

Threshold 4.65V low power microprocessor reset circuit

Features

- Standard supply voltage 5,0 V
- Operation temperature range T_A = from -40°to +85°C
- RESET signal generation when power supply is provided for regular start-up of microprocessor
- RESET signal generation when power supply is dropped below operation one to exclude incorrect operation of microprocessor.
- RESET signal generation when reset key is pressed
- Option of threshold voltage programming when RESET signal is generated

Microcircuit includes:

- reference voltage source
- two analog comparators
- guard timer
- digitizer, (digital sampler)
- digital delay

Functions performed

- RESET signal generation by fixed supply voltage level
- RESET signal generation from external RESET key
- Generation of guard timer state signal Alarm interrupt of host power supply

Pin description

Pin	Symbol	Name	Туре			
				PBRST 01		$08 \overline{\text{WDS}}$
01	PBRST	Push button Reset	Input		\bigcup	
02	Ucc	Supply voltage	-	V_{CC} 02		$07 \overline{\text{RST}}$
03	GND	Common pin	-			
04	IN	input	Input	GND 03		$\overline{O6}$ \overline{ST}
05	NMI	Non-masked interrupt	Output			51
06	ST	Strobe input	Input	IN 04		05 $\overline{\rm NM1}$
07	RST	Reset low reset	Output			
08	WDS	Watchdog status	Output			

Operation temperature range

Operation temperature range от -40°С до +85°С.

MAXIMUM RATINGS*

Parameter, unit	Symbol	Recommended modes		Absolute maximum ratings	
		min	max	min	max
Supply voltage, V	V _{cc}	1.2*	5.5	-0.5	7.0
High level input voltage, V, \overline{ST} , \overline{PBRST} inputs	V _{IH}				
$Vcc \ge 2.4 V$		2.0			Vcc +
Vcc < 2.4 V		Vcc - 0.5	Vcc + 0.3	_	0.5
Low level input voltage, V	V _{IL}	- 0.03	0.5	-0.5	_
Temperature range ,°C	Та	-40	85	-60	+125
* In the case supply voltage decreased down to 1,2V $\ \overline{RST}$ kept in active low state					

Electric features

			Nor	Tempe-	
Parameter, unit	Symbol	Mode	min	max	rature, °C
Low level leakage current on IN, uA	I _{LIL1}	Vcc = 5.5 B	-	-1.0	25 ± 10 -40; 85
Low level leakage current on PBRST , uA	I _{LIL2}	Vcc = 5.5 B	-50	-450	
Low level leakage current on \overline{ST} ,uA	I _{LIL3}	Vcc = 5.5 B	-10	-100	
High level leakage current on IN, \overline{ST} , \overline{PBRST} inputs, uA	I _{LIH}	Vcc = 5.5 B	-	1.0	
Consumption current, uA	lcc	Vcc = 5.5 B	-	60	
		Vcc = 3.6 B	1	50	
Low level output current, mA	I _{OL}	$Vcc \ge 2.4 B$	10	_	
		V _{OL} = 0.4 B			
High level output voltage, B	V _{OH}	Vcc ≥ 2.4 В I _{OH} = -500 мкА	Vcc – 0.3	-	
V _{CC} trip point, V	V _{CCTP}	_	2.85	3.0	
In input trip point	V _{TP}	Vcc = 5.0 B	1.2	1.3	
Set up time of Reset on	t _{PDLY}	Vcc = 5.0 B	_	250	
\overline{PBRST} signal , ns		$t_{\text{PB}} \ge 150$ нс*			
Hold on time of Reset on	t _{RST}	Vcc = 5.0 B	130	285	
$\overline{\mathrm{PBRST}}$ signal , ns		$t_{\text{PB}} \ge 150$ нс*			
Hold on time of Reset on, Vcc, ms	t _{RPU}	Vcc = 5.0 B	130	285	
Watch dog time out	t _{TD}	Vcc = 5.0 B	1.0	2.2	
		$t_{ST} \ge 10$ нс**			

* t_{PB} – low level signal duration on \overline{PBRST}

** t_{ST} – low level signal duration on \overline{ST}

Dynamic parameters U_{CC} = from 4,5 to 5,5V, T_A = from -40° to+85°C

Parameter	Name	No	Unit	
symbol		not less	not more	
t _{TD}	Guard timer reflow time	1,0	2,2	S
t _{PDLY}	Setting time for reset by PBRST signal	-	250	ns
t _{RST}	Reset hold-in time by PBRST signal	130	285	ms
t _{RPD}	Setting time for reset by U_{CC}	-	8,0	mks
t _{RPU}	Hold-in time for reset by U_{CC}	130	285	ms
t _{IPD}	Interrupt setting time for IN input	-	8,0	mks
t _{PB}	Key press duration (PBRST= U_{IL})	150	-	ns
t _{st}	Strobe pulse width	10	-	ns

Time diagrammes

Fig. 3 - Time diagram of generation reset signal when power supply is dropped up to Ustrobe (power supply error)

Fig. 4 - Time diagramme fo power supply connection (reset signal is reset active after power supply is transferred to stable state

Fig. 5 - Time diagrammed of non-masked interrupt.

Mechanical Dimensions

Package

Dimensions in millimeters

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

8-SOP MIN <u>0.1~0.25</u> 0.004~0.001 1.55 ± 0.20 0.061 ±0.008 $\left(\frac{0.56}{0.022}\right)$ #1 #8 $\left(\right)$ $\frac{4.92 \pm 0.20}{0.194 \pm 0.008}$ MAX $\frac{5.13}{0.202}$ $\frac{0.41 \pm 0.10}{0.016 \pm 0.004}$ #4 #5 <u>1.27</u> 0.050 6.00 ± 0.30 $\frac{1.80}{0.071}$ MAX $\overline{0.236 \pm 0.012}$ 0.15 -0.05 0.006 -0.004 MAX0.10 MAX0.004 3.95 ±0.20 $\overline{0.156 \pm 0.008}$ or or 5.72 0.225 0.50 ± 0.20 $\overline{0.020~\pm0.008}$