

GX112 兼容 SMBus 和 I²C 通信的高精度、低功耗数字温度传感器

1 基本性能

· -40°C~+125°C内的温度精度: ≤1.0°C

• 封装: SOT563 / DFNWB (1.6 mm × 1.6 mm)

• 低静态电流

正常工作: ≤10µA (4Hz)

关断模式: ≤1µA

• 电源电压: 1.5 V ~ 5.5 V

• 分辨率: 12 Bits

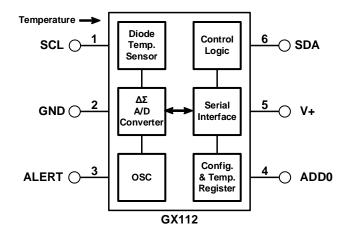
• 数字输出: 兼容SMBus™、I²C接口

2 应用场景

- 便携式、电池供电应用
- 电源温度监控
- 电脑外部设备热保护
- 笔记本电脑
- 电池管理
- 办公机器
- 恒温控制
- 机电设备温度
- 一般温度测量:
 - 工业控制
 - 测验设备
 - 医疗仪器

3 芯片概述

GX112是一款高精度、低功耗、可替代NTC/PTC 热敏电阻的数字温度传感器。GX112可提供≤1°C的温 度精度,并具有良好的温度线性度。集成在芯片内部的 12位ADC分辨率低至0.0625°C。

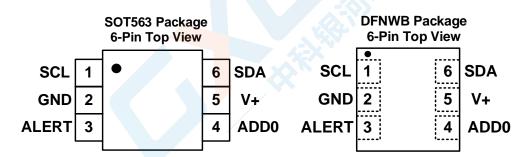

GX112采用1.6mm×1.6mm的SOT563 / DFNWB封装,兼容SMBus和I²C接口,在一条总线上最多可挂载四个从机,并具有SMBus报警功能。GX112的额定工作电压范围为1.5V~5.5V,在整个工作范围内最大静态电流为10µA(测温频率4Hz时)。

GX112可用于通信、计算机、消费类电子、环境、 工业和仪器仪表应用中的温度测量。GX112的正常工作 温度范围为-40°C至+125°C。GX112可提供扩展测温模 式、将测温范围扩展为-55°C至+160°C。

芯片封装信息

产品编号	封装信息	芯片封装面积(NOM)
GX112S	SOT563 (6)	1.60 mm × 1.60 mm
GX112D	DFNWB (6)	1.60 mm × 1.60 mm

GX112 各模块示意图(SOT563 封装)



目 录

1	基本性能	1
2	应用场景	1
3	芯片概述	1
	· 引脚配置和功能	
5		
	5.1 极限工作指标	
	5.2 静电防护等级	
	5.3 建议使用范围	
	5.4 电学特性	
	5.5 时序要求	

6	详细说明	6
6	.1 功能模块框图	6
6	6.2 芯片功能模式	7
6	6.3 串行接口	11
6	i.4 寄存器说明	13
7	具休应用	17

4 引脚配置和功能

引脚功能

P	IN	DESCRIPTION	
NO.	NAME	DESCRIPTION	
1	SCL	串行时钟引脚。开漏输出,需要上拉电阻。	
2	GND	地引脚。	
3	ALERT	过温报警引脚。开漏输出,需要上拉电阻。	
4	ADD0	地址选择引脚。可选择连接至V+、GND、SCL或SDA引脚。	
5	V+	电源电压引脚。电压范围为1.5V~5.5V。	
6	SDA	串行数据引脚。开漏输出,需要上拉电阻。	

5 技术指标

5.1 极限工作指标

	MIN	MAX	UNIT
电源电压 V+		6	V
SCL、ADD0和SDA引脚电压	-0.5	6	V
ALERT引脚电压	-0.5	((V+)+0.3)	V
ALEKTJIM中已压	-0.5	and ≤5.5	V
工作范围	-55	160	°C
结温, T」		150	°C
存放温度,T _{stg}	-60	150	°C

