

NAE12S17-B 电源模块

技术手册

文档版本 1.0

发布日期 2021-08-05

概述

本文档主要介绍NAE12S17-B电源模块的物理结构、电气特性和简单应用。 本文图片仅供参考,具体以实际为准。

读者对象

本文档主要适用于以下工程师:

- 硬件工程师
- 软件工程师
- 系统工程师
- 技术支持工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲ 危险	表示如不避免则将会导致死亡或严重伤害的具有高等级风险的危害。
▲ 警告	表示如不避免则可能导致死亡或严重伤害的具有中等级风险的危害。
⚠ 注意	表示如不避免则可能导致轻微或中度伤害的具有低等级风险的危害。
须知	用于传递设备或环境安全警示信息。如不避免则可能会导致设备损坏、数据丢失、设备性能降低或其它不可预知的结果。 "须知"不涉及人身伤害。
□ 说明	对正文中重点信息的补充说明。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害信息。

修改记录

修改记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 1.0 (2021-08-05)

第一次正式发布版本。

<u> </u>	i
 1 安全注意事项	1
- メニル& ずみ	
1.2 人员要求	
1.3 电气安全	
2 产品概述	
3 电气规格	5
3.1 绝对最大额定值	5
3.2 输入特性	5
3.3 输出特性	
3.4 保护特性	
3.5 动态特性	
3.6 效率特性	
3.7 其他特性	11
4 推荐应用电路	12
4.1 推荐应用电路	12
4.2 测试电路	13
5 引脚描述和应用	15
5.1 尺寸图	15
5.2 引脚分布	16
5.3 引脚应用	17
5.3.1 EN	17
5.3.2 输出电压调节(FB)	18
5.3.3 PG	19
5.3.4 输出过流调整	20
5.3.5 MODE	20
6 特性曲线	21
7 典型波形	31
-	
7.2 输出电压纹波	
7.3 输出电压动态响应	32
8 保护特性	

NAE12S17-B 电源模块 _{技术手册}

目录

9 产品包装	34
10 二次组装	35
11 存储要求	36
∧ 司告 性	27

全全注意事项

1.1 通用安全

声明

在安装、操作和维护设备时,请先阅读本手册,并遵循设备上标识及手册中所有安全注意事项。

手册中提到的事项,并不代表所应遵守的所有安全事项,只作为所有安全注意事项的补充。华为公司不 承担任何因违反通用安全操作要求或违反设计、生产和使用设备安全标准而造成的责任。

本电源模块应在符合设计规格要求的环境下使用,否则可能造成电源模块故障,由此引发的电源模块功能异常、部件损坏、人身安全事故或财产损失等不在电源模块质量保证范围之内。

安装、操作和维护电源模块时应遵守当地法律法规和规范。手册中的安全注意事项仅作为当地法律法规和规范的补充。

发生以下任一情况时,华为公司不承担责任。

- 虽然设备已经过安全性和兼容性测试,但从电子设备发射的射频和磁场可能对其他电子设备的操作 造成负面影响,从而可能会影响植入式医疗设备或个人医用设备的正常工作,如起搏器、植入耳 蜗、助听器等。若您使用了这些医用设备,请向其制造商咨询本设备的限制条件。
- 不在本手册说明的使用条件中运行。
- 安装和使用环境超出相关国际或国家标准中的规定。
- 未经授权擅自拆卸、更改产品或者修改软件代码。
- 未按产品及文档中的操作说明及安全警告操作。
- 非正常自然环境(不可抗力,如地震、火灾、暴风等)引起的设备损坏。
- 客户自行运输导致的运输损坏。
- 存储条件不满足产品文档要求引起的损坏。
- 请勿跌落、挤压或刺穿电源模块。避免让产品遭受外部大的压力,从而导致电源模块内部短路和过热。
- 请勿拆解、改装产品或向电源模块中插入异物,请勿将产品浸入水或其它液体中,以免引起产品短路、过热、起火或造成触电危险。
- 请在规格书规定的温度范围内使用本产品和存放本产品。
- 请勿将电源模块暴露在高温处或发热产品的周围,如日照、取暖器、微波炉、烤箱或热水器等。
- 如果电源模块外观有破损、开裂、进水等情况,请停止使用。继续使用可能会导致触电、短路、起 火等危险。

- 请按当地规定处理设备,不可将电源模块作为生活垃圾处理。请遵守本电源模块及其附件处理的本地法令,并支持回收行动。
- 请保持电源模块干燥。请勿在多灰、潮湿的地方使用电源模块,以免引起电源模块故障。请勿对电源模块进行泼水。电源模块应远离火源,不能对电源模块点火。
- 人手潮湿的时候请不要操作模块,这样会导致触电危险。

常规要求

▲ 危险

- 在设备上执行作业前,先关断电源,防止带电工作发生意外。
- 切勿改装或维修本产品。
- 由于内部有高压,切勿打开本产品。
- 谨慎防止任何异物进入壳体。
- 切勿在潮湿地点或可能会出现湿气或冷凝的区域使用本产品。
- 电源接通时及刚刚关断后,切勿触碰。灼热的表面可能造成烫伤。
- 本电源模块应由具有相关资质的人员安装和操作。
- 本电源模块不包含需要维护的零件。内部保险丝断开是由内部故障造成。
- 如果安装或运行过程中发生损坏或故障,立即关断电源,并将产品返回厂家检验或维修。
- 严格遵守当地规范,确保接线正确。
- 本电源模块使用过程中不允许冷凝或结霜。
- 本电源模块运行时,切勿超环境温度范围使用。

人身安全

- 请勿改装、拆解或取下产品外壳。
- 在电源模块操作过程中,如发现可能导致人身伤害或电源模块损坏的故障时,应立即终止操作,向负责人进行报告,并采取行之有效的保护措施。
- 电源模块未完成安装或未经专业人员确认,请勿给电源模块上电。

1.2 人员要求

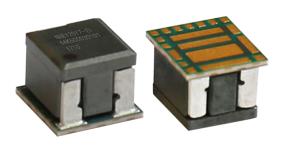
- 负责安装、操作和维护电源模块的人员,必须先经严格培训,了解各种安全注意事项,掌握正确的 操作方法。
- 电源模块的安装、操作和维护过程中,不允许撞件或跌落。
- 在电源模块的二次组装过程中,禁止引入导电异物。

1.3 电气安全

操作要求

▲ 警告

不按操作规程操作,可能会造成人身伤害,甚至危及人的生命。


- 安装、拆除电源模块之前,必须先断开电源模块前级供电源。
- 接通电源模块之前,必须确保电源模块接线已连接正确。
- 若电源模块有多路输入,应断开电源模块所有输入,待电源模块完全下电后方可对电源模块进行操作。
- 操作必须由取得专业资格的人员进行,以防触电。
- 电源模块在电气连接之前,如可能碰到带电部件,必须断开电源模块前级供电源。
- 由于内部有高压,切勿打开本产品,切勿改装或维修本产品。
- 为了安全,请把本产品的机壳地与设备地可靠的连接在一起。安装时,必须首先安装保护地线;拆除设备时,必须最后拆除保护地线。
- 人手潮湿的时候请不要操作电源模块,这样会导致触电危险。
- 如果安装或运行过程中发生损坏或故障,立即关断电源,并将产品返回厂家检验或维修。
- 遇到紧急情况时,必须从电源插座上拔掉电源插头以彻底切断电源。

