
MSKSEMI

ESD

TVS

TSS

MOV

GDT

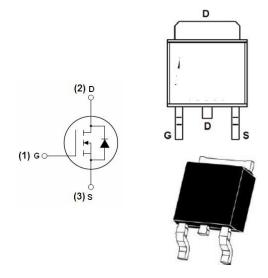
PLED

Broduct data sheet

Schematic diagram

Semiconductor

Compiance


Description

The MS30N06 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The MS30N06 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

BVDSS: 60V RDSON:30MR

ID:30A

TO-252

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage 60		V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	30	А
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	23	А
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	5	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹ 4		А
I _{DM}	Pulsed Drain Current ²	40	А
EAS	Single Pulse Avalanche Energy ³	22	mJ
I _{AS}	Avalanche Current	21	А
P _D @T _C =25°C	Total Power Dissipation ⁴	31.3	W
P _D @T _A =25°C	Total Power Dissipation ⁴	2	W
T _{STG}	Storage Temperature Range -55 to 150		°C
TJ	Operating Junction Temperature Range -55 to 150		°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-ambient ¹		62	°C/W
R _{θJC}	Thermal Resistance Junction-Case ¹ 4		°C/W	

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV_{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60			V	
$\triangleBV_{\text{DSS}}/\triangleT_J$	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.044		V/°C	
В	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =15A		23	30	mΩ	
$R_{DS(ON)}$		V _{GS} =4.5V , I _D =7A		28	40		
V _{GS(th)}	Gate Threshold Voltage	\\ _\\ _250\	1.0		2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-4.8		mV/°C	
1	Danier Courses Londones Courses	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1		
I _{DSS}	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =55°C			5	uA	
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =15A		25.3		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.5		Ω	
Qg	Total Gate Charge (10V)			19			
Q_{gs}	Gate-Source Charge	V _{DS} =48V , V _{GS} =10V , I _D =15A		2.5		nC	
Q_{gd}	Gate-Drain Charge			5			
T _{d(on)}	Turn-On Delay Time			2.8			
Tr	Rise Time	V_{DD} =30V , V_{GS} =10V , R_{G} =3.3 Ω		16.6			
$T_{d(off)}$	Turn-Off Delay Time	I _D =15A		21.2		ns	
T _f	Fall Time			5.6			
C _{iss}	Input Capacitance			1027			
C _{oss}	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		65		pF	
C _{rss}	Reverse Transfer Capacitance			46			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,6}	\/ =\/ =0\/ Faras Current			20	Α
I _{SM}	Pulsed Source Current ^{2,6}	V _G =V _D =0V , Force Current			40	Α
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V
t _{rr}	Reverse Recovery Time			12.2		nS
Q_{rr}	Reverse Recovery Charge	lF=15A , dl/dt=100A/μs , T _J =25°C		7.3		nC

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leqq 300us , duty cycle \leqq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH, I_{AS} =21A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

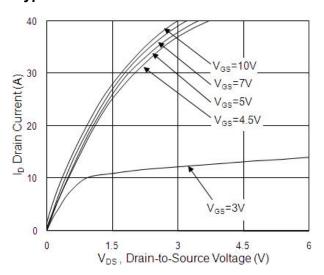


Fig.1 Typical Output Characteristics

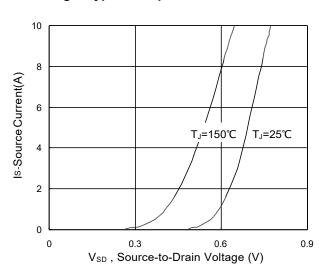


Fig.3 Forward Characteristics Of Reverse

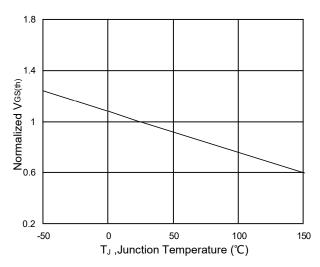


Fig.5 Normalized $V_{\text{GS(th)}}$ vs. T_{J}

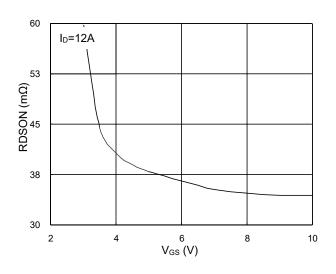


Fig.2 On-Resistance vs. Gate-Source

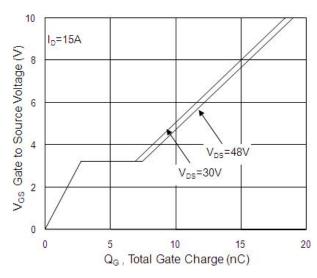
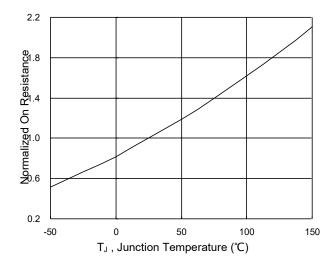
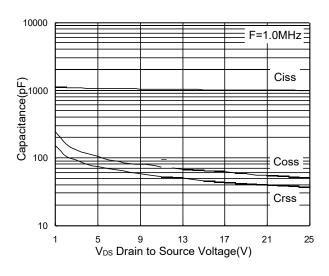
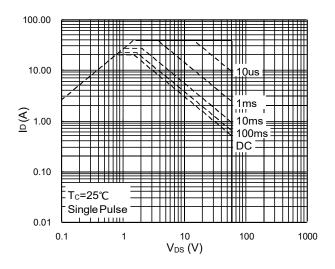
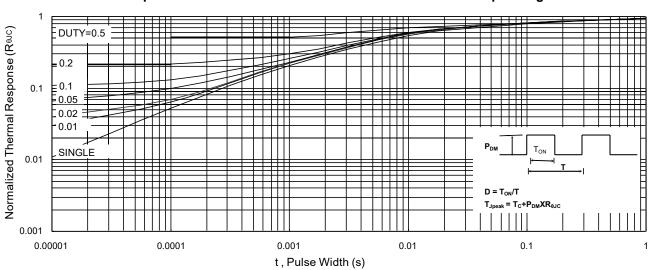
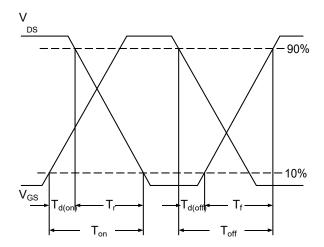
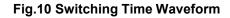


Fig.4 Gate-Charge Characteristics

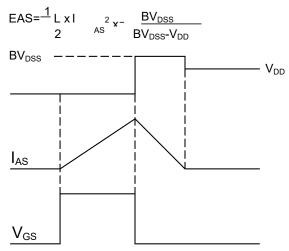

Fig.6 Normalized R_{DSON} vs. T_J

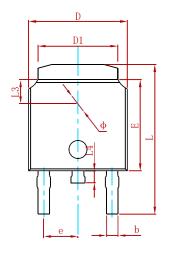


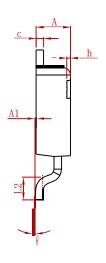

Capacitance

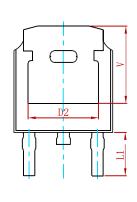
Safe Operating Area

Normalized Maximum Transient Thermal Impedance

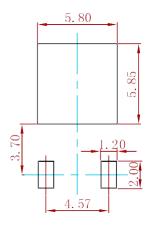



Fig.11 Unclamped Inductive Switching Waveform




Semiconductor

PACKAGE MECHANICAL DATA



Comphal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.635	0.770	0.025	0.030	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830	REF.	0.190	REF.	
Е	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.712	10.312	0.382	0.406	
L1	2.900	REF.	0.114 REF.		
L2	1.400	1.700	0.055	0.067	
L3	1.600	1.600 REF.		REF.	
L4	0.600	1.000	0.024	0.039	
Ф	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.250 REF.		0.207	REF.	

Suggested Pad Layout

Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
MS30N06	TO-252	2500

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.