除非另有说明,上述表格中均指在大气温度范围内的指标。超出上述表格所给范围可能会导致芯片永久损坏。

5.2 静 电 防 护 等 级

		Value	UNIT
静电放电电压VESD	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001	±4000	V
	Charged device model (CDM), per JEDEC specification JESD22-C101	±1000	V

5.3 建议使用范围

			16(4)	MIN	NOM	MAX	UNIT
电源电压	V+		4.2X	1.5	3.3	5.5	V
工作温度范围	TA			-50		150	°C

除非另有说明,上述表格中均指在大气温度范围内的指标。

5.4 电学特性

若非特殊说明,以下数据均为芯片在+25℃、电源电压处于 1.5V~5.5V 区间内的特性。

参		测试条件	MIN	TYP	MAX	UNIT	
TEMPERATURE	INPUT				1		
温 度	范 围		-40		125	°C	
		+25 °C, V+ = 3.3V		±0.1	±0.5	°C	
精度(温	度误差)	0°C to +65°C, V+ = 3.3V		±0.25	±0.5	°C	
		-40 °C to +125 °C		±0.5	±1	°C	
电源电压	E 敏 感 度	−40°C to +125 °C		0.0625	±0.25	°C/V	
长时间	可温 漂	3000 hours at 125°C		±0.0625		°C	
分辨率	(LSB)			0.0625		°C	
DIGITAL INPUT/	OUTPUT						
输入	电 容			3		pF	
输入逻辑电平	V _{IH}		0.7(V+)		5.5	V	
棚八足珥电干	VIL		-0.5		0.3(V+)	V	
输入	电 流	0 < VIN < 5.5V			1	μΑ	
	V _{OL} on SDA	$V+ > 2V$, $I_{OL}= 3 \text{ mA}$	0		0.4	V	
输出逻辑电平		V+ < 2V, IoL= 3 mA	0		0.2(V+)		
	Vol on ALERT	$V+ > 2V$, $I_{OL}= 3 \text{ mA}$	0		0.4		
		V+ < 2V, IoL= 3 mA	0		0.2(V+)		
分 勢	幹率	AEX.		12		Bits	
转 换	时间	A 88		26	35	ms	
		CR1 = 0, CR0 = 0		0.25			
转 换	描 才	CR1 = 0, CR0 = 1		1		Conv/s	
+ 7 1×	1天 八	CR1 = 1, CR0 = 0 (default)		4		CONVS	
		CR1 = 1, CR0 = 1		8			
超时时间((Timeout)			30	40	ms	
POWER SUPPLY	′						
电源工	作电压		+1.5		+5.5	V	
平均静态电流		总线空闲, CR1=1,CR0=0(default)		7	10		
		总线占用, SCL frequency=400 kHz		15		μΑ	
		总线占用, SCL frequency=2.85 MHz		85			
		总线空闲		0.5	1		
关 断 电 流		总线占用, SCL frequency=400 kHz		10		μΑ	
		总线占用, SCL frequency=2.85 MHz		80			

5.5 时序要求

	参数			高速模式		UNIT
				MIN	MAX	UNII
f _(SCL)	SCL 工作频率	0.001	0.4	0.001	2.85	MHz
t(BUF)	STOP 和 START 信号之间总线空闲时间	600		160		ns
t(HDSTA)	RESTART 信号后保持时间,此后第一个时钟产生	600		160		ns
t(SUSTA)	RESTART 信号建立时间	600		160		ns
t(susto)	STOP 信号建立时间	600		160		ns
t(HDDAT)	数据保持时间	100	900	25	105	ns
t(SUDAT)	数据建立时间	100		25		ns
t(LOW)	SCL 时钟低电平时间	1300		210		ns
t(HIGH)	SCL 时钟高电平时间	600		60		ns
tr. tr (SDA)	数据上升、下降时间		300		80	ns
t _F , t _R (SCL)	时钟上升、下降时间		300		40	ns