防静电要求

- 安装、操作和维护电源模块时,请遵守静电防护规范,应穿防静电工作服,佩戴防静电手套和腕带。
- 手持电源模块时,必须持电源模块边缘不含元器件的部位,禁止用手触摸元器件。
- 拆卸下来的电源模块必须用防静电包材进行包装后,方可储存或运输。

2 产品概述

产品概述

NAE12S17-B是一款封装级(PSiP)DC-DC 电源模块,输入电压范围为3V~14V,最大 输出电流为17A,输出电压为0.6V~5.5V。

型号说明

 $\frac{\text{NAE}}{1} \frac{12}{2} \frac{S}{3} \frac{17}{4} - \frac{B}{5}$

1一非隔离,模拟,封装类型

2 - 输入电压: 12V

3一单路输出

4 - 输出电流: 17A

5一扩展码

关键特性

- 效率: 92%(V_{in}=5.4V, V_{out}=2.1V, I_{out}=10A)
- 长×宽×高: 7.00mm×7.00mm×6.00mm (0.276in.×0.276in.×0.236in.)
- 重量: 1.6g
- 输入欠压保护、输出过流保护(打嗝模式)、输出短路保护(打嗝模式)和过温保护(自恢复)
- 使能(EN)开关机和输出电压调节
- 符合RoHS2.0标准

应用

- 服务器
- 电信和数通应用

3 电气规格

3.1 绝对最大额定值

表 3-1 绝对最大额定值

项目	最小值	典型值	最大值	单位	备注
输入电压(持续)	-	-	15	V	 V_{in}≥14V,并非所有特性参数都符合规范。 V_{in}≤18V,t≤100ms,电源模块不可损坏。
工作环境温度(T _A)	-40	-	85	${\mathbb C}$	电源模块满足其中一个条件即可
工作结温(T _j)	-40	-	125	$^{\circ}$	(T _A =-40℃~+85℃或T _j =-40℃~ +125℃)
存储温度	-55	-	125	${\mathbb C}$	-
工作湿度	5	-	95	%RH	无凝露
应用于EN外部电压	-	-	4	V	-
海拔	-	-	4000	m	-

3.2 输入特性

表 3-2 输入特性

项目	最小值	典型值	最大值	单位	备注
工作输入电压	8	12	14	V	-
	4.5	5.4	6.0	V	-
	3.0	3.3	3.6	٧	-
最大输入电流	-	-	18	А	V _{in} =0V~14V; I _{out} =I _{onom}

项目	最小值	典型值	最大值	单位	备注
空载损耗	-	0.50	0.95	W	V _{in} =12V; V _{out} =0.6V, I _{out} =0A, Freq=600kHz, CCM
	-	0.75	1.25	W	V _{in} =12V; V _{out} =0.9V, I _{out} =0A, Freq=600kHz, CCM
	-	1.0	1.5	W	V _{in} =12V; V _{out} =1.2V, I _{out} =0A, Freq=600kHz, CCM
	-	2.0	2.5	W	V _{in} =12V; V _{out} =3.3V, I _{out} =0A, Freq=1000kHz, CCM
输入电容	66	-	-	μF	V _{in} =3.0V~3.6V,66μF陶瓷电容, V _{Ripple} <200mV
	30+100	-	-	μF	V _{in} =4.0V~14.0V,30μF陶瓷电容 +100μF聚合铝电容

3.3 输出特性

表 3-3 输出特性

项目	最小值	典型值	最大值	单位	备注
输出整定电压	-1.0	-	1.0	%V _{oset}	V _{in} =3V~14V; I _{out} =50%I _{onom} ;不包含调压 电阻精度所引入的偏差。
输出电压	0.6	-	3.7	V	V _{in} =8V~14V,包含3.7V
	3.7	-	5.5	V	V _{in} =9V~14V,不包含3.7V
	0.6	-	2.1	V	V _{in} =4.5V~6.0V
	0.6	-	1.2	V	V _{in} =3.0V~3.6V
输出电流	0	-	17	А	V _{in} =3.0V~3.6V
	0	-	10	А	V _{in} =4.5V~14.0V
电压调整率	-1	-	1	%	I _{out} =I _{onom}
负载调整率	-1	-	1	%	I _{out} =I _{omin} -I _{onom}
稳压精度	-2	-	2	%	I _{out} =I _{omin} -I _{onom}

项目	最小值	典型值	最大值	单位	备注
温度系数	-0.02	-	0.02	%/°C	T _A =-40°C~+85°C
					(-40°F~+185°F)
容性负载	100×3	-	1000	μF	V _{in} =3.0V~3.6V; 100μF陶瓷 电容; 1000μF陶瓷电容; 500μF聚合铝电容+500μF陶 瓷电容。
	47×4	-	6000	μF	V _{out} ≤3.7V, V _{in} =4.5V~14.0V; 47µF陶瓷 电容; 6000µF陶瓷电容; 6000µF聚合铝电容; 3000µF聚合铝电容+3000µF 陶瓷电容。
	22×14	-	6000	μF	V _{out} >3.7V, V _{in} =4.5V~14.0V; 22μF陶瓷 电容; 6000μF陶瓷电容; 6000μF聚合铝电容; 3000μF聚合铝电容+3000μF 陶瓷电容。
输出纹波和噪声 (峰峰值)	-	-	2%V _{out}	mV	0.6V≤V _{out} ≤0.8V, V _{in} =3.0V~3.6V;示波器带 宽: 20MHz。
	-	10	20	mV	0.8V <v<sub>out≤1.2V, V_{in}=3.0V~3.6V; V_{out}≤1.8V, V_{in}=4.5V~14.0V; 示波器带 宽: 20MHz。</v<sub>
	-	30	50	mV	V _{out} >1.8V, V _{in} =4.5V~14.0V;示波器带 宽:20MHz。
输出电压过冲	-	-	5	%	满足V _{in、} I _{out} 、T _A 全范围
输出电压延迟时间	-	0.15	2.00	ms	从使能(EN)逻辑开机到 10%输出电压的时间。
输出电压上升时间	-	2.3	5.0	ms	-
开关频率	-	600	-	kHz	V _{in} =8V~14V, V _{out} ≤1.8V, I _{out} =50%I _{onom}
	-	1000	-	kHz	V _{in} =8V~14V, V _{out} >1.8V, I _{out} =50%I _{onom}

113,711 ₀ °88	技术手册
	10 木土 ++++
111111111111111111111111111111111111111	1メハコル
2222 2	

项目	最小值	典型值	最大值	单位	备注
	-	600	-	kHz	V _{in} =4.5V~6.0V, V _{out} ≤2.1V, I _{out} =50%I _{onom}
	-	600	-	kHz	V _{in} =3.0V~3.6V, I _{out} =50%I _{onom}

3.4 保护特性

表 3-4 输入保护特性

项目	最小值	典型值	最大值	单位	备注
输入欠压保护点	5	6	7	V	V _{in} =8V~14V,
输入欠压恢复点	6	7	8	V	V _{out} =0.6V~3.7V,包含3.7V
输入欠压保护回差	0.5	1.0	2.0	V	
输入欠压保护点	6	7	8	V	V _{in} =9V~14V,
输入欠压恢复点	7	8	9	V	V _{out} =3.7V~5.0V,不包含3.7V
输入欠压保护回差	0.5	1.0	2.0	V	
输入欠压保护点	3.30	3.55	3.80	V	V _{in} =4.5V~6.0V
输入欠压恢复点	4.00	4.25	4.5	V	
输入欠压保护回差	0.4	0.7	1.0	V	
输入欠压保护点	2.2	2.4	2.7	V	V _{in} =3.0V~3.6V
输入欠压恢复点	2.65	2.85	3.00	V	
输入欠压保护回差	0.2	0.4	0.6	V	

表 3-5 输出保护特性

项目	最小值	典型值	最大值	单位	备注
输出过流保护	110	-	200	%	打嗝模式
输出短路保护	-	-	-	-	打嗝模式
过温保护点	140	160	170	$^{\circ}$	自恢复

项目	最小值	典型值	最大值	单位	备注
过温保护回差	-	30	-	C	过温保护基于T _j 实现。电源模 块内部温度可以通过热阻测量 得到。

3.5 动态特性

表 3-6 动态特性

项目	最小值	典型值	最大值	单位	备注
过冲幅度	-	-	5	%V _{out}	电流变化率: 5A/μs
恢复时间	-	-	200	μs	负载: 25%~50%~25%; 50%~75%~50%

3.6 效率特性

表 3-7 效率特性

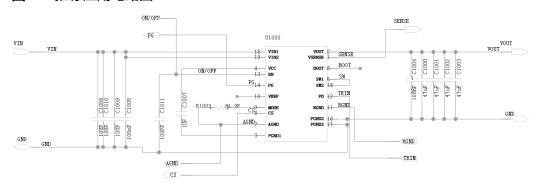
项目	最小值	典型值	最大值	单位	备注
50%负载	77.5	78.5	-	%	V _{in} =12V; V _{out} =0.6V; T _A =25℃ (77°F)
	78.5	79.5	-	%	V _{in} =12V; V _{out} =0.7V; T _A =25℃ (77°F)
	79.5	80.5	-	%	V _{in} =12V; V _{out} =0.8V; T _A =25℃ (77°F)
	80.5	81.5	-	%	V _{in} =12V; V _{out} =0.9V; T _A =25℃ (77°F)
	81.5	82.5	-	%	V _{in} =12V; V _{out} =1.0V; T _A =25℃ (77°F)
	82.5	83.5	-	%	V _{in} =12V; V _{out} =1.2V; T _{A=} 25℃ (77℉)
	85.5	86.0	-	%	V _{in} =12V; V _{out} =1.5V; T _A =25℃ (77°F)
	86.0	86.5	-	%	V _{in} =12V; V _{out} =1.8V; T _A =25℃ (77°F)
	86.0	87.0	-	%	V _{in} =12V; V _{out} =2.5V; T _A =25℃ (77°F)
	87.5	88.5	-	%	V _{in} =12V; V _{out} =3.3V; T _A =25℃ (77°F)
	89.5	90.0	-	%	V _{in} =12V; V _{out} =5.0V; T _A =25℃ (77°F)
	90.0	90.5	-	%	V _{in} =12V; V _{out} =5.5V; T _A =25℃ (77°F)
	84.0	84.5	-	%	V _{in} =5.4V; V _{out} =0.6V; T _A =25℃ (77℉)

NAE12S17-B 电源模块 _{技术手册}

项目	最小值	典型值	最大值	单位	备注
	85.5	86.0	-	%	V _{in} =5.4V; V _{out} =0.7V; T _A =25℃ (77°F)
	86.5	87.0	-	%	V _{in} =5.4V; V _{out} =0.8V; T _A =25℃ (77°F)
	87.5	88.0	-	%	V _{in} =5.4V; V _{out=} 0.9V; T _A =25°C (77°F)
	88.0	88.5	-	%	V _{in} =5.4V; V _{out} =1.0V; T _A =25℃ (77°F)
	89.0	89.5	-	%	V _{in} =5.4V; V _{out} =1.2V; T _A =25℃ (77°F)
	89.5	90.0	-	%	V _{in} =5.4V; V _{out} =1.5V; T _A =25℃ (77°F)
	90.5	91.0	-	%	V _{in} =5.4V; V _{out} =1.8V; T _A =25℃ (77°F)
	91.0	91.5	-	%	V _{in} =5.4V; V _{out} =2.1V; T _A =25℃ (77°F)
	85.0	86.0	-	%	V _{in} =3.3 V; V _{out} =0.6V; T _A =25℃ (77°F)
	86.0	87.0	-	%	V _{in} =3.3V; V _{out} =0.7V; T _A =25℃ (77°F)
	87.0	88.0	-	%	V _{in} =3.3V; V _{out=} 0.8V; T _A =25°C (77°F)
	87.5	88.5	-	%	V _{in} =3.3V; V _{out} =0.9V; T _A =25℃ (77°F)
	88.5	89.5	-	%	V _{in} =3.3V; V _{out} =1.0V; T _A =25℃ (77°F)
	89.5	90.5	-	%	V _{in} =3.3V; V _{out} =1.2V; T _A =25℃ (77°F)
100%负载	77.0	78.0	-	%	V _{in} =12V; V _{out} =0.6V; T _A =25℃ (77°F)
	78.0	79.0	-	%	V _{in} =12V; V _{out} =0.7V; T _A =25℃ (77°F)
	79.0	80.0	-	%	V _{in} =12V; V _{out} =0.8V; T _A =25℃ (77°F)
	80.0	81.0	-	%	V _{in} =12V; V _{out} =0.9V; T _A =25℃ (77°F)
	81.5	82.5	-	%	V _{in} =12V; V _{out} =1.0V; T _A =25℃ (77°F)
	83.5	84.5	-	%	V _{in} =12V; V _{out} =1.2V; T _{A=} 25℃ (77℉)
	85.5	86.0	-	%	V _{in} =12V; V _{out} =1.5V; T _A =25℃ (77℉)
	86.5	87.0	-	%	V _{in} =12V; V _{out} =1.8V; T _A =25℃ (77°F)
	86.5	87.0	-	%	V _{in} =12V; V _{out} =2.5V; T _A =25℃ (77°F)
	88.0	88.5	-	%	V _{in} =12V; V _{out} =3.3V; T _A =25℃ (77℉)
	89.5	90.0	-	%	V _{in} =12V; V _{out} =5.0V; T _A =25℃ (77℉)
	90.0	91.0	-	%	V _{in} =12V; V _{out} =5.5V; T _A =25℃ (77°F)
	83.5	85.0	-	%	V _{in} =5.4V; V _{out} =0.6V; T _A =25℃ (77℉)

