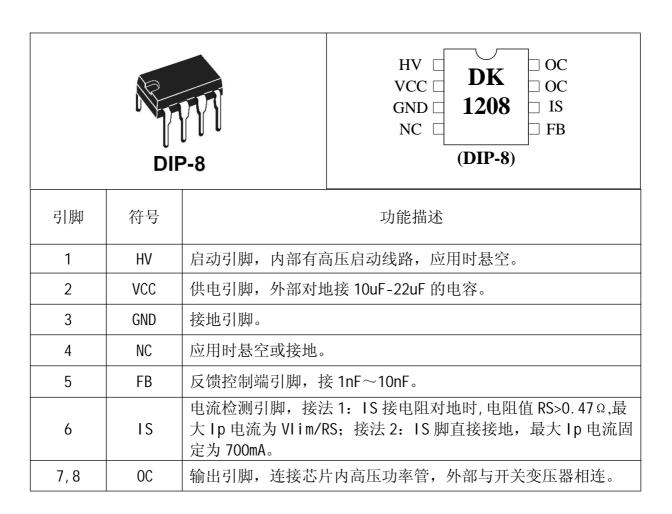
功能描述

DK1208 是一款符合 6 级能效标准的次级反馈,反激式 AC-DC 高性能准谐振开关电源控制芯片。芯片内置高压功率管,芯片内还包含有准谐振检测、SLEEP 超低待机、自供电等电路,并具有输出短路、次级开路、过温、过压等保护功能。芯片采用高集成度的CMOS 电路设计,具有外围元件极少,变压器成本低(隔离输出电路的变压器只需要两个绕组)等特点。

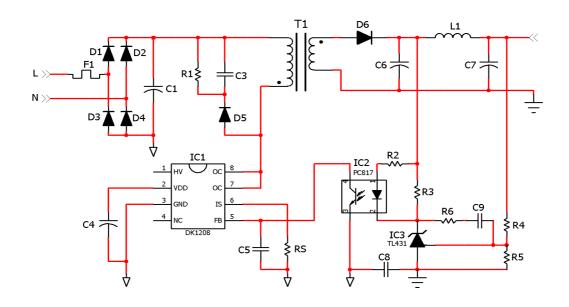

产品特点

- 全电压输入85V—265V。
- 内置 700V 功率管。
- 专利的自供电技术,变压器无需外部供电绕组,无需启动电阻(降低成品成本)。
- Ⅰ 特有的 SLEEP 技术使芯片具有超低的待机功耗。
- 内置 PWM 准谐振电路,增加电源转换效率和保证良好的 EMC 特性。
- Ⅰ 过温、过流、过压以及输出短路,次级开路,光耦失效保护。
- 4KV 防静电 ESD 测试。

应用领域

12W以下 AC-DC应用包括:电源适配器、充电器、电磁炉、空调、DVD、机顶盒等家电产品。

封装与引脚定义(DIP8)


极限参数

供电电压 VDI	D 0.3V8V
供电电流 VDI)
引脚电压	-0.3VVDD+0.3V
功率管耐压	-0.3V730V
IS 最大电压	400mV
总耗散功率	
工作温度	-25°C+125°C
储存温度	-55°C+150°C
	+280°C/5S

电气参数

项目符号	项目符号 测试条件		典型	最大	单位
工作电压VCC	AC 输入85V265V		4.7	5.8	V
启动电压VCC_Start	AC 输入85V265V	4. 9	5.0	5.2	V
重启电压VCC_Min	AC 输入85V265V	3.4	3.5	3.7	V
保护电压VCC_Max	AC 输入85V265V	5.7	5.8	6.0	V
工作电流I	VCC=4.7V, FB=2.8V			40	mA
启动电流I_Start	AC 输入265V			0.5	mA
启动时间T_Start	AC 输入85V, C=22uF			500	ms
功率管耐压	I oc=1mA	700			V
Vor保护电压Vor_Max	Lp=1.68mH, RS=0.57	100	133	160	V
IS 最大电压 VI i m	VCC=4.7V, FB=2.8V, AC 输入85V		380	400	mV
PWM输出频率F_PWM	PWM输出频率F_PWM VCC=4.7V, FB=0.5V3.5V		-	70	Khz
短路保护阀值Vfb_H	FB电压		3.5	3.6	V
待机阀值电压Vfb_L	FB电压		0.5	0.6	V
温度保护	结温	120	130	140	$^{\circ}\mathbb{C}$
前沿消隐时间Ton_Leb	VCC=4. 7V		250		ns
最小开通时间Ton_Min	VCC=4. 7V		500		ns
最大开通时间Ton_Max	VCC=4.7V, FB=2.8V, AC 输入85V		15		Us
最小关闭时间 Toff_Min	VCC=4.7V, FB=2.8V, AC 输入 85V		8		us
待机功耗				80	mW
内置电阻最大Ip电流	IS接地		700		mA

