Dual Type D Flip-Flop

The MC14013B dual type D flip-flop is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each flip-flop has independent Data, (D), Direct Set, (S), Direct Reset, (R), and Clock (C) inputs and complementary outputs (Q and \overline{Q}). These devices may be used as shift register elements or as type T flip-flops for counter and toggle applications.

Features

- · Static Operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Edge-Clocked Flip-Flop Design
- Logic State is Retained Indefinitely with Clock Level either High or Low; Information is Transferred to the Output only on the Positive—going Edge of the Clock Pulse
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4013B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

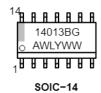
1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

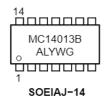
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com




SOIC-14 D SUFFIX CASE 751A SOEIAJ-14 F SUFFIX CASE 965 TSSOP-14 DT SUFFIX CASE 948G

PIN ASSIGNMENT

Q _A	1●	14	V _{DD}
\overline{Q}_A [2	13	Q _B
C _A	3	12	D ₫B
R _A [4	11	СВ
D _A	5	10	R _B
S _A [6	9	DB
v _{ss} [7	8	s _B
•			•

MARKING DIAGRAMS

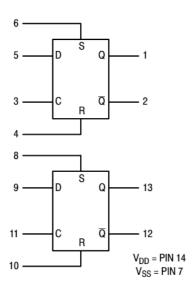
TSSOP-14

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

TRUTH TABLE

	Inp	Out	outs		
Clock†	Data	Reset	Set	Q	Q
	0	0	0	0	1
	1	0	0	1	0
~	Х	0	0	Q	Q
Х	Х	1	0	0	1
X	Х	0	1	1	0
X	Х	1	1	1	1

No Change

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14013BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14013BDG*	SOIC-14 (Pb-Free)	55 Units / Rail
MC14013BDR2G	SOIC-14 (Pb-Free)	2500 Units / Tape & Reel
NLV14013BDR2G*	SOIC-14 (Pb-Free)	2500 Units / Tape & Reel
MC14013BDTR2G	TSSOP-14 (Pb-Free)	2500 Units / Tape & Reel
NLV14013BDTR2G*	TSSOP-14 (Pb-Free)	2500 Units / Tape & Reel
MC14013BFG	SOEIAJ-14 (Pb-Free)	50 Units / Rail
MC14013BFELG	SOEIAJ-14 (Pb-Free)	2000 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

X = Don't Care

^{† =} Level Change

Capable.

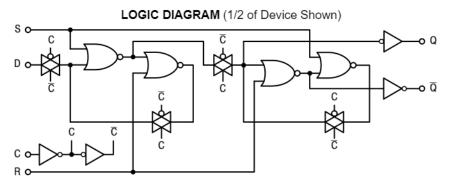
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

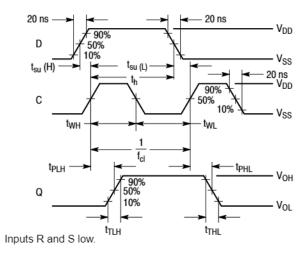
			V _{DD}	-58	5°C		25°C		128	5°C	
Characteristic		Symbol	Vdc	Min	Max	Min	Typ (2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	I _{OH}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - - -	-1.7 -0.36 -0.9 -2.4	- - - -	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		I _{in}	15	-	±0.1	_	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	1.0 2.0 4.0	- - -	0.002 0.004 0.006	1.0 2.0 4.0	- - -	30 60 120	μAdc
Total Supply Current ⁽³⁾ ⁽⁴⁾ (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outpout buffers switching)	ent,	I _T	5.0 10 15			$I_T = ($.75 μΑ/kHz) 1.5 μΑ/kHz) f 2.3 μΑ/kHz) f	+ I _{DD}			μAdc

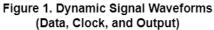
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002.

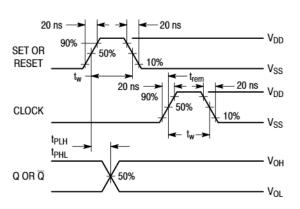
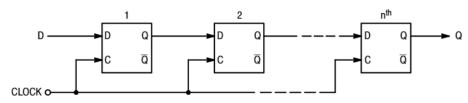

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.