项目	最小值	典型值	最大值	单位	备注
	85.0	86.0	-	%	V _{in} =5.4V; V _{out} =0.7V; T _A =25℃ (77℉)
	85.5	86.5	-	%	V _{in} =5.4V; V _{out} =0.8V; T _A =25℃ (77℉)
	86.5	87.5	-	%	V _{in} =5.4V; V _{out} =0.9V; T _A =25℃ (77℉)
	87.5	88.5	-	%	V _{in} =5.4V; V _{out} =1.0V; T _A =25℃ (77℉)
	88.5	89.5	-	%	V _{in} =5.4V; V _{out} =1.2V; T _A =25℃ (77℉)
	89.0	90.0	-	%	V _{in} =5.4V; V _{out} =1.5V; T _A =25℃ (77℉)
	90.5	91.5	-	%	V _{in} =5.4V; V _{out} =1.8V; T _A =25℃ (77℉)
	91.5	92.0	-	%	V _{in} =5.4V; V _{out} =2.1V; T _A =25℃ (77℉)
	77.0	78.5	-	%	V _{in} =3.3V; V _{out} =0.6V; T _A =25℃ (77℉)
	78.0	79.0	-	%	V _{in} =3.3V; V _{out} =0.7V; T _A =25℃ (77℉)
	79.5	80.5	-	%	V _{in} =3.3V; V _{out} =0.8V; T _A =25℃ (77℉)
	80.5	81.5	-	%	V _{in} =3.3V; V _{out} =0.9V; T _{A=} 25℃ (77°F)
	81.5	82.5	-	%	V _{in} =3.3V; V _{out} =1.0V; T _A =25℃ (77℉)
	82.0	83.0	-	%	V _{in} =3.3V; V _{out} =1.2V; T _A =25℃ (77℉)

3.7 其他特性

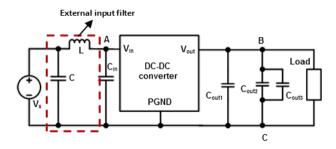

表 3-8 其他特性

项目	最小值	典型值	最大值	单位	备注
使能(EN)低电平	-0.2	-	0.5	V	正逻辑
使能(EN)高电平	1.3	-	4.0	V	
SENSE+	-	-	100	mV	-
SENSE-	-	-	-	mV	-

4 推荐应用电路

4.1 推荐应用电路

图 4-1 推荐应用电路图


元器件	推荐规格	备注
C1008、C1009、 C1010	25V-10000nF-±20%-X7R-1206	陶瓷贴片电容及电解电容,靠近电源模块 输入放置。
C1005	SMD陶瓷电容-50V-100nF-±10%- X7R-0603	
C1	固体SMD铝电容-16V-100μF-±20%聚 合物-6.3mm×5.9mm-低ESR(24Ω)	
C1000、C1001、 C1002、C1003	6.3V-47000nF-±20%-X7S-1206	V _{in} =4.5V~14.0V,V _{out} ≤3.7V,4×47µF陶 瓷贴片电容,靠近电源模块输出放置。
	SMD陶瓷电容-10V-22000nF-±10%- X7S-1206	V _{in} =4.5V~14.0V,V _{out} >3.7V,14×22μF 陶瓷贴片电容,靠近电源模块输出放置。
	6.3V-100000nF-±20%-X5R-1206	V _{in} =3.0V~3.6V,3×100μF陶瓷贴片电容, 靠近电源模块输出放置。
C1004	SMD陶瓷电容-50V-100nF-±10%- X7R-0603	V _{in} =4.5V~14.0V,V _{out} ≤3.7V

山 说明

图中未给出具体取值的器件,须根据实际需求参考主要功能引脚使用说明进行配置,其余器件参数不建议修改。

4.2 测试电路

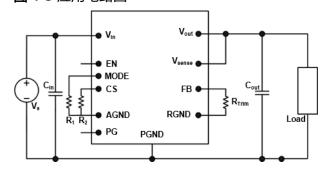
图 4-2 测试电路图

Cin:

推荐使用 30μ F陶瓷电容和 100μ F聚合物铝电容(V_{in} =4V~14V)。 推荐使用 66μ F陶瓷电容(V_{in} =3.0V~3.6V)。

Cout1:

推荐使用 $14 \times 22 \mu$ F陶瓷电容($V_{out} > 3.7 V$, $V_{in} = 4.5 V \sim 14.0 V$)。 推荐使用 $4 \times 47 \mu$ F陶瓷电容($V_{in} = 4.5 V \sim 14.0 V$, $V_{out} \le 3.7 V$)。 推荐使用 $3 \times 100 \mu$ F陶瓷电容($V_{in} = 3.0 V \sim 3.6 V$)。


Cout2:推荐使用0.1µF陶瓷电容。

Cout3: 推荐使用10µF陶瓷电容。

□ 说明

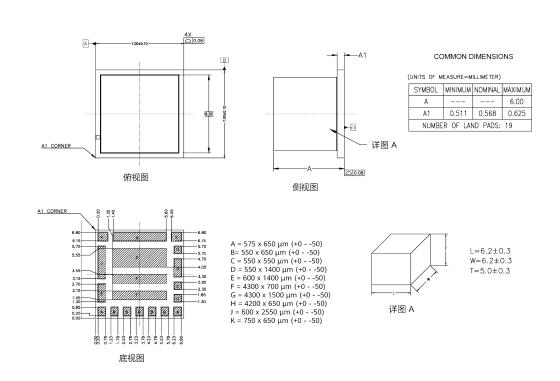
- 输入反射纹波电流测试时,输入必须外接输入滤波器(包括12μH电感和220μF电解电容),其他测试无此要求。
- B和C点是输出电压波纹测试点。

图 4-3 应用电路图

NAE12S17-B 电源模块 _{技术手册}

C_{in:}

推荐使用30 μ F陶瓷电容和100 μ F聚合物铝电容(V_{in} =4V~14V)。 推荐使用66 μ F陶瓷电容(V_{in} =3.0V~3.6V)。

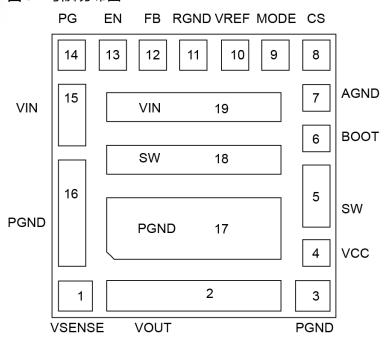

C_{out1}:

推荐使用 $14 \times 22 \mu$ F陶瓷电容($V_{out} > 3.7 V$, $V_{in} = 4.5 V \sim 14.0 V$)。 推荐使用 $4 \times 47 \mu$ F陶瓷电容($V_{in} = 4.5 V \sim 14.0 V$, $V_{out} \le 3.7 V$)。 推荐使用 $3 \times 100 \mu$ F陶瓷电容($V_{in} = 3.0 V \sim 3.6 V$)。

5 引脚描述和应用

5.1 尺寸图

图 5-1 结构尺寸图



□ 说明

- 所有尺寸单位均为mm [in.]。公差: x.x±0.1mm [x.xx±0.03in.]; x.xx±0.05mm [x.xxx±0.002in.]。
- 角度公差: ±1°

