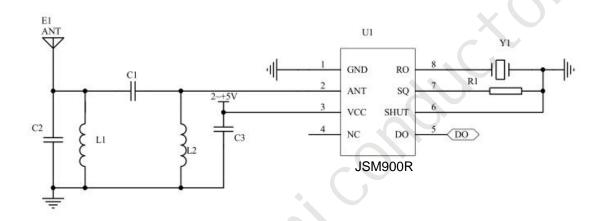


主要特性

- ▶ 频率范围:300MHz-440MHz
- ▶ 高接收灵敏度(2kbps, BER 10E-2)
 - -108dBm @ 315MHz
 - -110dBm @ 433.92MHz
- ▶ 低功耗
 - 2.8mA/3.3V @ 315MHz
 - 3.5mA/3.3V @ 433.92MHz
 - 0.1uA/3.3V @ Shut Down Mode
- 》 超低启动时间:3ms,适用于低功耗要求产品
- 数据速率: ≤ 10kbps
- ▶ 宽工作电压: DC2.0V~5.0V
- 内建镜像抑制,抗干扰性能好
- ▶ 433 接收带宽: ±300KHz
- ▶ 315 接收带宽: ±250KHz
- ▶ 高 ESD 防护标准:±8KV HBM
- > 可独立运行, 无需外部 MCU 控制
- ▶ 无需寄存器配置
- ➤ 符合RoHS 标准
- ➤ SOP8 封装

主要应用

- 低成本消费电子应用,如遥控风扇、遥控灯、遥控门、遥控玩具等
- ▶ 远距离钥匙进入系统(RKE)
- 智慧家庭、楼宇监控自动化
- ▶ 工业检测及控制系统
- ▶ 远距离 RFID

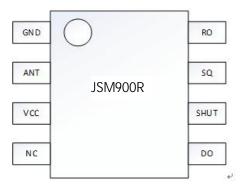


芯片简介

JSM900R 是一款高集成度、低功耗的单片 ASK/OOK 射频接收芯片。高频信号接收功能全部集成于片内以达用最少的外围器件和最低的成本获得最可靠的接收效果。因此它是真正意义上的"无线高频调制 信号输入,数字解调信号输出"的单片接收器件。

JSM900R 为 SOP8 封装,正常工作电压范围 2.0~5.0V ,正常工作电流 2.8-3.5mA,启动时间 3ms,接 收灵敏度最高可达到-110dBm,非常适合各种低功耗要求的设备等。片内自动完成所有的 RF和IF调谐,在开发和生产中省略了手工调节的工艺环节,进而降低成本,可加快产品上市。

1、典型应用



标号	说明	数值	单位	
13. 3	75173	315MHz	433.92MHz	
Y1	精度 20ppm , 负载电容 20pF	9.81563	13.52127	MHz
L1	高频电感	27	27	nH
L2	高频电感	68	47	nH
C1		10	6.8	PF
C2		2	1.8	PF
C3		1		UF
R1		0R		Ω

注意: R1 贴 OR 为关闭静噪功能。 R1 悬空为打开静噪功能。 静噪打开后,灵敏度衰减 3db。

2、管脚定义

序号	名称	类型	描述
1	GND	Р	接地管脚
2	ANT	I	RF 信号输入脚
3	VDD	Р	电源管脚,DC 2.0~5.5V
4	NC		悬空,省电容
5	DO	0	解调数据信号输出
6	SHUT	I	工作模式选择脚。关断模式:接电源;工作模式:接地
7	SQ	I	静噪选择脚。使用静噪:使用电源或悬空;关闭静噪:接地
8	RO	I	外接晶振管脚

3、电气特性

3.1 工作条件

符号	参数	条件	最小	典型	最大	单位
VDD	电源电压		2.0	3.3	5.0	V
TA	工作温度	0	-40		+125	°C
θ	电源电压斜 率		1			mV/μs

3.2 极限参数

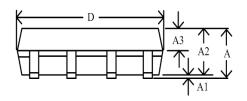
符号	参数	条件	最小	典型	最大	单位
VDD	电源电压[1]		-0.3		5.5	V
V _{IN}	接口电压		-0.3		VDD+ 0.3	V
T _{STG}	储藏温度		-65		150	°C
T _{SDR}	焊接温度	持续最多 30 秒			245	°C
V _{HBM}	ESD 等级 ^[2]	人体模型(HBM)	-8		8	kV

备注:

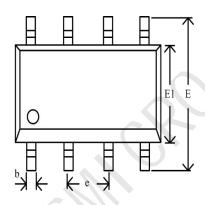
- [1] 超过极限参数的最大值可能会造成器件的永久性损坏,请在此极限参数范围内使用,保证设备安全。
- [2] 本芯片 ESD 防护等级达到了很高的标准,但仍请注意在良好的 ESD 保护的工作台上进行各项操作。