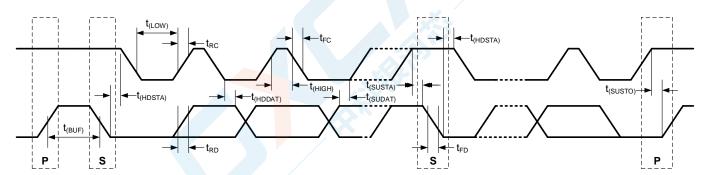


图 1 两线时序图

6 详细说明

6.1 功能模块框图

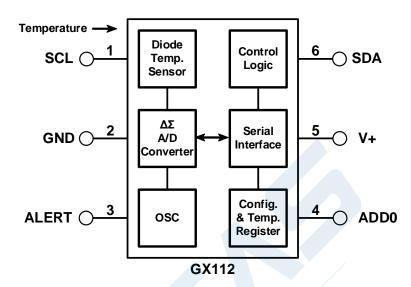


图 2 GX112 内部模块框图

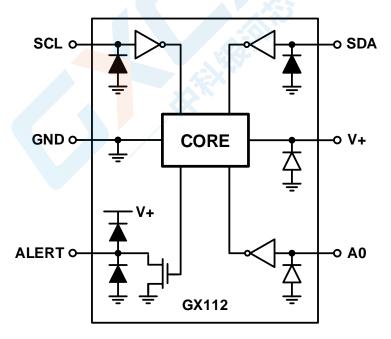
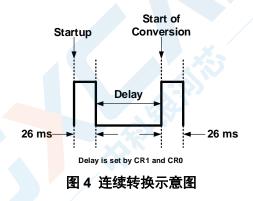


图 3 GX112 内部 ESD 等效电路


6.2 芯片功能模式

6.2.1 连续转换模式

GX112 的默认模式是连续转换模式,典型转换时间为 26ms。在此模式下,芯片内部的 ADC 执行连续温度转换,将每次的测温结果存储于温度寄存器,并覆盖前次结果。配置寄存器中的转换速率位 CR1 和 CR0 可将 GX112 配置为 0.25Hz、1Hz、4Hz 或 8Hz 的转换速率。可通过配置 CR1、CR0 以改变转换速率,GX112 将在完成当次转换后,掉电并等待由 CR1、CR0 设置的延时,之后再进行下次转换,如图 4 所示。CR1 和 CR0 的设置见表 1。

CR1	CR0	转换速率
0	0	0.25Hz
0	1	1Hz
1	0	4Hz (default)
1	1	8Hz

表 1 转换速率配置

6.2.2 扩展模式 (Extended Mode)

GX112 在正常工作模式下测温范围为-40℃至+125℃。通过将配置寄存器中的 EM 位写为 1,可使 GX112 进入扩展模式,此时 GX112 的温度寄存器和温度限制寄存器均被配置为 13 位数据格式,以实现对高于+128℃的温度测量。

GX112 中的只读温度寄存器采用两个字节来存储测温结果,如表 7、表 8 所示。字节 1 为 MSB,字节 2 为 LSB,高 12 位(扩展模式下为 13 位)用于指示温度。当不需要 LSB 的温度信息时可不必读取 LSB。

GX112 测温结果的数据格式在表 2 和表 3 中列出,其中 1LSB = 0.0625°C,负数以二进制补码的形式表示。当上电或复位后,温度寄存器的读数将置为 0°C,直到下一次温度转换完成。温度寄存器中未使用的位始终读为 0 (下表中未给出)。

表 2. 正常工作模式 12 位温度数据格式

温度(°C)	数字输出(二进制)	十六进制
128	0111 1111 1111	7FF
127.9375	0111 1111 1111	7FF
100	0110 0100 0000	640
80	0101 0000 0000	500
75	0100 1011 0000	4B0
50	0011 0010 0000	320
25	0001 1001 0000	190
0.25	0000 0000 0100	004
0	0000 0000 0000	000
-0.25	1111 1111 1100	FFC
-25	1110 0111 0000	E70
-55	1100 1001 0000	C90

表 3.13 位温度数据格式

温度(°C)	数字输出(二进制)	十六进制
150	0 1001 0110 0000	0960
128	0 1000 0000 0000	0800
127.9375	0 0111 1111 1111	07FF
100	0 0110 0100 0000	0640
80	0 0101 0000 0000	0500
75	0 0100 1011 0000	04B0
50	0 0011 0010 0000	0320
25	0 0001 1001 0000	0190
0.25	0 0000 0000 0100	0004
0	0 0000 0000 0000	0000
-0.25	1 1111 1111 1100	1FFC
–25	1 1110 0111 0000	1E70
- 55	1 1100 1001 0000	1C90

6.2.3 关断模式 (Shutdown Mode)

关断模式通过关闭除串行接口以外的所有电路来降低芯片功耗,从而将芯片的电流降至低于 0.5µA(典型值)。将配置寄存器中的 SD 位写为 1,可开启关断模式;如此配置寄存器后,GX112 将在完成当次转换后关断。若想退出关断模式,可将 SD 位写为 0,GX112 将重新进入连续转换模式。

6.2.4 单次转换模式 (One-Shot Mode)

GX112 可被配置为 One-Shot 模式。当器件处于关断模式时,向配置寄存器中的 OS 位写 1 可开启单次温度转换。在温度转换期间 OS 位读为 0。单次温度转换完成后,GX112 将重新返回关断状态,OS 位读为 1。当不需要连续测温时,此功能可大幅降低芯片功耗。

由于 GX112 单次测温时间仅需 26ms(典型值),因此可通过该模式实现更高的测温速率。通过将 GX112 连续以 One-Shot 模式进行测温,每秒可实现 30 次甚至更多次的温度测量。

6.2.5 报 警 功 能 (ALERT)

GX112 具有温度报警功能,可选择将配置寄存器中的 TM 位写为 0 或 1,从而将 GX112 配置为比较模式 (Comparator Mode) 或中断模式 (Interrupt Mode) 来实现不同的报警功能。

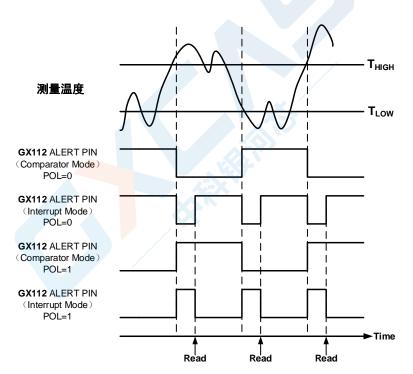


图 5 ALERT 引脚在不同模式下的状态

在比较模式(TM=0)中,当测温结果连续等于或超过温度上限寄存器 T_{HIGH} 的次数,达到配置寄存器中 F1/F0 位定义的值时(如表 4 所示),ALERT 引脚将被激活。ALERT 引脚将始终保持激活状态,直到温度连续低于温度下限寄存器 T_{LOW} 相同的次数。

在中断模式(TM=1)中,当测温结果连续等于或超过 T_{HIGH} 的次数达到由 F1/F0 定义的值时(如表 4 所示),ALERT 引脚将被激活。ALERT 引脚将始终保持激活状态,直到读取 GX112 的任何寄存器、或 GX112 成功响应了 SMBus 报警命令、或 GX112 进入关断模式后,ALERT 引脚状态才会被清除。当 ALERT 引脚状态被清除后,仅当测温结果连续低于 T_{LOW} 的次数达到由 F1/F0 定义的值时,该引脚才会再次被激活并保持,此后 ALERT 引脚状态再次被清除

的条件同上。也可通过使用全局响应复位命令(General Call)来重置 GX112 以清除 ALERT 引脚状态,此操作还会复位 GX112 中的其他内部寄存器,使芯片返回到比较模式(TM=0)。表 4 给出了 F1/F0 位的具体配置情况。

