |
| Hall input sensitivity                       | VHN    | Zero peak value (including offset and hysteresis) |      | 15    | 25   | mV   |  |
| RD output pin L voltage                      | VRD    | IRD=5mA                                           |      | 0.2   | 0.3  | V    |  |
| RD output pin leak current                   | IRDL   | VRD=7V                                            |      |       | 30   | μA   |  |
| Thermal protection circuit                   | THD    | Design target value *3                            | 150  | 180   | 210  | °C   |  |

\*3 These are design guarantee values, and are not tested. The thermal protection circuit is implemented to prevent the IC from being thermally damaged or burned when exposed to an environment exceeding the guaranteed operating temperature range. Thermal design must be carried out so that the thermal protection circuit will never be activated while the fan is running in a stable condition.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

### **Package Dimensions**

unit : mm

## SSOP16 (225mil)

CASE 565AM ISSUE A





GENERIC **MARKING DIAGRAM\*** 



XXXXX = Specific Device Code Y = Year M = Month DDD = Additional Traceability Data

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot ". may or may not be present.



NOTE: The measurements are not to guarantee but for reference only.

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



## **Pin Assignment**



Top view

## **Truth Table**

| IN- | IN+ | VTH | CPWM | СТ | OUT1 | OUT2 | PRE1 | PRE2 | RD  | Mode                    |  |
|-----|-----|-----|------|----|------|------|------|------|-----|-------------------------|--|
| Н   | L   |     | н    |    | Н    | OFF  | L    | Н    |     | Rotating - drive        |  |
| L   | Н   | L   | П    |    | OFF  | Н    | Н    | L    |     |                         |  |
| Н   | L   |     | -    | L  | OFF  | OFF  | L    | Н    | L   | Detetion recording      |  |
| L   | Н   | Н   | L    |    | OFF  | OFF  | Н    | L    |     | Rotating - regeneration |  |
| Н   | L   |     |      |    | OFF  | OFF  | L    | Н    |     |                         |  |
| L   | Н   | -   | -    | H  | OFF  | OFF  | Н    | L    | OFF | Lock protection         |  |

CPWM-H: CPWM>VTH, CPWM-L: CPWM<VTH



\*1 <Power supply - GND wiring>

GRD of the IC is connected to the control circuit power supply system and GRD of the external N-channel is connected to the motor power supply system. Groundings must be installed separately and all external control components must be connected to the GND line of the IC.

\*2 <Power stabilization capacitor for regeneration>

For the CM capacitor, that is a power stabilization capacitor for PWM drive and for absorption of kick-back, a capacitance of  $4.7\mu F/25V$  or higher must be used. The CM capacitor must be connected without fail to prevent the IC from being damaged when power is tuned on or off.

### \*3 <Speed control>

1) Control voltage

The PWM duty ratio is determined by comparing the VTH pin voltage and the PWM oscillation waveforms. When the VTH pin voltage drops, the 'ON' duty ratio increases, and when it drops to or below the PWM output L level voltage, the duty ratio is 100%.

2) Thermistor

In thermistor applications, the 6VREG voltage is usually divided by a resistor, and the voltage thus generated is supplied to the VTH pin.

The PWM duty ratio is varied by the changes in the VTH pin voltage which result from changes in temperature.

\*4 < Setting the current limiter >

The current limiter is actuated when the voltage of the current-sensing resistors between  $V_{CC}$  and VM increases to 0.5V or more.

Since the current of a current limiter circuit is limited by the current determined by  $I_O = VRf/Rf$  (where VRf = 0.5V typ, Rf: current-sensing resistance), the current limiter is actuated at  $I_O = 1A$  when  $Rf = 0.5\Omega$ . The Rf resistor must be connected without fail, and its constant must be within the recommended operating range for current limiters.

\*5 <Hall input>

Wiring need to be short to prevent carrying of the noise. The Hall input circuit is a comparator having a hysteresis of 20mV. It is recommended that the Hall input level be more than three times (60mVp-p) this hysteresis.

\*6 < PWM oscillation frequency setting capacitor >

The oscillation frequency is 23kHz when CP = 200pF and 46kHz when CP = 100pF, and this serves as the PWM fundamental frequency.

For the most part, the PWM frequency can be obtained from the following formula: f [kHz]  $\approx (4.6 \times 10^6) \div C$  [pF]

\*7 <RD output>

This is the open collector type output, which outputs "L" during rotation. It is set to 'OFF' when a lock is detected. This output is left open when not in use.

\*8 <HB pin>

This is a Hall element bias pin, that is, the 1.25V constant-voltage output pin.

\*9 <RMI pin>

Lowest speed setting pin for speed control.

The minimum output duty setting is made with R3 and R4. The R4 is left open to stop operation at a duty ratio of 0%.

### **Rotation Speed Control Chart**





Sample Application Circuit 2 <no minimum speed setting, thermistor input>



## Internal Equivalent Circuit Diagram



#### **ORDERING INFORMATION**

| Device          | Package                                     | Wire Bond | Shipping (Qty / Packing) |  |
|-----------------|---------------------------------------------|-----------|--------------------------|--|
| LB11660RV-MPB-H | SSOP16 (225mil)<br>(Pb-Free / Halogen Free) | Au-Wire   | 90 / Fan-Fold            |  |
| LB11660RV-TLM-H | SSOP16 (225mil)<br>(Pb-Free / Halogen Free) | Au-Wire   | 2000 / Tape & Reel       |  |
| LB11660RV-W-AH  | SSOP16 (225mil)<br>(Pb-Free / Halogen Free) | Cu-Wire   | 2000 / Tape & Reel       |  |

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub\_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws an