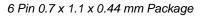

QM12112 Broadband High Power SPDT Switch


Product Description

The QM12112 is a low loss, high isolation SPDT switch with performance optimized for GSM, CDMA, WCDMA, & LTE applications requiring high linearity and high power handling. The QM12112 is controlled by 1 bit GPIO in a compact 0.7mm x 1.1mm, 6-pin module, which allows for a small solution size with no need for external DC blocking capacitors (when no external DC is applied to the device ports).

Functional Block Diagram

Feature Overview

- <0.4dB typical insertion loss at 2.7GHz
- >30dB typical isolation at 2.7GHz
- One Bit GPIO Control
- Capable of 1.8V operation
- HBM Rating > 1kV on all ports
- Compact size: 0.7mm x 1.1mm x 0.44mm
- DC blocking capacitors are not required in typical applications

Applications

- Cellular Handset Applications
- Cellular Modems and USB Devices
- Multi-Mode GSM, EDGE, WCDMA, and LTE Applications Including NR frequencies N77-N79

Ordering Information

PART NO.	DESCRIPTION
QM12112SB	5-pc Sample Bag
QM12112SR	100-pc, 7" Reel
QM12112TR13	10000-pc, 13" Reel
QM12112PCK	Fully Assembled EVB + Sample Bag with 5 pieces

QM12112 Broadband High Power SPDT Switch

Absolute Maximum Ratings

PARAMETER	RATING				
Storage Temperature	-40 to +125 °C				
Operating Temperature	-30 to +90°C				
V _{DD} Supply Voltage	3.5 V				
CTRL Voltage	3.0 V				
Maximum Peak Input Power	+36dBm, VSWR 1:1, 25 °C +34.5dBm, VSWR 3:1, 25 °C				

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Recommended Operating Conditions

PARAMETER	MIN.	TYP.	MAX.	UNITS
V _{DD} Supply Voltage	1.65	1.8	3.1	V
V _{DD} Supply Current		38	55	μA
CTRL Logic High Voltage	1.3	1.8	2.8	V
CTRL Logic Low Voltage	0.00	0.00	0.45	V
CTRL Logic High Current		10.0		nA
Switching Speed – Measured 50% CTRL to 90% RF		3.5	4	μs

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

QM12112 Broadband High Power SPDT Switch

Electrical Specifications

Test conditions unless otherwise stated: all unused RF ports terminated in 50 Ω , Input and Output = 50 Ω , T = 25°C.

 $V_{DD} = 1.8V, CTRL = 1.8 V / 0 V$

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Frequency Range		617		8240				MHz
Insertion Loss			T=25°C		T	=-30°C to 9	0°C	
RFx to RFC	617 MHz to 960 MHz		0.2	0.35		0.2	0.35	dB
RFx to RFC	960 MHz to 2170 MHz		0.25	0.45		0.25	0.45	dB
RFx to RFC	2170 MHz to 2700 MHz		0.3	0.55		0.3	0.55	dB
RFx to RFC	3300 MHz to 3800 MHz		0.55	0.65		0.55	0.75	dB
RFx to RFC	3800 MHz to 4200 MHz		0.6	0.75		0.6	0.8	dB
RFx to RFC	4400 MHz to 5000 MHz		0.65	0.8		0.65	0.85	dB
RFx to RFC	5150 MHz to 5925 MHz		0.7	0.9		0.7	1.1	dB
With Matching *	5925 MHz to 6425 MHz		0.43			0.5		dB
Without Matching	5925 MHz to 6425 MHz		1.0			1.1		dB
With Matching *	6420 MHz to 6920 MHz		0.3			0.4		dB
Without Matching	6420 MHz to 6920 MHz		1.0			1.1		dB
With Matching *	7740 MHz to 8240 MHz		0.2			0.3		dB
Without Matching	7740 MHz to 8240 MHz		1.0			1.2		dB
v	Schematic for Ch5/9 performance							
Isolation		T=25°C		T=-30°C to 90°C				
RF1 to RF2		30	50		30	50		dB
RFx to RFC	617 MHz to 960 MHz	30	40		30	40		dB
RF1 to RF2		30	43		28	43		dB
RFx to RFC	960 MHz to 2170 MHz	30	34		28	34		dB
RF1 to RF2		30	37		25	37		dB
RFx to RFC	2170 MHz to 2700 MHz	25	30		25	30		dB
RF1 to RF2		25	33		23	33		dB
RFx to RFC	3300 MHz to 3800 MHz	23	27		21	27		dB
RF1 to RF2		21	29		20	29		dB
RFx to RFC	3800 MHz to 5000 MHz	21	24		20	24		dB
RF1 to RF2		16	25		15	25		dB
RFx to RFC	5000 MHz to 6000 MHz	16	20		15	20		dB
RF1 to RF2			18			18		dB
RFx to RFC	5925 MHz to 6425 MHz		16			15		dB
RF1 to RF2			18			18		dB
RFx to RFC	6420 MHz to 6920 MHz		16			15		dB
RF1 to RF2			19			19		dB
RFx to RFC	7740 MHz to 8240 MHz		16			16		dB
Harmonics								
VSWR = 1:1			T=25°C		т.	 =-30°C to 9		