 F1
 F0
 激活 ALERT 引脚所需的过温次数

 0
 0
 1次 (Default)

 0
 1
 2次

 1
 0
 4次

 1
 1
 6次

表 4 激活 ALERT 引脚所需的过温次数

配置寄存器中的极性位(POL)允许用户调整 ALERT 引脚输出的极性。如果将 POL 位写为 0(默认值), ALERT 引脚被激活时为低电平。若将 POL 位配置为 1, ALERT 引脚被激活时为高电平。

上述各情况如图 5 所示。

6.3 串 行 接 口

6.3.1 总线概述

GX112 兼容 SMBus 和 I²C 接口。在 SMBus 协议中,启动传输的设备称为主机,由主机控制的设备称为从机。总线必须由主机控制,主机产成串行时钟线(SCL),控制总线访问并产成 START 和 STOP 信号。为了寻址特定从机,主机会在 SCL 为高电平时将数据线(SDA)从高电平拉至低电平,以产生 START 信号。总线上的所有从机均在时钟的上升沿接收 8bits 从机地址,其中最后一位表示进行读还是写操作。在第九个时钟中,被寻址的从机通过产生Acknowledge 位并将 SDA 拉低来应答主机。此后数据传输开始并在每八个时钟后发送一个 Ack 位。在数据传输期间 SCL 为高电平时,SDA 须保持稳定。因为 SCL 为高电平时,SDA 的任何变化都将被视作 START 或 STOP 信号。

数据传输完成后,主机会在 SCL 为高电平时通过将 SDA 从低电平拉为高电平来产生 STOP 信号以结束通信。

6.3.2 串 行 总 线 地 址

为了与 GX112 进行通信,主机须通过发送从机地址字节对相应的从机进行寻址。从机地址字节由七个地址位和一个指示读或写操作的方向位组成。GX112 拥有一个地址引脚,可产生最多四种不同的从机地址,允许主机在单根总线上寻址最多四个不同地址的 GX112。表 5 给出了各个从机地址对应的 A0 引脚连接方式。

芯片两线地址A0 引脚连接情况1001000Ground1001001V+1001010SDA1001011SCL

表 5 A0 引脚的四种不同连接方式对应的从机地址

6.3.3 读写操作

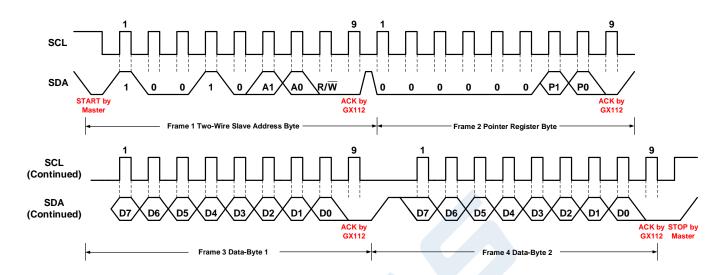


图 6 两线制写命令时序图

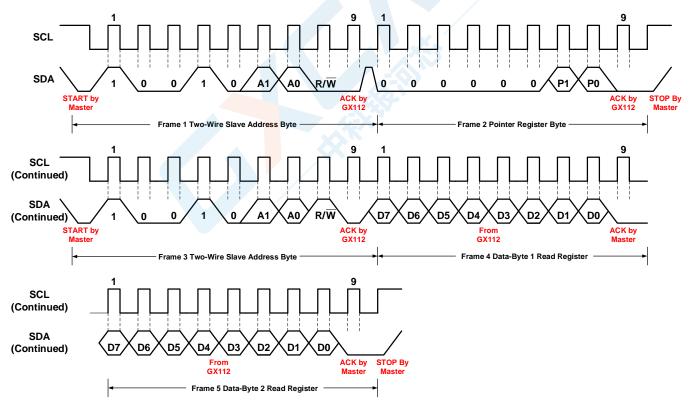


图 7 两线制读命令时序图

当向 GX112 写数据时,通过将适当的值写入指针寄存器以访问 GX112 中的特定寄存器。指针寄存器的值是在 R/\overline{W} 位为低时,从机地址字节之后传输的第一个字节。对 GX112 的每次写操作都需要指针寄存器的值(见图 6)。