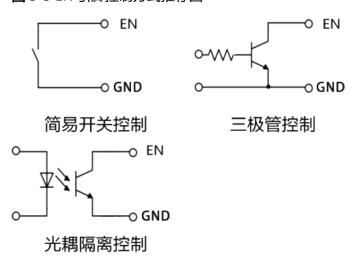
5.2 引脚分布

图 5-2 引脚分布图

表 5-1 引脚定义

引脚编号	引脚名称	功能描述
1	VSENSE	输出电压检测引脚。
2	VOUT	输出引脚。将输出引脚连接到负载,并将输出滤波电容放置在输出引脚和PGND引脚之间。
3, 16, 17	PGND	输入和输出电源地引脚,将此引脚连接到输入和输出滤波电容的接地电极。
4	VCC	内部LDO输出信号。驱动器和控制电路由该电压供电。用至少1μF 陶瓷电容去耦,尽可能靠近PGND信号。推荐使用X7R级介质陶瓷 电容。
5, 18	SW	电路的开关节点。
6	ВООТ	内部功能引脚,BOOT和SW之间内部接有一个自举电容,该引脚 保持悬空。
7	AGND	信号地引脚。
8	CS	输出过流调节引脚,它通过外部电阻连接到AGND引脚。
9	MODE	频率调整引脚。

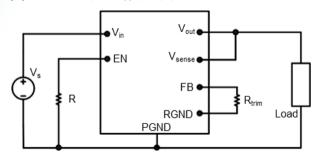
引脚编号	引脚名称	功能描述
10	VREF	软启动设置引脚。电源模块中嵌入了一个软启动电容。默认情况 下,此引脚悬空。
11	RGND	信号地引脚,环路采样、调节专用引脚。
12	FB	输出电压调节引脚。从输出到RGND的外部电阻分压器设置输出电压。建议将电阻分压器放置在尽可能靠近FB信号的地方。FB走线上应避免过孔。
13	EN	使能引脚,高电平电源模块使能开机,低电平电源模块使能关机。
14	PG	电源状态指示信号引脚,该引脚为悬空信号,必须通过电阻上拉 才能正常指示。
15, 19	VIN	电源输入引脚,将电源输入引脚连接到输入电源,并将输入滤波 电容放置在电源输入引脚和PGND引脚之间。


5.3 引脚应用

5.3.1 EN

推荐使用开路集电极晶体管或类似器件控制EN引脚(EN引脚必须通过电阻连接到地)。

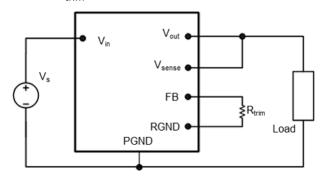
EN引脚电平	状态
低电平	关机
高电平	开机


图 5-3 EN 引脚控制方式推荐图

山 说明

如果EN引脚采用三极管或光耦隔离控制方式,且外加电压控制时,禁止输入电压先于EN引脚下电。

图 5-4 EN 功能电路配置图



V _{in} (V)	R (kΩ)	输出电压
3.30	7.50	0.6V~1.2V
5.50	4.02	0.6V~2.1V
12.00	2.00	0.6V~3.7V,包含3.7V
12.00	1.69	3.7V~5.5V,不包含3.7V

5.3.2 输出电压调节 (FB)

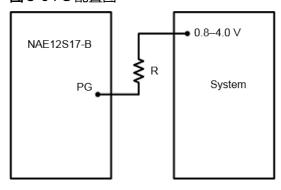
输出电压可以通过在Trim(FB)引脚和RGND引脚之间连接外部电阻来调节。

图 5-5 R_{trim} 外部连接

R_{trim}和V_{out}之间的关系如下:

$$R_{trim} = \left[\frac{1.2}{V_{out} - 0.6}\right] k\Omega$$

山 说明

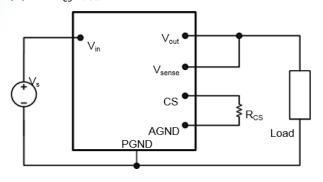

输出电压随R_{tirm}变化。微调电阻容差直接影响输出电压的精度。

V _{out} (V)	R _{trim} (kΩ)
0.6	-
0.7	12.000
0.8	6.000
0.9	4.000
1.0	3.000
1.2	2.000
1.5	1.333
1.8	1.000
2.5	0.632
3.3	0.444
3.7	0.387
5.0	0.273
5.5	0.245

5.3.3 PG

Power Good(PG)信号通过电阻上拉至VCC或固定电平0.8V~4.0V。如不使用PG信号功能,引脚则悬空。

图 5-6 PG 配置图



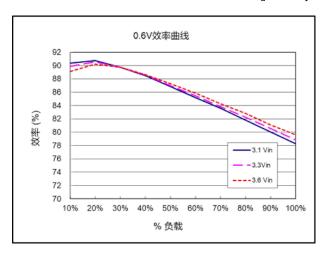
R: 推荐使用10kΩ电阻。

5.3.4 输出过流调整

输出过流可通过CS引脚和AGND引脚之间连接外部电阻来调节。

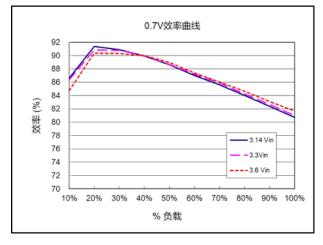
图 5-7 R_{cs} 外部连接

母线类型	V _{out} (V)	R _{cs} (kΩ)	
3.3V	0.6≤V _{out} <1.2	6.20	
5.5V	0.6≤V _{out} <2.1	11.80	
12.0V	0.6≤V _{out} <1.2	11.80	
	1.2≤V _{out} <2.5	13.70	
	2.5≤V _{out} ≤2.8	15.00	
	2.8≤V _{out} ≤5.0	15.00	
	5.0≤V _{out} ≤5.5	12.10	

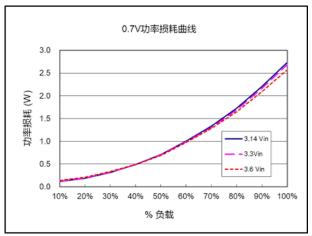

5.3.5 **MODE**

电源模块在轻载条件下提供强制CCM操作。推荐2个开关频率选择,通过选择连接AGND或MODE之间的电阻值可选择开关频率。

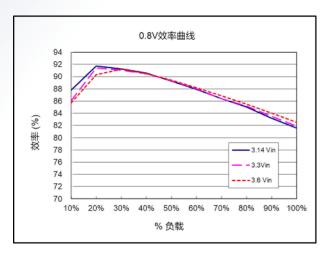
引脚连接方式	轻载条件	开关频率
AGND	强制CCM	600kHz
60.4kΩ(±20%)到AGND	强制CCM	1000kHz


山 说明

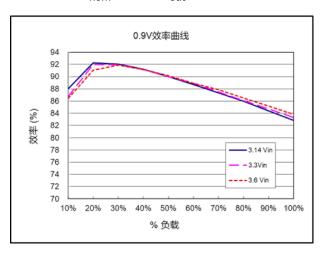
- 条件: T_A=25℃, 特殊说明除外。
- 电源模块功率损耗根据效率计算。功耗 P_d 、效率 η 、输出功率 P_o 关系式为: $P_d=P_o$ (1 η)/ η 。

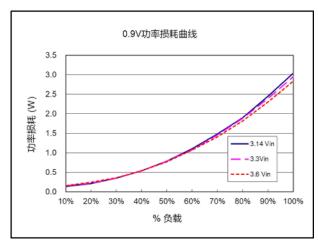


0.6V功率损耗曲线 2.0 功率损耗 (W) 1.5 1.0 -3.3Vin 0.5 0.0 %负载


效率曲线(V_{nom} =3.3V, V_{out} =0.6V) 功率损耗曲线(V_{nom} =3.3V, V_{out} =0.6V)

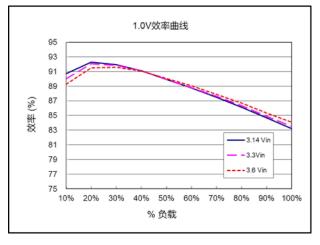
效率曲线(V_{nom}=3.3V, V_{out}=0.7V)

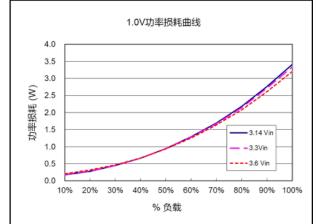

功率损耗曲线(V_{nom}=3.3V,V_{out}=0.7V)



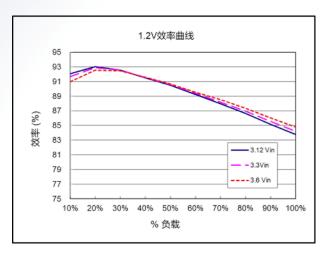
0.8V功率损耗曲线
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% % 负载

效率曲线(V_{nom}=3.3V,V_{out}=0.8V)


功率损耗曲线(V_{nom}=3.3V,V_{out}=0.8V)

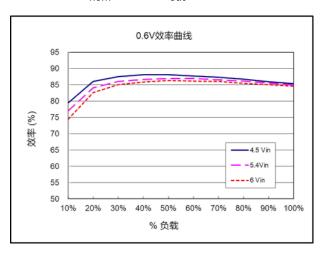


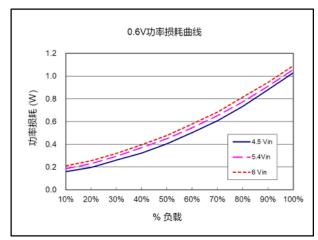
效率曲线(V_{nom}=3.3V, V_{out}=0.9V)


功率损耗曲线(V_{nom}=3.3V,V_{out}=0.9V)

效率曲线(V_{nom}=3.3V, V_{out}=1.0V)

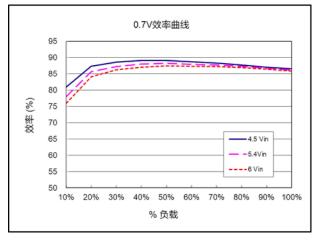
功率损耗曲线(V_{nom}=3.3V, V_{out}=1.0V)

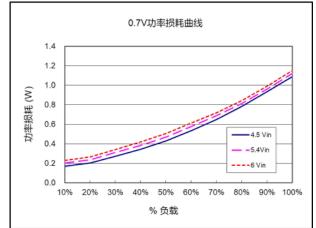



1.2V功率损耗曲线

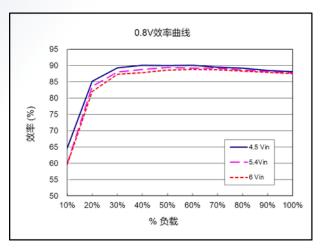
4.5
4.0
3.5
3.0
2.5
3.12 Vin
0.5
1.0
0.5
0.0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% 负载

效率曲线(V_{nom}=3.3V,V_{out}=1.2V)


功率损耗曲线(V_{nom}=3.3V,V_{out}=1.2V)

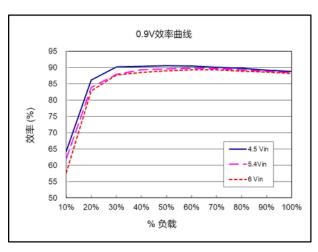


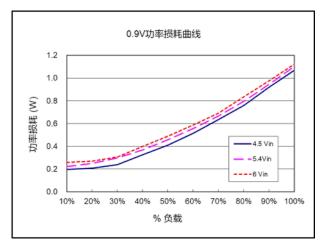
效率曲线(V_{nom}=5.5V, V_{out}=0.6V)


功率损耗曲线(V_{nom}=5.5V,V_{out}=0.6V)

效率曲线(V_{nom}=5.5V, V_{out}=0.7V)

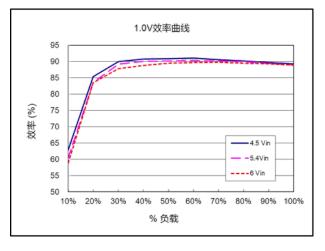
功率损耗曲线(V_{nom}=5.5V, V_{out}=0.7V)

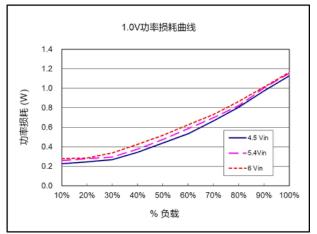



0.8V功率损耗曲线

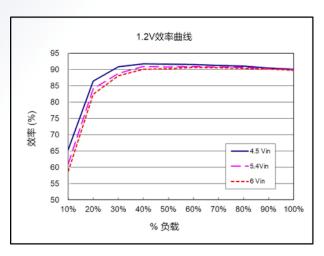
1.2
1.0
0.8
以 0.6
以 0.6
以 0.4
0.2
0.0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% 负载

效率曲线(V_{nom}=5.5V, V_{out}=0.8V)


功率损耗曲线(V_{nom}=5.5V,V_{out}=0.8V)

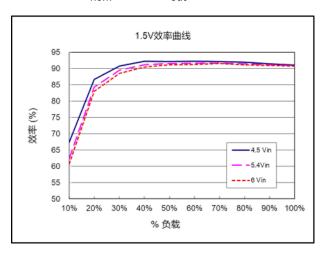


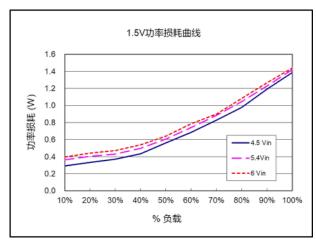
效率曲线(V_{nom}=5.5V, V_{out}=0.9V)


功率损耗曲线(V_{nom}=5.5V,V_{out}=0.9V)

效率曲线(V_{nom}=5.5V, V_{out}=1.0V)

功率损耗曲线(V_{nom}=5.5V, V_{out}=1.0V)

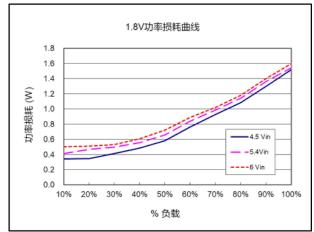



1.2V功率损耗曲线

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% 负载

效率曲线(V_{nom}=5.5V,V_{out}=1.2V)


功率损耗曲线(V_{nom}=5.5V,V_{out}=1.2V)



效率曲线(V_{nom}=5.5V, V_{out}=1.5V)

功率损耗曲线(V_{nom}=5.5V,V_{out}=1.5V)

效率曲线(V_{nom}=5.5V, V_{out}=1.8V)

功率损耗曲线(V_{nom}=5.5V, V_{out}=1.8V)

% 负载

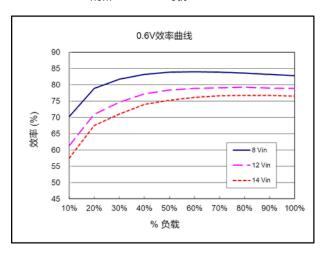
功率损耗曲线(V_{nom}=5.5V,V_{out}=2.1V)