Q0000

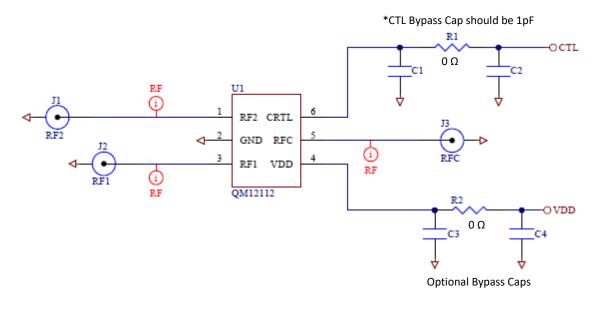
QM12112 Broadband High Power SPDT Switch

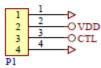
PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
3Fo (B17)	fo = 704MHz; $P_{in} = 26dBm$; CW		-82	-55		-82	-55	dBm
2Fo (B8)	fo = 897.5MHz; P _{in} = 26dBm; CW		-88	-55		-88	-55	dBm
2Fo (GSM 850/900)	50/900) fo = 617 – 960MHz; Pin = 35dBm; CW		-70	-55		-70	-55	dBm
3Fo (GSM 850/900)	fo = 617 – 960MHz; Pin = 35dBm; CW		-61	-55		-61	-55	dBm
≥ 4Fo - 12.75GHz (GSM 850/900)	fo = 617 – 960MHz; Pin = 35dBm; CW		-84	-55		-84	-55	dBm
2Fo (GSM DCS/PCS)	fo = 960 – 2170MHz; Pin = 32dBm; CW		-73	-55		-73	-55	dBm
3Fo (GSM DCS/PCS)	fo = 960 – 2170MHz; Pin = 32dBm; CW		-67	-55		-67	-55	dBm
≥ 4Fo - 12.75GHz (GSM DCS/PCS)	fo = 960 – 2170MHz; Pin = 32dBm; CW		-87	-55		-87	-55	dBm
2Fo (B40/41)	fo = 2170 – 2700MHz; Pin = 26dBm; CW		-82	-55		-82	-55	dBm
3Fo (B40/41)	fo = 2170 – 2700MHz; Pin = 26dBm; CW		-88	-55		-88	-55	dBm
≥ 4Fo - 12.75GHz (B40/41)	2.75GHz fo = 2170 – 2700MHz; Pin =		-70	-55		-70	-55	dBm
2Fo (UHB)	fo = 3300 – 3800MHz; Pin = 26dBm; CW		-61	-55		-61	-55	dBm
3Fo (UHB)	fo = 3300 – 3800MHz; Pin = 26dBm; CW		-84	-55		-84	-55	dBm
≥ 4Fo - 12.75GHz (UHB)	fo = 3300 – 3800MHz; Pin = 26dBm; CW		-73	-55		-73	-55	dBm
2Fo (N77)	fo = 3800 – 4200MHz; Pin = 26dBm; CW		-67	-55		-67	-55	dBm
3Fo (N77)	fo = 3800 – 4200MHz; Pin = 26dBm; CW		-87	-55		-87	-55	dBm
≥ 4Fo - 12.75GHz (N77)	fo = 3800 – 4200MHz; Pin = 26dBm; CW		-82	-55		-82	-55	dBm
2Fo (N79)	fo = 4400 – 5000MHz; Pin = 26dBm; CW		-88	-55		-88	-55	dBm
3Fo (N79)	fo = 4400 – 5000MHz; Pin = 26dBm; CW		-70	-55		-70	-55	dBm
≥ 4Fo - 12.75GHz (N79)	fo = 4400 – 5000MHz; Pin = 26dBm; CW		-61	-55		-61	-55	dBm
2Fo (B46)	fo = 5150 – 5925MHz; Pin = 26dBm; CW		-84	-50		-84	-45	dBm
3Fo (B46)	fo = 5150 – 5925MHz; Pin = 26dBm; CW		-73	-55		-73	-55	dBm
≥ 4Fo - 12.75GHz (B46)	fo = 5150 = 5925MHz: Pip =		-67	-55		-67	-55	dBm
VSWR = 6:1			T=25°C		T=-30°C to 90°C		90°C	
3Fo (B17)	fo = 704MHz; P_{in} = 26dBm; CW		-71	-55		-71	-55	dBm
2Fo (B8)	fo = 897.5MHz; P _{in} = 26dBm; CW		-72	-55		-72	-55	dBm

QM12112 Broadband High Power SPDT Switch

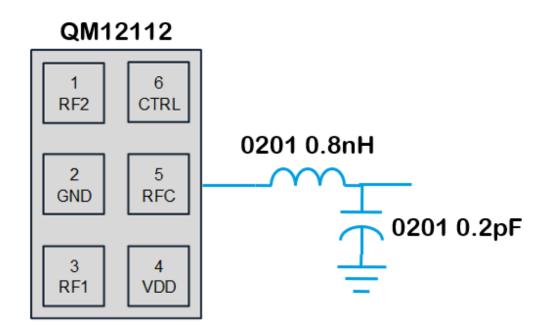
PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
2Fo (GSM 850/900)	fo = 617 – 960MHz; Pin = 35dBm; CW		-50	-45		-50	-45	dBm
3Fo (GSM 850/900)	fo = 617 – 960MHz; Pin = 35dBm; CW		-50	-45		-50	-45	dBm
≥ 4Fo - 12.75GHz (GSM 850/900)	fo = 617 – 960MHz; Pin = 35dBm; CW		-76	-55		-76	-55	dBm
2Fo (GSM DCS/PCS)	fo = 960 – 2170MHz; Pin = 32dBm; CW		-58	-50		-58	-50	dBm
3Fo (GSM DCS/PCS)	fo = 960 – 2170MHz; Pin = 32dBm; CW		-58	-50		-58	-50	dBm
≥ 4Fo - 12.75GHz (GSM DCS/PCS)	fo = 960 – 2170MHz; Pin = 32dBm; CW		-65	-55		-65	-55	dBm
2Fo (B40/41)	fo = 2170 – 2700MHz; Pin = 26dBm; CW		-65	-55		-65	-55	dBm
2Fo (B40/41)	fo = 2170 – 2700MHz; Pin = 29dBm ; CW		-50	-35		-50	-32	dBm
3Fo (B40/41)	fo = 2170 – 2700MHz; Pin = 26dBm; CW		-67	-55		-67	-55	dBm
3Fo (B40/41)	fo = 2170 – 2700MHz; Pin = 29dBm ; CW		-60	-40		-60	-38	dBm
≥ 4Fo - 12.75GHz (B40/41)	fo = 2170 – 2700MHz; Pin = 26dBm; CW		-85	-55		-85	-55	dBm
2Fo (UHB)	fo = 3300 – 3800MHz; Pin = 26dBm; CW		-61	-55		-61	-55	dBm
2Fo (UHB)	fo = 3300 – 3800MHz; Pin = 29dBm; CW		-60	-50		-60	-48	dBm
3Fo (UHB)	fo = 3300 – 3800MHz; Pin = 26dBm; CW		-84	-55		-84	-55	dBm
3Fo (UHB)	fo = 3300 – 3800MHz; Pin = 29dBm ; CW		-60	-50		-60	-48	dBm
≥ 4Fo - 12.75GHz (UHB)	fo = 3300 – 3800MHz; Pin = 26dBm; CW		-73	-55		-73	-55	dBm
2Fo (N77)	fo = 3800 – 4200MHz; Pin = 26dBm; CW		-63	-50		-63	-50	dBm
3Fo (N77)	fo = 3800 – 4200MHz; Pin = 26dBm; CW		-63	-50		-63	-50	dBm
≥ 4Fo - 12.75GHz (N77)	fo = 3800 – 4200MHz; Pin = 26dBm; CW		-84	-50		-84	-50	dBm
2Fo (N79)	fo = 4400 – 5000MHz; Pin = 26dBm; CW		-59	-50		-59	-50	dBm
2Fo (N79)	fo = 4400 – 5000MHz; Pin = 29dBm ; CW		-55	-45		-55	-42	dBm
3Fo (N79)	fo = 4400 – 5000MHz; Pin = 26dBm; CW		-65	-50		-65	-50	dBm
3Fo (N79)	fo = 4400 – 5000MHz; Pin = 29dBm ; CW		-60	-50		-60	-48	dBm
≥ 4Fo - 12.75GHz (N79)	fo = 4400 – 5000MHz; Pin = 26dBm; CW		-89	-50		-89	-50	dBm
2Fo (B46)	fo = 5150 – 5925MHz; Pin = 26dBm; CW		-55	-42		-55	-40	dBm