3.3 接收器规格

符号	参数	条件	最小	典型	最大	单位
VDD	电源电压		2.0		5.0	V
fDF	工作场交共用	f _{RF} =9.81563MHz		315		MHz
fRF	工作频率范围	f _{RF} =13.52127MHz		433.92		MHz
DR	数据率		0.1		10	kbps
		f _{RF} =315MHz,VDD=3.3V		2.6		mA
IOP	T lecture.	f _{RF} =315MHz,VDD=5V		2.68		mA
IOP	工作电流	f _{RF} =433.92MHz,VDD=3.3V		3.2		mA
		f _{RF} =433.92MHz,VDD=5V		3.36		mA
ISTBY	休眠电流	V _{SHUT} =VDD		0.1		μΑ
	to the ⊐Ebore	f _{RF} = 315MHz		-106		dBm
	接收灵敏度	f _{RF} = 433.92MHz		2.0 5.0 315 433.92 0.1 10 2.6 2.68 3.2 3.36 0.1	dBm	
(D)A/		f _{RF} = 315MHz		250		kHz
fBW	接收器带宽	f _{RF} = 433.92MHz		300		kHz
fIF	中频频率			0.86		MHz
fBW	中频带宽			0.43		MHz
	饱和输入电平	RSC = 50Ω		-20		dBm
	Spurious Reverse Isolation	ANT pin, $R_{sc} = 50\Omega$		30		μVr/ms
ZREFOSC	Reference Oscillator Input Impedance			290		kΩ
	Reference Oscillator Source Current			5.2		μΑ
		f _{RF} = 315MHz		9.81563		MHz
f _⊤	晶体振荡器频率	f _{RF} = 433.92MHz		13.52127		MHz
	接收器启动时间	从 VDD 上电到接收		4		ms
	SHUT 启动时间	从 SHUT 引脚拉低到接收		3		ms


3.4 晶体振荡器规格


符号	参数	条件	最小	典型	最大	单位
FXTAL315		FRF =315 MHz		9.81563		MHz
FXTAL390	晶体频率 ^[1]	FRF =390 MHz				MHz
FXTAL318	田冲火平	FRF =418 MHz				MHz
FXTAL433.92		FRF =433.92 MHz		13.52127		MHz
	晶体频率精度 ^[2]			±20		ppm
CLOAD	负载电容			20		рF
Rm	晶体等效电阻				60	Ω
tXTAL	晶体启动时间 ^[3]			400		μs


备注:

- [1] 可以直接用外部参考时钟通过耦合电容驱动 REFOSC 管脚工作。外部时钟信号的峰峰值要求在 0.3 到 0.7 V 之间。
- [2] 该参数选择仅供参考,可接受的晶体频率误差受限于接收机的带宽和与之搭配的发射器之间射频频率偏差。
- [3] 该参数很大程度上与晶体的选择相关

4、封装信息

注:1)为引出端识别标志区。

单位为:毫米

尺寸		数值		尺寸	数值			
符号	最小	公称	最大	符号	最小	公称	最大	
Α			1.75	е		1.27		
A1			0.23	b	0.39		0.48	
A2			1.50	h	0.25		0.50	
A3			0.70	E	5.80		6.20	
D			5.10	E1	3.70		4.10	
С			0.26					

5、注意事项

- 接地:金属底板采用尽量多的通孔接地,减小寄生电感。
- 电源旁路:为了器件能很好工作,电源引线处建议用 0.1μF 电容滤波,电容需靠近器件。
- ▶ 电源保护:对于 5V 的应用,电源容易达到芯片的临界工作电压。此时需要在 RF 电源引脚上串入 47 欧姆电阻,以保护芯片。
- ▶ 防静电损伤:器件为静电敏感器件,传输、装配、测试过程中应采取充分的防静电措施。
- ▶ 用户在使用前应进行外观检查,电路底部、侧面、四周光亮方可进行焊接。如出现氧化可采用去氧化手段对电路进行处理,处理完成电路必须在4小时内完成焊接。
- 包装袋被打开后, 元器件将被回流焊制程或其他的高温制程所采用时必须符合:
 - a) 在 12 小时内且工厂环境为温度 < 30℃,湿度%RH完成。
 - b) 使用前需进行去湿处理 (建议 125℃, 4 小时烘烤)。
- 产 产品焊接温度最高为 245℃, 请务必保证贴片加工温度不要超过 245℃。
- > 产品说明书以发布日期为准,适时修改不另行说明。

6、防护注意事项

- 产品必须进行密封真空包装,并建议放置在干燥柜中储存,在温度小于30℃且湿度小于60 财,可达12 个月。
- 打开包装后,如未使用完,则剩余产品需进行抽真空并放置在干燥柜中保管。
- 超期产品使用前必须进行去湿和去氧化处理。