2.5

2.0

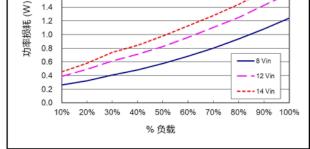
1.5

1.0

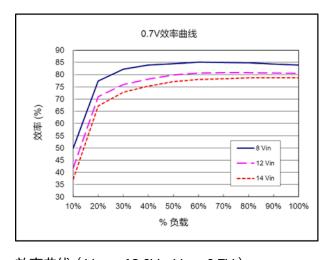

0.5

0.0

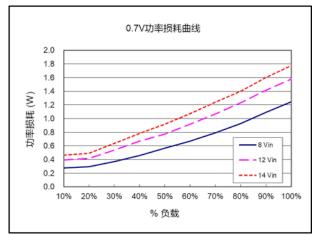
1.2


功率损耗 (W)

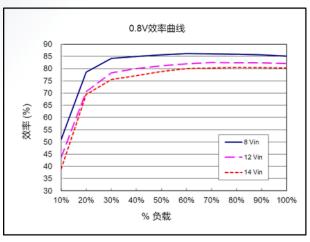
效率曲线(V_{nom}=5.5V,V_{out}=2.1V)



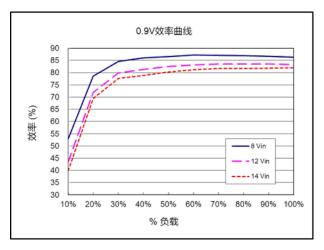
0.6V功率损耗曲线 2.0 1.8 1.6 1.4


2.1V功率损耗曲线

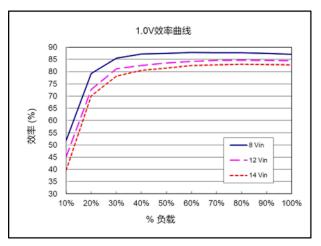
效率曲线(V_{nom}=12.0V,V_{out}=0.6V)

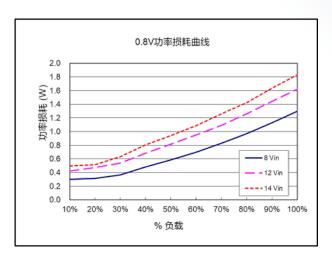


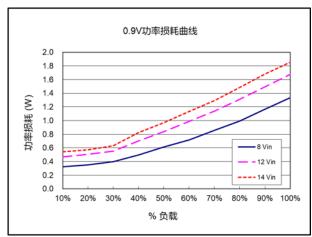
功率损耗曲线(V_{nom}=12.0V,V_{out}=0.6V)

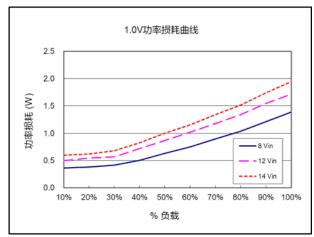


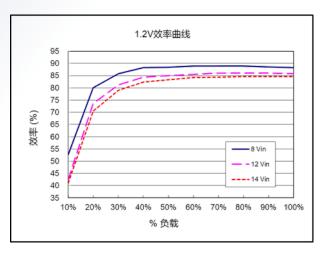
效率曲线(V_{nom}=12.0V, V_{out}=0.7V)


功率损耗曲线(V_{nom}=12.0V,V_{out}=0.7V)

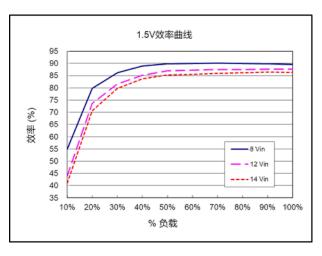

效率曲线(V_{nom}=12.0V,V_{out}=0.8V)

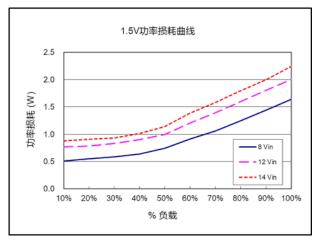

效率曲线(V_{nom}=12.0V,V_{out}=0.9V)


效率曲线(V_{nom}=12.0V, V_{out}=1.0V)

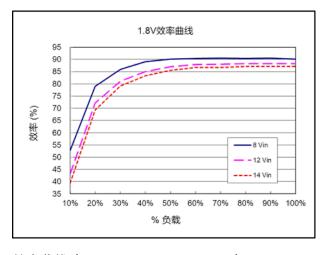

功率损耗曲线(V_{nom}=12.0V,V_{out}=0.8V)

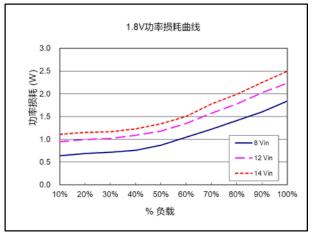
功率损耗曲线(V_{nom}=12.0V, V_{out}=0.9V)



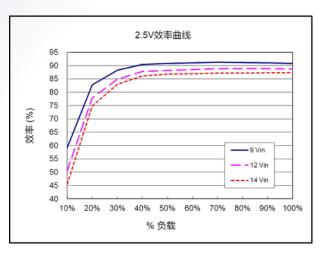

功率损耗曲线(V_{nom}=12.0V, V_{out}=1.0V)

效率曲线(V_{nom}=12.0V, V_{out}=1.2V)


功率损耗曲线(V_{nom}=12.0V,V_{out}=1.2V)

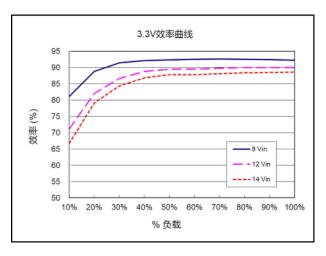


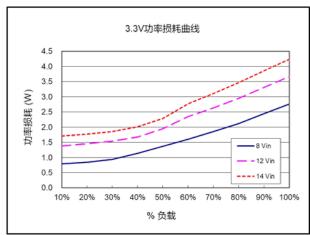
效率曲线(V_{nom}=12.0V,V_{out}=1.5V)


功率损耗曲线(V_{nom}=12.0V,V_{out}=1.5V)

效率曲线(V_{nom}=12.0V, V_{out}=1.8V)

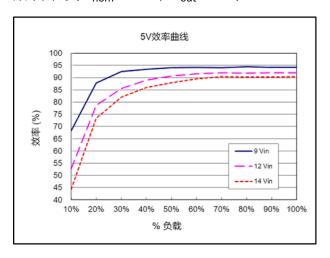
功率损耗曲线(V_{nom}=12.0V, V_{out}=1.8V)

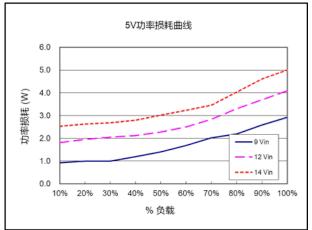



2.5V功率损耗曲线

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% 负载

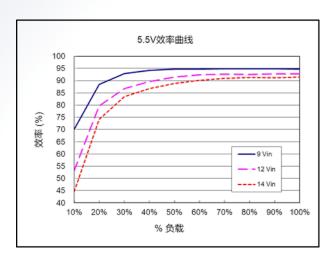
效率曲线(V_{nom}=12.0V,V_{out}=2.5V)