Q0000

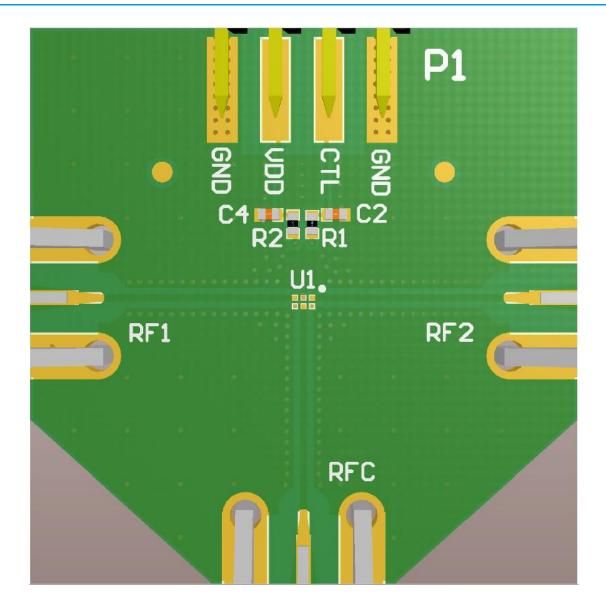

QM12112 Broadband High Power SPDT Switch


PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
3Fo (B46)	fo = 5150 – 5925MHz; Pin = 26dBm; CW		-70	-50		-70	-50	dBm
≥ 4Fo - 12.75GHz (B46)	fo = 5150 – 5925MHz; Pin = 26dBm; CW		-92	-50		-92	-50	dBm
			T=25°C		T=	-30°C to 90)°C	
IMD2	Ftx = 20dBm; Fint = -15dBm							
Band VIII	Ftx = 880 MHz, Fint = 1805 MHz, Fmeas = 925 MHz, Measure on all Pins		-120	-100		-120	-100	dBm
Band II	Ftx = 1880 MHz, Fint = 3840 MHz, Fmeas = 1960 MHz, Measure on all Pins		-120	-100		-120	-100	dBm
Band VIIFtx = 2535 MHz, Fint = 5190MHz, Fmeas = 2655 MHz, Measure on all Pins			-120	-100		-120	-80	dBm

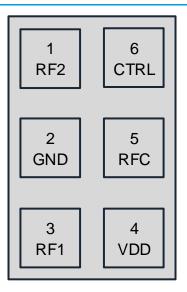
IMD3	Ftx = 20dBm; Fint = -15dBm						
Band VIII	Ftx = 897.5 MHz, Fint = 852.5 MHz, Fmeas = 942.5 MHz, Measure on all Pins	 -120	-100		-120	-100	dBm
Band II	Ftx = 1880 MHz, Fint = 1800 MHz, Fmeas = 1960 MHz, Measure on all Pins	 -120	-100		-120	-100	dBm
Band VII	Ftx = 2535 MHz, Fint = 2415 MHz, Fmeas = 2655 MHz, Measure on all Pins	 -120	-100		-120	-80	dBm
VSWR		T=25°C		T=	-30°C to 9	0°C	
Any RF Port	600 MHz to 960 MHz	 1.05	1.5		1.05	1.5	:1
Any RF Port	1700 MHz to 2200 MHz	 1.1	1.5		1.1	1.5	:1
Any RF Port	2300 MHz to 2700 MHz	 1.25	1.5		1.25	1.5	:1
Any RF Port	3200 MHz to 4000 MHz	 1.5	1.8		1.5	1.8	:1
Any RF Port	5000 MHz to 6000 MHz	 1.7	2		1.7	2	:1



Application Circuit Schematic



UWB Matching Schematic



Evaluation Board Layout

Pin Configuration and Description

Top View

PIN NO.	LABEL	DESCRIPTION
1	RF2	RF Port
2	GND	Ground
3	RF1	RF Port
4	VDD	Power Supply Pin
5	RFC	RF Common Port
6	CTRL	Logic Control Pin

Control Logic

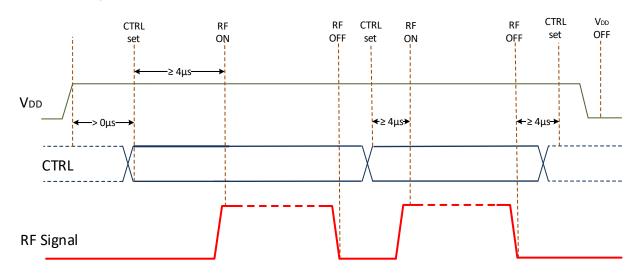
LOGIC STATE	VDD	CTRL	DESCRIPTION
RF1 to RFC	"Vdd"	Low	RF1 to RFC active path, RF2 low impedance/reflective
RF2 to RFC	"Vdd"	High	RF2 to RFC active path, RF1 low impedance/reflective

Q0000

Power On and Off Sequence

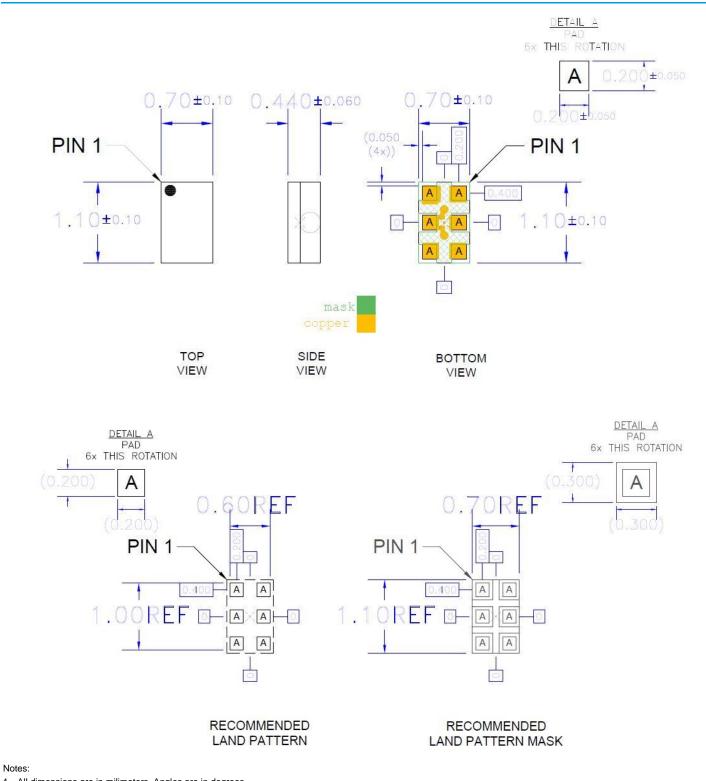
It is very important that the user adheres to the correct power-on/off sequence in order to avoid damaging the part. First apply V_{DD} before applying a high to CTRL.