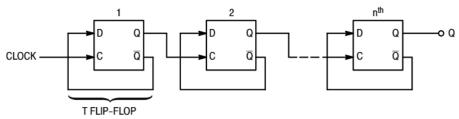

^{4.} To calculate total supply current at loads other than 50 pF:


SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

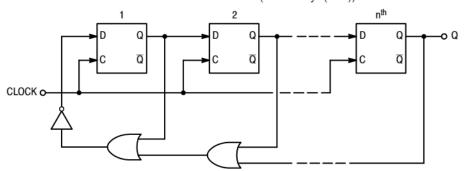
Output Rise and Fall Time tTLH, tTL = (1.5 ns)F) C ₄ ± 25 ns tTLH, tTHL = (0.55 ns)F) C ₄ ± 12.5 ns tTLH, tTHL = (0.55 ns)F) C ₄ ± 12.5 ns tTLH, tTHL = (0.55 ns)F) C ₄ ± 12.5 ns tTLH, tTHL = (0.55 ns)F) C ₄ ± 12.5 ns tTLH, tTHL = (0.55 ns)F) C ₄ ± 9.0 ns tPLH, tPLH = (1.7 ns)F) C ₄ ± 9.0 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 9.0 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 9.0 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 9.0 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 9.0 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 4.2 ns tPLH, tPLH = (1.6 ns)F) C ₄ ± 6.0	Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Max	Unit
tr _{ILH} , tr _{PH} = (0.75 ns)F) C _L + 12.5 ns tr _{ILH} , tr _{IH} = (0.55 ns)F) C _L + 9.5 ns Propagation Delay Time Clock to Q, Q tp _I , tr _{PH} = (1.7 ns)F) C _L + 9.0 ns tp _{ILH} , tr _{PH} = (1.7 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (1.7 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (1.7 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 2.0 ns tp _{ILH} , tr _{PH} = (0.66 ns)F) C _L + 50 ns tp _{ILH} = (0.66 ns)F) C _L + 50 ns tp _{ILH} = (0.66 ns)F) C _L	Output Rise and Fall Time	t _{TLH} ,					ns
Trush, Fried = (0.75 ns/pF) C_t + 9.5 ns 10		t _{THL}	5.0	l	100	200	
trust, trust = (0.55 ns/pF) C _L + 9.5 ns	t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$		10		50	100	
Clock to Q, Q	t_{TLH} , t_{THL} = (0.55 ns/pF) C_L + 9.5 ns		15	_	40	80	
tpLH, tpHL = (1.7 ns/pF) CL + 9 0 ns 5.0 - 175 350 tpLH, tpHL = (0.6 ns/pF) CL + 42 ns 10 - 75 150 Set to Q, Q̄ 15 - 50 100 LpLH, tpHL = (0.6 ns/pF) CL + 20 ns 5.0 - 175 350 tpLH, tpHL = (0.6 ns/pF) CL + 22 ns 10 - 75 150 tpLH, tpHL = (0.5 ns/pF) CL + 25 ns 15 - 50 100 Reset to Q, Q̄ 15 - 50 100 10 - 100 20 100 15 - 75 150 100 15 - 75 150 10 10 - 100 20 - ns 10 - 10 20 10 -	Propagation Delay Time	t _{PLH}					ns
Tept., tpHL = (0.66 ns)rF) C _L + 42 ns tpH. tpHL = (0.65 ns)rF) C _L + 25 ns		t _{PHL}					
Tept. tppt. col. 0	t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 90 \text{ ns}$		I	-		l	
15 50 100			l	_	1	l	
tp_LH, tpHL = (1.7 ns/pF) C _L + 90 ns tpLH, tpHL = (0.66 ns/pF) C _L + 22 ns tpLH, tpHL = (0.66 ns/pF) C _L + 25 ns Reset to Q, Q tpLH, tpHL = (1.7 ns/pF) C _L + 265 ns tpLH, tpHL = (0.66 ns/pF) C _L + 265 ns tpLH, tpHL = (0.66 ns/pF) C _L + 265 ns tpLH, tpHL = (0.66 ns/pF) C _L + 50 ns Setup Times (Note 7) tsu tsu 5.0 tsu 5.0 - 225 450 400 200 - 100 200 tpLH, tpHL = (0.5 ns/pF) C _L + 50 ns 10 - 100 200 10 - 15 - 75 150 Setup Times (Note 7) tsu 5.0 40 20 - ns 10 20 10 - 15 - 7.5 - 150 Hold Times (Note 7) tsu 5.0 40 20 - ns 15 - 7.5 - 15 Hold Times (Note 7) tsu 5.0 40 20 - ns 10 20 10 - 15 - 7.5 - 15 Clock Pulse Width twL, twH 5.0 250 125 - ns 10 10 - 10 5.0 The control of the tyle tyle tyle tyle tyle tyle tyle tyl	t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 25 ns		15		50	100	