当从 GX112 读取数据时,通过将值写入指针寄存器,指示读操作应读取哪个寄存器。要更改读操作的寄存器指

针,必须将一个新值写入指针寄存器。此操作的实现方法为先发出一个 R/\overline{W} 位为低的从机地址字节,其次发出目标指针寄存器字节。此后主机产生一个 START 信号,并发送 R/\overline{W} 位为高的从机地址字节,以启动读命令。有关此步骤的详细信息,请参见图 7。如果需要从同一个寄存器重复读取数据,则不必连续发送指针寄存器字节,因为 GX112 会保持指针寄存器的值,直到下一次写操作将其更改为止。

需要注意的是,寄存器字节应优先发送 MSB,然后发送 LSB。

6.3.4 SMBus 报 警 功 能

GX112 支持 SMBus 报警功能。当 GX112 工作在中断模式(TM=1)时,主机将 SMBus 报警命令(0001 1001)发送至总线上。此时若 GX112 的 ALERT 引脚处于激活状态,则 GX112 会对 SMBus 报警命令做出应答并返回其从机地址。从机地址字节的第八位(LSB)可指示该 ALERT 状态是由温度大于或等于 Thigh 还是低于 TLow 引起的。对于POL=0,若 ALERT 状态由测温结果大于或等于 Thigh 激活,则从机地址字节的第八位为低电平;若由测温结果低于TLow 激活,则该位为高电平。对于 POL=1,则该位的值和上述情况相反。

如果总线上的多个 GX112 响应了 SMBus 报警命令,则总线将返回其中最小的两线地址。总线上返回地址的 GX112 在响应 SMBus 报警命令后,其 ALERT 引脚将被清除;未返回地址的 GX112 的 ALERT 引脚将保持激活状态。再次发送 SMBus 报警命令可继续清除当前最小地址的 GX112 的 ALERT 引脚。上述过程详见图 8。

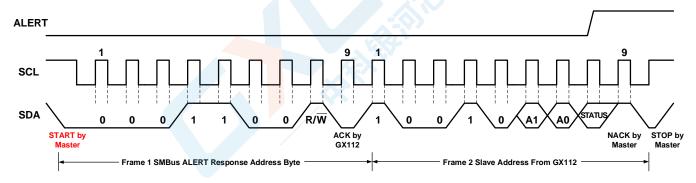


图 8 SMBus Alert 时序图

6.3.5 全局响应复位(General Call)

GX112 可响应两线制全局响应复位地址(0000 0000)。GX112 将应答全局响应地址并执行第二个字节中的命令。如果第二个字节是 0000 0110,则 GX112 的内部寄存器均将复位为上电初始值,并中止当前的温度转换。若第二个字节为其它值,GX112 不会对此做出应答。

6.3.6 高速模式(High-Speed Mode)

GX112 支持两线制总线以高于 400kHz 的频率运行。主机在 START 信号后发出高速模式命令(0000 1xxx),可

将 GX112 配置为高速模式。GX112 不应答该字节,而是将其 SDA 和 SCL 引脚上的输入滤波器和 SDA 引脚上的输出滤波器切换到高速模式工作,从而允许总线以最高 2.85MHz 的频率传输数据。当发出高速模式命令后,主机将发送两线从机地址,以启动数据传输。总线将持续以高速模式运行,直到总线上出现 STOP 信号为止。当接收到 STOP 信号后,GX112 将输入和输出滤波器切换回快速模式。

6.3.7 超时功能(TimeOut Function)

如果 SCL 在 START 和 STOP 信号之间保持 30ms(典型值)的低电平,GX112 将复位其串行接口,释放 SDA 并等待 START 信号。为避免激活超时功能,SCL 工作频率应大于 1kHz。

6.4 寄存器说明

6.4.1 指 针 寄 存 器

图 9 给出了 GX112 内部寄存器结构图。其中 8 位的指针寄存器可用于寻址特定的数据寄存器。指针寄存器使用两个 LSB(见表 7)来指明哪个数据寄存器应响应读写命令。P1/P0 的上电复位值为 00。GX112 默认上电读取温度。

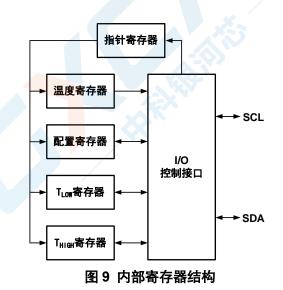


表 6 给出了 GX112 中可用寄存器的指针地址。在写命令时, P2~P7 须始终为 0。

表 6 指针地址

P1	P0	寄存器
0	0	温度寄存器(只读)
0	1	配置寄存器(读/写)
1	0	T _{LOW} 寄存器(读/写)
1	1	THIGH 寄存器(读/写)

表 7 指针寄存器字节

P7	P6	P5	P4	P3	P2	P1	P0
0	0	0	0	0	0	寄存器位	

6.4.2 温度寄存器

GX112 的温度寄存器为 12 位或 13 位的只读寄存器(EM=0 或 1),以存储芯片最近一次的测温结果。当读取温度时,需读取两个字节,如表 8 和表 9 所示(表中括号里为扩展模式下的配置),字节 1 为 MSB,字节 2 为 LSB,其中的 T11~T0(扩展模式下为 T12~T0)用于表示温度。若不需要字节 2 中的温度信息,可不必读取此字节。温度寄存器中字节 2 的 D0 位用于表示芯片处于正常模式(D0=0)还是扩展模式(D0=1),可区分两种温度寄存器数据的格式。

表 8 温度寄存器的字节 1

字节	D7	D6	D5	D4	D3	D2	D1	D0
1	T11	T10	Т9	T8	T7	Т6	T5	T4
'	(T12)	(T11)	(T10)	(T9)	(T8)	(T7)	(T6)	(T5)

表 9 温度寄存器的字节 2

字节	D7	D6	D5	D4	D3	D2	D1	D0
4	Т3	T2	T1	T0	0	0	0	0
I	(T4)	(T3)	(T2)	(T1)	(T0)	(0)	(0)	(1)

6.4.3 温度限制寄存器

温度上下限寄存器 THIGH 和 TLOW 的数据格式和温度寄存器相同,根据 EM 位的值可配置为 12bits 或 13bits。表 10 和表 11 给出了 THIGH 和 TLOW 寄存器的格式,其中括号中为扩展模式的 13bits 格式。两个寄存器均为 MSB 优先发送,其次是 LSB。THIGH 和 TLOW 寄存器的上电复位值分别为:

• $T_{HIGH} = +80^{\circ}C$; $T_{LOW} = +75^{\circ}C$

表 10 T_{HIGH} 寄存器的第 1、2 字节

字节	D7	D6	D5	D4	D3	D2	D1	D0
1	H11	H10	H9	H8	H7	H6	H5	H4
	(H12)	(H11)	(H10)	(H9)	(H8)	(H7)	(H6)	(H5)
2	НЗ	H2	H1	H0	0	0	0	0
	(H4)	(H3)	(H2)	(H1)	(H0)	(0)	(0)	(0)

表 11 T _{LOW} 寄存器的第 1、2 字节	Ψ.	字	2	1、	的筆	寄存器	TLOW	11 -	表·	
------------------------------------	----	---	---	----	----	-----	------	------	----	--

字节	D7	D6	D5	D4	D3	D2	D1	D0
4	L11	L10	L9	L8	L7	L6	L5	L4
1	(L12)	(L11)	(L10)	(L9)	(L8)	(L7)	(L6)	(L5)
0	L3	L2	L1	L0	0	0	0	0
2	(L4)	(L3)	(L2)	(L1)	(L0)	(0)	(0)	(0)