Power On -


- 1. Apply voltage supply V_{DD}
- 2. Apply logic signal CTRL
- 3. Wait $4\mu s$ or greater after CTRL is stable and then apply the RF signal

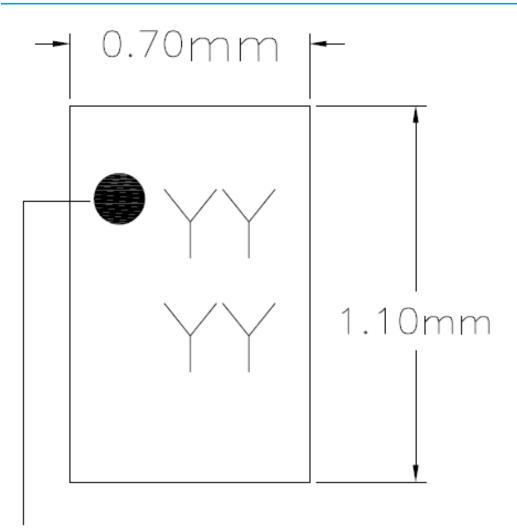
Switching Ports -

- 1. Remove the RF Signal
- 2. Change logic signal CTRL
- 3. Wait $4\mu s$ or greater after CTRL is stable and then apply the RF signal


Power Off -

- 1. Remove the RF signal
- 2. Wait 4µs or greater and remove the logic signal CTRL
- 3. Remove the voltage supply VDD

Mechanical Information



All dimensions are in milimeters. Angles are in degrees.
Dimension and tolerance formats conform to ASME Y14.4M-1994.

The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

Branding Diagram

Pin 1 Indicator Trace Code to be assigned by SubCon Where:

Y is Product Code YYY is Trace Code

QM12112 Broadband High Power SPDT Switch

Tape and Reel Information

Qorvo Part Number	Reel Diameter Inch (mm)	Hub Diameter Inch (mm)	Width (mm)	Pocket Pitch (mm)	Feed	Units Per Reel
QM12112TR13	13 (330)	4 (102)	8	4	Single	10000
QM12112SR	7 (178)	2.5 (63)	8	4	Single	100

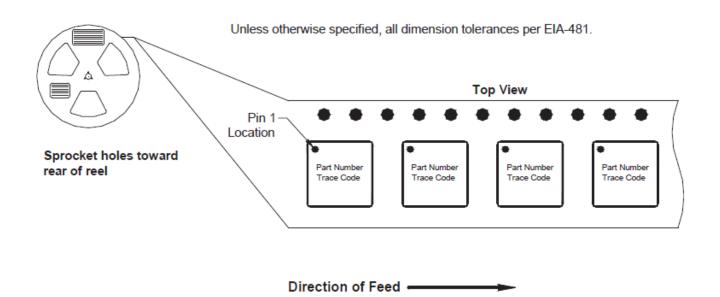


Figure 1. 0.70 mm x 1.10 mm (Carrier Tape Drawing with Part Orientation).

QM12112 Broadband High Power SPDT Switch

Handling Precautions

PARAMETER	RATING	STANDARD	
ESD – Human Body Model (HBM)	Class 2	ANSI/ESDA/JEDEC JS-001	Caution!
ESD – Charge Device Model (CDM)	Class C3	ANSI/ESDA/JEDEC JS-002	ESD sensitive device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- SVHC Free

Revision History

Revision Code	Date	Comments
А	12/20/2017	Initial Release
В	9/05/2018	Updated Max Power Handling
С	10/25/2018	Updated Part Ordering Numbers, typical data, and EVB drawings
D	4/10/2019	Updated ISO values
E	06/07/2019	Added NR frequencies to product feature
F	06/25/2019	Updated Part number in Tap and Reel
G	08/13/2019	Updated Switching Speed and Mechanical Drawing, added limits
Н	08/30/2019	Updated IL Frequency range and Harmonics data
Ι	09/10/2019	Updated IL Frequency range and Harmonics data
J	09/17/2019	Updated with data over temp, updated harmonic freq range
К	10/16/2019	Added 29dBm Harmonic data over VSWR
L	2/13/2020	Updated Branding Diagram
М	3/26/2020	Added UWB IL and ISO data
Ν	6/08/2020	Added UWB Match data and Matching Schematic

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.