The point of the	Set to Q,						1
Table Tab	t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 90 \text{ ns}$		5.0	-	175	350	
Table 10 10 10 10 10 10 10 1			10	-	75	150	
tp _{LH} , tp _{HL} = (1.7 ns/pF) C _L + 265 ns tp _{LH} , tp _{HL} = (0.66 ns/pF) C _L + 67 ns tp _{LH} , tp _{HL} = (0.66 ns/pF) C _L + 50 ns 5.0			15	-	50	100	
The content of the	Reset to Q, Q						1
The triple of	t _{PLH} , t _{PHL} = (1.7 ns/pF) C _L + 265 ns		5.0	-	225	450	
Setup Times (Note 7)	t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 67 \text{ ns}$		10	-	100	200	
10	t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 50 \text{ ns}$		15	-	75	150	
Hold Times (Note 7)	Setup Times (Note 7)	t _{su}	5.0	40	20	-	ns
Hold Times (Note 7)			10	20	10	-	
10			15	15	7.5	-	
To 15 15 7.5 -	Hold Times (Note 7)	t _h	5.0	40	20	-	ns
Clock Pulse Width t _{WL} , t _{WH} 5.0 250 125 -			10	20	10	-	
10			15	15	7.5	-	
Clock Pulse Frequency	Clock Pulse Width	t _{WL} , t _{WH}	5.0	250	125	-	ns
Clock Pulse Frequency f _{Cl}			10	100	50	-	
10			15	70	35	-	
To 10 3.0 15 7.0 16 7.0 15 7.0 7.0 15 7.0 7.0 15 7.0	Clock Pulse Frequency	f _{Cl}	5.0	-	4.0	2.0	MHz
Clock Pulse Rise and Fall Time t _{TLH} t _{THL} 10 5.0 15 4.0 Set and Reset Pulse Width t _{WL} , t _{WH} 5.0 250 125 - ns 10 10 100 50 - 15 70 35 - Removal Times Set 5 80 0 - 10 45 5 - 10 45 5 - 10 30 - 10 - 10			10	I	10	5.0	
Thick 10			15	-	14	7.0	
t _{THL} 10	Clock Pulse Rise and Fall Time	t _{TLH}	5.0	-	-	15	μS
Set and Reset Pulse Width t_{WL}, t_{WH}			10	l	1	5.0	
Removal Times Set trem trem 5 80 0 - 10 45 5 - 115 35 5 - 115 35 5 - 110 30 -10 - 110 30 -10 - 110 30 -10 - 110 30 -10 - 110 30 -10 -			15	-	-	4.0	
Removal Times Set trem trem 5 80 0 - 10 45 5 - 115 35 5 - 115 35 5 - 115 35 5 - 110 30 -10 -	Set and Reset Pulse Width	t _{WL} , t _{WH}	5.0	250	125	-	ns
Removal Times Set trem 5 80 0 - 10 45 5 70 10 45 5 - 15 70 10 10 10 10 10 10 10 10 10			10	100	50	_	
Set 5 80 0 - 10 45 5 - 15 35 5 - Reset 5 50 -35 - 10 30 -10 -			15	70	35	-	
Set 5 80 0 - 10 45 5 - 15 35 5 - Reset 5 50 -35 - 10 30 -10 -	Removal Times	t _{rem}					ns
Reset	Set		5	80	0	_	
Reset 5 50 -35 - 10 30 -10 -			10	45	5	-	
10 30 -10 -			15	35	5	-	
	Reset		5	50	-35	-	1
15 25 -5 -			10	30	-10	-	
			15	25	- 5	-	

- The formulas given are for the typical characteristics only at 25°C.
 Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 Data must be valid for 250 ns with a 5 V supply, 100 ns with 10 V, and 70 ns with 15 V.