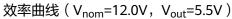

功率损耗曲线(V_{nom}=12.0V,V_{out}=2.5V)

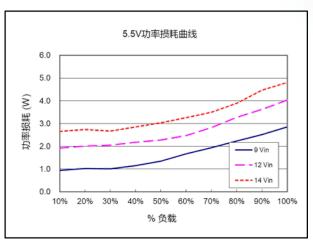


效率曲线(V_{nom}=12.0V,V_{out}=3.3V)

功率损耗曲线(V_{nom}=12.0V,V_{out}=3.3V)

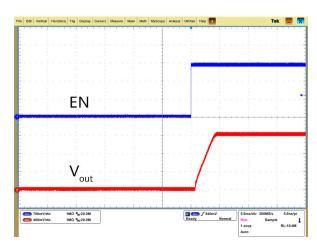


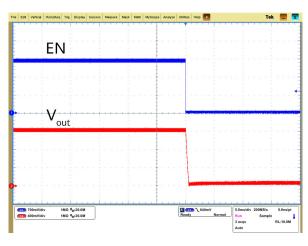



效率曲线(V_{nom}=12.0V, V_{out}=5.0V)

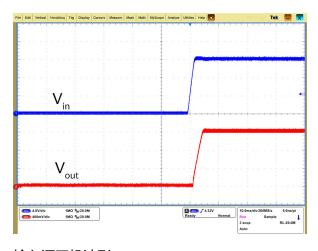
功率损耗曲线(V_{nom}=12.0V, V_{out}=5.0V)

NAE12S17-B 电源模块 _{技术手册}

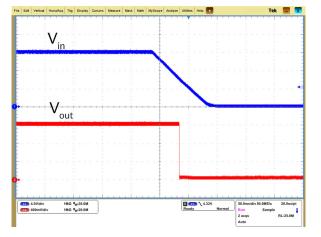



功率损耗曲线(V_{nom}=12.0V,V_{out}=5.5V)

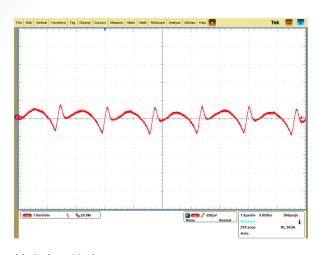
7 典型波形


条件: T_A=25℃, V_{in}=12V, 除非另有说明

7.1 开机/关机波形

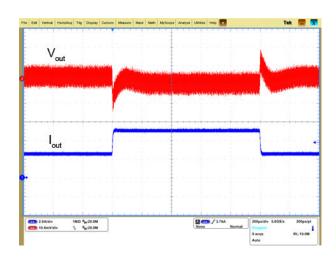


使能开机波形

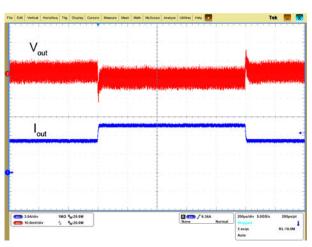

使能关机波形

输入源开机波形

输入源关机波形


7.2 输出电压纹波

输出电压纹波


(**图4-2**中B和C点是输出电压纹波测试点,T_A=25℃,V_{in}=12V,V_{out}=0.9V)

7.3 输出电压动态响应

输出电压动态响应

负载: 25%~50%~25%, di/dt=5A/μs

输出电压动态响应

负载: 50%~75%~50%, di/dt=5A/μs

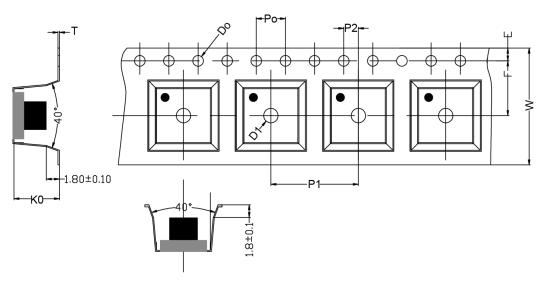
8 保护特性

输入欠压保护

当输入电压低于欠压保护点时,电源模块将关闭。当输入电压达到输入欠压恢复点时,电源模块重新开始工作。

输出过流保护

电源模块具有过流保护能力,能够提供输出过载或短路保护。如果输出电流超过输出过流保护设定点, 电源模块进入打嗝模式。当故障消除时,电源模块将自动重启。


过温保护

电源模块配备温度传感器,检测电源模块平均温度,避免高温损坏。当温度超过过温保护点时,输出将关闭。当检测到感应位置的温度下降到过温保护回差值时,电源模块重新启动。

9 产品包装

电源模块支持卷带和卷盘封装。卷带尺寸如下图所示。

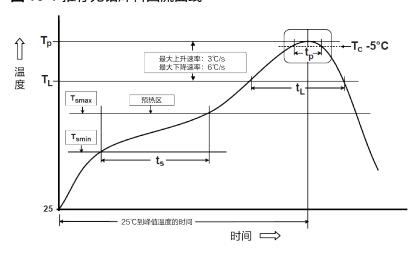
测量单位: mm

项目	W	A0	В0	К0	P0	Е
尺寸	16.00 ^{+0.30} _{-0.30}	7.50 ^{+0.10} _{-0.10}	7.50 ^{+0.10} _{-0.10}	6.25+0.10	4.00+0.10	1.75 +0.10
项目	F	D0	D1	P1	P2	Т
尺寸	7.50 ^{+0.10} _{-0.10}	1.50+0.10	2.00	12.00+0.10	2.00+0.10	0.50+0.05

山 说明

● 材质: PS/ABS

托架外倾角在250mm内不超过1mm。10个链轮孔间距的累积公差: ±0.2mm。不得有异物粘附,表面状态必须优良。



10 二次组装

焊接工艺

电源模块支持回流焊工艺。回流过程中,峰值温度在任何时间不得超过260℃。

图 10-1 推荐无铅焊料回流曲线

项目	JEDEC标准
预热和浸泡时间(T _s)(T _{smin} 150℃~T _{smax} 200℃)	60~120s
升温速率(T _L 217℃~T _p 260℃)	≤3°C/s
液化温度时间(T _L)(T>T _L)	60~150s
封装体峰值温度(T _p)	260℃
对应分类温度5℃以内的时间Tp~5℃	≤30s
降温速率(T _p ~T _L)	≤6°C/s
25℃升至峰值温度的时间(25℃~T _p)	≤8min

1 1 存储要求

潮敏要求按照IPC/JEDEC J-STD-033中规定的MSL3的要求储存和运输电源模块。 焊接电源模块的表面必须清洁干燥。否则,电源模块的组装、测试甚至可靠性将受到影响。

可靠性指标

项目	最小值	典型值	最大值	单位	说明
平均无故障时间 (MTBF)	-	2.5	-	百万小时	参考标准Telcordia SR332 Method 1 Case 3;80%负载, 正常输入/额定输出; T _A =40°C;300LFM

版权所有 © 华为技术有限公司 2021。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

HUAWE和其他华为商标均为华为技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服 务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或 默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导, 本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

华为技术有限公司

深圳市 龙岗区 坂田华为总部办公楼

邮编: 518129

www.huawei.com