6.4.4 配置寄存器

配置寄存器是一个 16 位读/写寄存器,用于存储温度传感器操作模式的控制位。读/写操作首先执行 MSB。表 12、表 13 给出了配置寄存器的格式以及上电复位的初始值。

表 12 配置寄存器高字节

Bit	Field	Default	Description
			One-Shot 及转换完成标志位
7	OS (R)	0	1=表示温度未在转换
			0=表示温度正在转换
6	R1 (R)	1	上电置为 11
5	R0 (R)	1	表征测温分辨率为 12bits
			激活 ALERT 引脚所需的过温次数标志位
4	F1 (R/W)	0	00 =1 次(Default)
			01 =2 次
3	F0 (R/W)	0	10=4 次
	10 (1017)	Ç	11= 6 次
			ALERT 引脚极性标志位
2	POL (R/W)	0	1=ALERT 引脚被激活时为高电平
			0 =ALERT 引脚被激活时为低电平
			ALERT 功能下芯片工作模式标志位
1	TM (R/W)	0	1 =中断模式
			0 =比较模式
			关断模式标志位
0	SD (R/W)	0	1=关断模式
			0=连续转换模式

表 13 配置寄存器低字节

Bit	Field	Default	Description
_	OD4 (D44)	_	连续转换速率标志位
7	CR1 (R/W)	1	00 =0.25Hz
			01 =1Hz
6	CR2 (R/W)	0	10 =4Hz(Default)
			11 =8Hz
			比较模式下的报 警 功能标志位
			若 POL=0,AL 位将读为"1",直到温度连续等于或
			超过 T _{HIGH} 的次数达到 F1/F0 的设定值,使得 AL 位读
5	AL (R)	1	为 0。AL 位将保持为 0,直到温度连续降至 TLow 以下
			的次数达到 F1/F0 设定值,此后 AL 位将再次读为 1。
			若 POL=1,则 AL 位的行为和上述相反。
			TM 位的状态不会影响 AL 位的状态。
			扩展模式标志位
4	EM (R/W)	0	1=扩展模式
			0=正常模式
3	0	0	
2	0	0	
1	0	0	1
0	0	0	I

7 具体应用

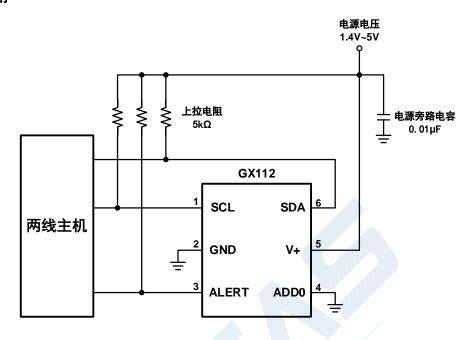


图 10 GX112 的典型连接方式

GX112 在 SCL、SDA 和 ALERT 引脚上均需要上拉电阻,如图 10 所示,上拉电阻的推荐值为 5kΩ,可根据具体应用场景调整上拉电阻的阻值,但须保证任何一个引脚上的电流不得超过 3mA。

GX112 是一款低功耗芯片,在 GX112 的 V+引脚上添加一个 RC 滤波器可以进一步降低该器件的噪声,如图 11 所示,其中的 R_F 必须小于 $5k\Omega$, C_F 必须大于 10nF。

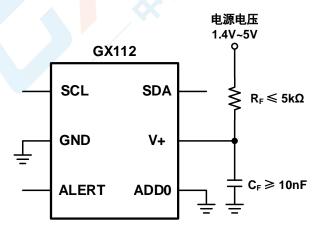


图 11 噪声消除技术

在实际测温中,需将 GX112 放置在被监控的热源附近,并采用适当的布局以实现良好的热耦合,确保在最短的时间间隔内捕获温度变化。为了在需要测量空气或表面温度的应用中保持精度,请注意将封装和引线与环境温度隔离。导热粘合剂有助于实现精确的表面温度测量。