工作原理

上电启动:

芯片内置高压启动电流源;上电启动时当 VDD 电压小于启动电压时,打开三极管对外部的 VDD 储能电容 C4 充电。当 VDD 电压达到启动电压 VCC_Start 的时候,关闭启动电流源,启动过程结束,控制逻辑开始输出 PWM 脉冲并检测 IS 电阻,当 IS 接电阻 RS 对地时,设定最大峰值电流 Ip_Max=VI im/RS(VI im 是 IC6 脚内部检测电压最大值);当 IS 脚直接接地时,设定最大峰值电流为 Ip_Max=700mA;

软启动:

上电启动结束后,为防止输出电压建立过程可能产生的变压器磁芯饱和,功率管和次级整流管应力过大,芯片内置软启动电路,在软启动时初级峰值电流最大为 0.5 倍最大峰值电流。

准谐振输出:

- 一个 PWM 周期由 3 部分组成:
 - 1: 电感充电(开关管开通)阶段, $T_1 = \frac{L_p * I_p}{V_{in}}$;
 - 2: 电感放电阶段(开关管关闭) $T_2 = \frac{L_p * I_p}{V_{vor}}$;
 - 3:00 谐振阶段,谐振周期为: $T = 2p\sqrt{L_p*C_{oc}}$ 。

芯片采用准谐振输出方式,当检测到 0C 谐振到最低电压时,开通 PWM 输出,打开开关管给电感充电,这样减小了开关管的开关损耗,提高了电源的转换效率。

FB 检测和反馈控制:

Fb 引脚外部连接一只电容,以平滑Fb 电压,外接电容会影响到电路的反馈瞬态特性及电路的稳定工作,典型应用可在1nF~10nF 之间选择;芯片依据FB电压控制PWM输出峰值电流和工作频率。

SLEEP 模式:

为实现超低待机功耗,芯片设计了 SLEEP 模式时,当输出功率逐渐下降到 50mW 以下时,芯片进入 SLEEP 模式。可以实现系统超低的待机功耗(<80mW)。

自供电:

芯片使用了专利的自供电技术,控制VDD的电压在4.7V左右,提供芯片本身的电流消耗,无需外部辅助绕组提供。自供电电路只能提供芯片自身的电流消耗,不能为外部线路提供能量。

过温保护 (OTP):

芯片在内部集成了过温保护功能,如果因外部温度过高或者其它异常原因造成芯片温度过高,检测到芯片温度超过130℃,立即启动过温保护,停止输出脉冲,关断功率管并进入异常保护模式,温度异常解除后恢复正常工作。

初级短路保护:

外部变压器初级线圈的电流过大时,软启动结束后,如果在PWM 开通 500ns 时检测到初级线圈电流达到最大峰值电流 Ip Max,芯片立即关断功率管,进入异常保护模式。

IC 供电电源异常:

因外部异常导致VCC电压低于VCC_Min时,芯片将关断功率管,进行重新启动。 因外部异常导致VCC电压高于VCC_Max时,立即启动VCC过压保护,停止输出脉冲并 进入异常保护模式。

短路和过载保护(OCP):

次级输出短路或者过载时,如果 FB 电压连续 1.7S 高于短路保护阀值 Vfb H;芯片 立即关断功率管,进入异常保护模式。

次级开路和光耦失效保护(OVP):

当次级开路或光耦失效时,如果检测到反激电压 Vor>Vor_Max,立即关闭 PWM 输出 并进入异常保护模式。在光耦失效时,输出保护电压可通过下面公式计算:

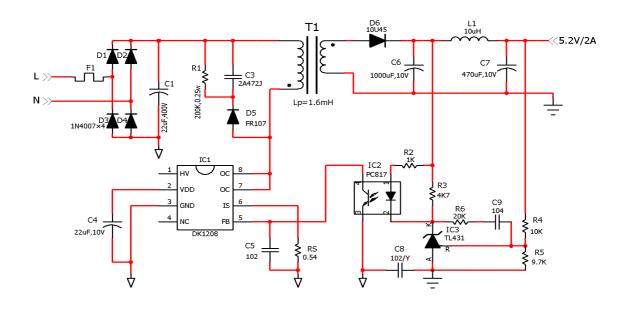
$$Vo_{-}\max = \frac{45000*Lp}{RS*N} - Vd$$

Vo_max:输出保护电压

Lp: 初级线圈电感量H

RS: IS 电阻值 Ω N: 初次级匝比

次级整流管压降V Vd:


在 IS 接地使用内置电阻时,输出保护电压公式为:

$$Vo _ \max = \frac{86400 * Lp}{N} - Vd$$
.

异常保护模式:

芯片进入异常保护模式后,关闭 PWM 输出,启动 500ms 定时器。在 500ms 内, VCC 电压下降并维持 4.6V, 500ms 后, 芯片结束异常状态。

典型应用(5V2A 输出离线反激式开关电源)

元器件清单

序号	元件名称	规格/型号	位号	数量	备注
1	保险丝	T2A 250V	F1	1	
2	整流二极管	1N4007	D1~D4	4	
3	二极管	FR107	D5	1	
4	一似目	10U45	D6	1	
		22uF/400V	C1	1	
		22uF/10V	C4	1	
6	电解电容	1000uF/10V	C6	1	
		470uF/10V	C7	1	
7	电感	10uH/2.5A	L2	1	
	电容	2A472J	C3	1	
0		102瓷片	C5	1	
8		Y电容102	C8	1	
		104瓷片	С9	1	
9	色环电阻 -	200K/0.25W	R1	1	
		1K	R2	1	
		4K7	R3		
		10K	R4	1	精度1%
		9. 7K	R5	1	精度1%
		20K	R6	1	精度1%

DK1208——12W 高性能准谐振开关电源控制芯片

		0.56	Rs	1	精度1%
10	光耦	PC817C	IC2	1	
11	电压基准	TL431	IC3	1	
12	IC	DK1208	IC1	1	
13	变压器	EF20	T1	1	

注意事项

- 1、功率器件是需要散热的,芯片的主要热量来自功率开关管,功率开关管与引脚 78相连接, 所以在PCB布线时, 应该将引脚78外接的铜箔的面积加大并作镀锡处理, 以 增大散热能力。
- 2、芯片的78引脚是芯片的高压部份,最高电压可达600V以上,所以在线路布置上 建议低压部份保证1.5mm以上的安全距离,以免电路出现击穿放电现象。
- 3、由于变压器不是理想器件,在制造过程中一定会存在漏感,漏感会影响到产品 的稳定及安全, 所以要减小, 漏电感应控制在电感量的8%以内, 三明治绕线方式可以减 小漏感。

变压器设计 (只作参考)

变压器设计时,需要先确定一些参数:

(1) 输入电压范围 AC85~265V

(2) 输出电压、电流 DC5. 2V/2A

1: 反激电压VOR选择:

DK1208中VOR最大值为133V,为防止干扰,输出保护电压应当大于输出电压的1.2倍, 即正常工作时Vor取值最大为: 133/1.2=110V; 输出保护电压应当小于输出电容的耐压 值。当输出电容耐压10V时, Vor取值最小为: 133*5.2/10=70V。本设计取Vor=80V。

2: RS计算:

系统PWM输出为准谐振模式,输出电压越低,频率越慢,需要的Ip电流越大。在低 压准谐振时, RS的阻值计算公式如下:

$$RS = \frac{0.135*Vin_\min*Vor}{Po*(Vin_\min+Vor)} ******* (1) ,$$

输出功率 Po:

Vin min: 交流输入电压经过滤波后直流电压平均值,这个电压和输入滤波电容有 关,在AC85V时,Vin min=85*0.9*1.414-20=86V。输入滤波电容默认为2uF/W,用到3uF/W 电压可适当的提高。

反激电压。 Vor:

本设计RS阻值为:
$$RS = \frac{0.135*Vin_\min*Vor}{Po*(Vin_\min+Vor)} = \frac{0.135*86*80}{5.2*2*(86+80)} = 0.538 \approx 0.54$$

3: 匝比计算:

变压器输出端的正向电压=5.2+0.35(10V45导通压降)+0.1(线路压降)=5.65,当 Vor=80V时,匝比为: N=80/5.65=14.16

4:初级电感Lp计算:

DK1208中, Lp与RS为正比例关系,比例系数为0.003,因此:

$$Lp = 0.003 * RS = 0.003 * 0.54 = 1.6mH$$
.

5. 磁芯计算:

$$A_{\rm P} = A_{\rm e} * A_{\rm W} = \frac{6500 * P_{\rm O}}{\Delta B * J * f} = \frac{6500 * 10.4}{0.25 * 5 * 45} = 1201 = 1201 {\rm mm}^4$$

Aw ----磁芯窗口面积(mm2)

 \triangle Bac ----交变工作磁密 (mT), 设为0.25

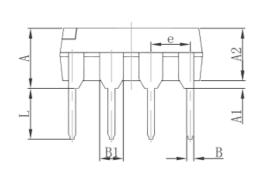
------电流密度 J 取 5A/mm2。

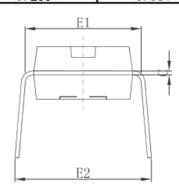
-----工作频率 F. Khz, 准谐振时最低频率为 45Khz。

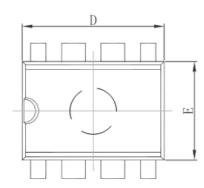
我们可以通过磁芯的制造商提供的图表进行选择, EE19的AP=1243mm^4, EF20的 AP=2231mm⁴,从设计性能优化角度以及为改善EMI设计增加初、次级屏蔽层来选择,可 以选择EF20这款变压器(AE=33.5. 属于标称值,请按实物测量为准),这样变压器生产和 效率, 散热上更有优势。

6. 初级,次级线圈师数计算:

先依据下列公式计算出初级线圈的大约值,在依据匝比计算出次级线圈的匝数,次 级线圈匝数取整后,再依据匝数比计算出初级线圈的实际值。

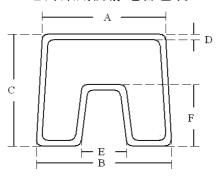

$$N_{
m P} = rac{380*L_{
m P}}{A_{
m e}*\Delta B*R_{
m S}} = rac{380*1.6}{33.5*0.25*0.54} = 134 \, {
m I\!E}$$
,其中 Lp 单位为 mH,Ae 单位为 mm^2。


NS=NP/N=134/14.16=9.46,次级选择绕线9匝,NS=9,


NP=NS*N=9*14.16=128匝(实际选值)

封装尺寸(DIP8)

0 - 1 - 1	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	3. 710	4. 310	0. 146	0.170
A1	0. 510		0.020	
A2	3. 200	3. 600	0. 126	0.142
В	0. 380	0. 570	0.015	0. 022
B1	1. 524	4 (BSC)	0. 060 (BSC)	
C	0. 204	0. 360	0.008	0.014
D	9. 000	9. 400	0. 354	0. 370
E	6. 200	6. 600	0. 244	0. 260
E1	7. 320	7. 920	0. 288	0. 312
е	2. 54	O (BSC)	0. 100	O (BSC)
L	3. 000	3. 600	0.118	0.142
E2	8. 400	9. 200	0. 331	0. 354



包装信息

芯片采用防静电管包装

代	最小值	额定值	最大值
号	(mm)	(mm)	(mm)
A	11	11. 5	12
В	11. 5	12	12.5
С	10	10. 5	11
D	0.4	0. 5	0.6
Е	3. 5	4	4.5
F	5	5. 5	6

12.2、包装数量

包装	数量
单管	50
单包装箱	2000
大包装箱	20000