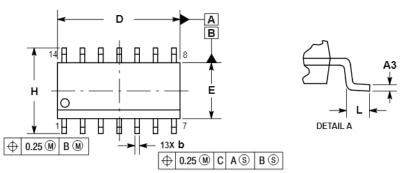



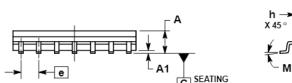

Figure 2. Dynamic Signal Waveforms (Set, Reset, Clock, and Output)

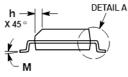
TYPICAL APPLICATIONS


n-STAGE SHIFT REGISTER

BINARY RIPPLE UP-COUNTER (Divide-by-2ⁿ)

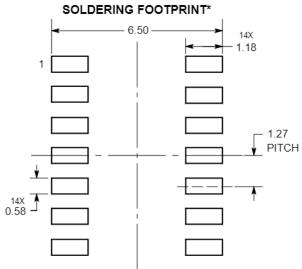



MODIFIED RING COUNTER (Divide-by-(n+1))



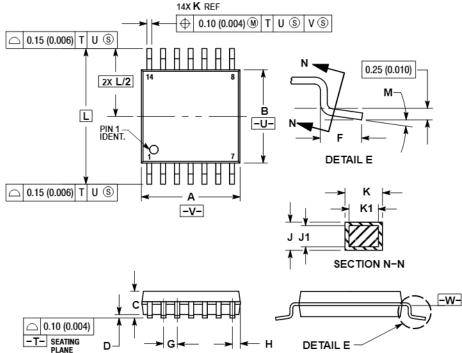
PACKAGE DIMENSIONS

SOIC-14 NB CASE 751A-03 ISSUE K



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0 °	7°	0 °	7°



DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

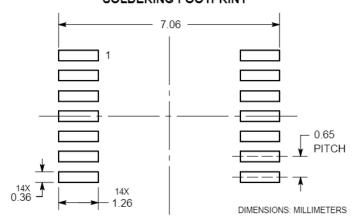
TSSOP-14 CASE 948G ISSUE B

NOTES:

- DTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

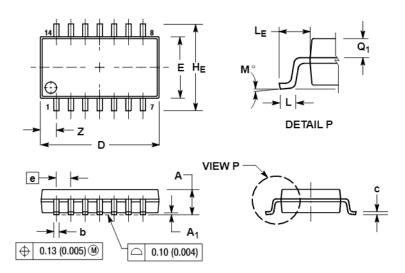
 2. CONTROLLING DIMENSION: MILLIMETER.


 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL U.U.U.S) TO THE IN EACES OF THE K
 DIMENSION AT MAXIMUM MATERIAL
 CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE
 DETERMINED AT DATIMAL AND A

DETERMINED AT DATUM PLANE - W							
1	MILLIN	IÉTERS	İNC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	4.90	5.10	0.193	0.200			
В	4.30	4.50	0.169	0.177			
С		1.20		0.047			
D	0.05	0.15	0.002	0.006			
F	0.50	0.75	0.020	0.030			
G	0.65	BSC	0.026 BSC				
Н	0.50	0.60	0.020	0.024			
J	0.09	0.20	0.004	0.008			
J1	0.09	0.16	0.004	0.006			
K	0.19	0.30	0.007	0.012			
K1	0.19	0.25	0.007	0.010			
L	6.40	BSC	0.252	BSC			
M	0 °	8°	0 °	8°			


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-14 **CASE 965** ISSUE B

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING PURE
 1. DIMENSIONING PURE
 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 CONTROLLING DIMENSION: MILL B. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE. REFERENCE ONLY.
- THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION.

 DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT, MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.10	0.20	0.004	0.008
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
М	0°	10 °	0 °	10 °
Q_1	0.70	0.90	0.028	0.035
Z		1.42		0.056

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use a component in sustainer in sustainer in sustainer in sustainer in sustainer in sustainers. or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any daim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative