Mainstream contactless smart card IC for fast and easy solution development Rev. 3.2 — 21 February 2011 187032 Product short data sheet PUBLIC ## 1. General description Migrate classic contactless smart card systems to the next security level! MIFARE Plus brings benchmark security to mainstream contactless smart card applications. It is the only mainstream IC compatible with MIFARE Classic 1K (MF1ICS50) and MIFARE Classic 4K (MF1ICS70) which offers an upgrade path for existing infrastructures and services. After the security upgrade, MIFARE Plus uses AES-128 (Advanced Encryption Standard) for authentication, data integrity and encryption. MIFARE Plus is based on open global standards for both air interface and cryptographic methods at the highest security level. MIFARE Plus is available in two versions: MIFARE Plus S and MIFARE Plus X. - The MIFARE Plus S (MF1SPLUSx0y1, described in this data sheet) is the standard version for straight forward migration of MIFARE Classic systems. It is configured to offer high data integrity. - The MIFARE Plus X (MF1PLUSx0y1) offers more flexibility to optimize the command flow for speed and confidentiality. It offers a rich feature set including proximity checks against relay attacks. ### 2. Features and benefits - 2 kB or 4 kB EEPROM - Simple fixed memory structure compatible with MIFARE Classic 1K and MIFARE Classic 4K - Memory structure identical to MIFARE Classic 4K (sectors, blocks) - Access conditions freely configurable - Supports ISO/IEC 14443 Type A¹ UIDs (4-byte UID, 4 Byte NUID, 7-byte UID), optional support of random IDs - Multi-sector authentication, Multi-block read and write - AES-128 used for authenticity and integrity - Anti-tearing mechanism for writing AES keys - Keys can be stored as MIFARE CRYPTO1 keys (2 x 48-bit per sector) and as AES keys (2 x 128-bit per sector) - Basic support of virtual card concept - Communication speed up to 848 kbit/s ^{1.} ISO/IEC 14443-x used in this data sheet refers to ISO/IEC 14443 Type A. - Number of single write operations: 200000 cycles (typical) - Common Criteria Certification: EAL4+ ## 3. Applications - Public transportation - Access management such as employee, school or campus cards - Electronic toll collection - Closed loop micro payment - Car parking - Internet cafés - Loyalty programs ## 4. Quick reference data Table 1. Quick reference data | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |----------------------|-------------------|---|-----|--------|--------|-------|-------| | C _i | input capacitance | T_{amb} = 22 °C; f_i = 13.56 MHz; 2.8 V RMS | [1] | 15.0 | 17.0 | 19.04 | pF | | fi | input frequency | | | - | 13.56 | - | MHz | | EEPRON | l characteristics | | | | | | | | t _{ret} | retention time | T _{amb} = 22 °C | | 10 | - | - | year | | N _{endu(W)} | write endurance | T _{amb} = 22 °C; excluding
anti-tearing for AES keys or
sector trailers in security
level 3 | | 100000 | 200000 | - | cycle | ^[1] Measured with LCR meter. ## 5. Ordering information Table 2. Ordering information | Type number | Package | | Package | | | | | | | | | | |--------------------|--------------------|-------|---|----------|--|--|--|--|--|--|--|--| | | Commercial
Name | Name | Description | Version | | | | | | | | | | MF1SPLUS8001DUD/03 | FFC | - | 8 inch wafer (sawn; 120 µm thickness, on film frame carrier; electronic fail die marking according to SECS-II format) see Ref. 3, 4 kB EEPROM, 7-byte UID | - | | | | | | | | | | MF1SPLUS8011DUD/03 | FFC | - | 8 inch wafer (sawn; 120 µm thickness, on film frame carrier; electronic fail die marking according to SECS-II format) see Ref. 3, 4 kB EEPROM, 4-byte UID | - | | | | | | | | | | MF1SPLUS8031DUD/03 | FFC | - | 8 inch wafer (sawn; 120 µm thickness, on film frame carrier; electronic fail die marking according to SECS-II format), 4K EEPROM, 4-byte NUID | - | | | | | | | | | | MF1SPLUS8001DA4/03 | MOA4 | PLLMC | plastic leadless module carrier package; 35 mm wide tape, 4 kB EEPROM, 7-byte UID | SOT500-2 | | | | | | | | | | MF1SPLUS8011DA4/03 | MOA4 | PLLMC | plastic leadless module carrier package; 35 mm wide tape, 4 kB EEPROM, 4-byte UID | SOT500-2 | | | | | | | | | | MF1SPLUS8031DA4/03 | MOA4 | PLLMC | plastic leadless module carrier package; 35 mm wide tape, 4K EEPROM, 4-byte NUID | SOT500-2 | | | | | | | | | | MF1SPLUS6001DUD/03 | FFC | - | 8 inch wafer (sawn; 120 µm thickness, on film frame carrier; electronic fail die marking according to SECS-II format) see Ref. 3, 2 kB EEPROM, 7-byte UID | - | | | | | | | | | | MF1SPLUS6011DUD/03 | FFC | - | 8 inch wafer (sawn; 120 µm thickness, on film frame carrier; electronic fail die marking according to SECS-II format) see Ref. 3, 2 kB EEPROM, 4-byte UID | - | | | | | | | | | | MF1SPLUS6031DUD/03 | FFC | - | 8 inch wafer (sawn; 120 µm thickness, on film frame carrier; electronic fail die marking according to SECS-II format), 2K EEPROM, 4byte NUID | - | | | | | | | | | | MF1SPLUS6001DA4/03 | MOA4 | PLLMC | plastic leadless module carrier package; 35 mm wide tape, 2 kB EEPROM, 7-byte UID | SOT500-2 | | | | | | | | | | MF1SPLUS6011DA4/03 | MOA4 | PLLMC | plastic leadless module carrier package; 35 mm wide tape, 2 kB EEPROM, 4-byte UID | SOT500-2 | | | | | | | | | | MF1SPLUS6031DA4/03 | MOA4 | PLLMC | plastic leadless module carrier package; 35 mm wide tape, 2K EEPROM, 4-byte NUID | SOT500-2 | | | | | | | | | ## 6. Block diagram ## 7. Pinning information ### 7.1 Smart card contactless module Table 3. Bonding pad assignments to smart card contactless module | Contactless interface module | | MF1SPLUSx0y1DA4/z3 | |------------------------------|--------|----------------------------| | Antenna contacts | Symbol | Description | | LA | LA | antenna coil connection LA | | LB | LB | antenna coil connection LB | ## 8. Functional description ## 8.1 Memory organization The 4 kB EEPROM memory (MF1SPLUS80x) is organized in 32 sectors of 4 blocks and in 8 sectors of 16 blocks. The 2 kB EEPROM memory (MF1SPLUS60x) is organized in 32 sectors of 4 blocks. One block consists of 16 bytes. | | | | BYTE NUMBERS WITHIN A BLOCK | | | | | | | | | | | | | | | | |--------|----------|-----|-----------------------------|-------|-----|-------|----------|------|---|------|--------|---------|----|--------|-------|------|-------|-----| | SECTOR | BLOCK | | 0 | 1 | 2 | 3 | 4 | 5(1) | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 39 | 15 | İ | (| CRYF | TO1 | key A | 4 | | а | cces | s byte | es | С | RYP | ΓΟ1 k | еу В | or da | ıta | | | 14 | 13 | 2 | 1 | 0 | 32 | 15 | | (| CRYF | TO1 | key A | 4 | | а | cces | s byte | s | С | RYP | ΓΟ1 k | ey B | or da | ıta | | | 14
13 | 13 | 2 | 1 0 | | | | | | | | | | | | | | | | | | | 2.1 | - | - 1 | | 20)/5 | | | | Н | | | ١ | | | D) (D) | | | L . | _ | | 31 | 3 2 | - 1 | (| JHYF | 101 | key A | A | | а | cces | s byte | es
I | C | HYP | 101 k | ey B | or da | ita | | | 1 | 0 | · | ŀ | 0 | 3 | ŀ | (| CRYE | TO1 | key A | 4 | | а | cces | s byte | l | С | RYP | TO1 k | ey B | or da | ıta | | | 2 | ı | | | | | | | | | | | | | | | | | | | 1 | 0 | | | | | | | | | | | | | | | | | | | DESCRIPTION | |---------------------------| | sector trailer 39 | | data | | data | | | | data
data | | data | | | | | | | | sector trailer 32 | | data | | data | | | | data | | data | | data | | sector trailer 31 | | data
data | | data | | | | | | | | sector trailer 0 | | data | | data
manufacturer data | | | 001aaj843 (1) CRYPTO1 Key A in security level 0, 1, 2; plain text access byte in security level 3 Fig 3. Memory organization #### 8.1.1 Manufacturer block The first data block (block 0) of the first sector (sector 0) contains the PICC manufacturer data. This block is programmed and write protected at production test. ### 8.1.2 Data blocks Sectors 0_D to 31_D contain 3 blocks each and sectors 32_D to 39_D contain 15 blocks for data storage. The data blocks can be configured using the access bits as: - read/write blocks for storing binary data - value blocks (only available in security level 1) MF1SPLUSX0Y1_SDS All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Value blocks are special counters where the stored value can be manipulated with specific commands such as MF Increment, MF Decrement and MF Transfer. These value blocks have a fixed data format enabling error detection and correction with backup management to be performed. Value blocks are only available in security level 1. A successful mutual authentication is required to allow any data operation. #### 8.1.2.1 Access conditions The access conditions for every data block and the sector trailer itself are stored in the sector trailer of the corresponding sector. The access bits control the rights of memory operations using the secret keys A and B. The access conditions may be altered after authentication with the relevant key and the current access condition allows this operation. Furthermore, value blocks are configured using the access bits. #### 8.1.3 AES keys AES keys are not shown in the memory map. The keys are stored on top of the other data and can be updated and used by referencing the so-called Key Number. In security level 3, anti-tearing is supported for the update of AES keys as well as for the update of the sector trailer. This anti-tearing mechanism is done by the PICC itself. The EEPROM stays in a defined status, even if the PICC is removed from the electromagnetic field during the write operation. #### 8.1.4 Multi-sector authentication A new feature has been provided in security level 3 for data which is spread over multiple sectors to improve transaction performance. Providing that such sectors are secured with identical keys (key value and key type) only one authentication is required to read and/or write data from these sectors. There is no need to re-authenticate when accessing any data within these sectors. Therefore it is possible to configure a card in such a way that operating with only one authentication is needed in security level 3 to access all sectors. ### 8.1.5 Originality function The originality function is implemented by an AES authentication with the originality key. The authentication is performed in ISO/IEC 14443-4 protocol layer. #### 8.2 Card activation and communication protocol The ISO/IEC 14443-3 anticollision mechanism allows for simultaneous handling of multiple PICCs in the field. The anticollision algorithm selects each PICC individually and ensures that execution of a transaction with a selected PICC is performed correctly without data corruption from other PICCs in the field. There are three different versions of the PICC. The UID is programmed into a locked part of the NV-memory which is reserved for the manufacturer: - unique 7-byte serial number - unique 4-byte serial number - non-unique 4-byte serial number Due to security and system requirements, these bytes are write-protected after being programmed by the PICC manufacturer at production. **Remark:** The programmed 4-byte NUID serial number is not globally unique which has to be considered in the contactless system design. See <u>Ref. 11</u> for further information regarding handling of UIDs. The customer must decide which UID length to use when ordering the product, see Table 2 for ordering information. During personalization, the PICC can be configured to support Random ID in security level 3. The user can configure whether Random ID or fixed UID shall be used. According to ISO/IEC 14443-3 (see Ref. 5), the first anticollision loop returns the Random Number Tag 08h, the 3-byte Random Number and the BCC, if Random ID is used. The retrieval of the UID in this case can be done using the Virtual Card Support Last command (see Ref. 3) or by reading out block 0. #### 8.2.1 Backwards compatibility protocol The backwards compatibility of this product, as used in security level 1 and security level 2, runs on the same protocol layer as MIFARE Classic 1K and MIFARE Classic 4K. The protocol is formed out of the following components: - Frame definition: according to ISO/IEC 14443-3 - Bit encoding: according to ISO/IEC 14443-2 - Error code handling: handling is proprietary as error codes are formatted in half bytes. - Command specification: commands are proprietary. Please use the specification as in <u>Ref. 1</u> and <u>Ref. 2</u> and the additional commands which are only implemented in MIFARE Plus as described in this document and in <u>Ref. 3</u>. The following security levels can run on this protocol: - Security Level 0 - Security Level 1 #### 8.2.2 ISO/IEC 14443-4 Protocol The ISO/IEC 14443-4 Protocol (also known as T=CL) is used in many processor cards. This protocol is used for the MIFARE Plus with the following security levels: - Security Level 0: all commands - Security Level 1: only the security level switch and originality function. - Security Level 3: all commands ## 8.3 Security level switching The MIFARE Plus S offers a unique feature to support migration from CRYPTO1 based systems to AES based operation. The migration on the card-side is done using different security levels supporting different cryptographic algorithms and protocols. There are three security levels: - Security level 0: initial delivery configuration, used for card personalization - Security level 1: backwards functional compatibility mode (with MIFARE Classic 1K and MIFARE Classic 4K) with an optional AES authentication - Security level 3: 3-Pass authentication based on AES, data manipulation commands secured by AES encryption and an AES based MACing method. The security level switching (i.e. from security level 1 to security level 3) is performed using the dedicated AES authentication switching keys. The security level can only be switched from a lower level to a higher level, never in the opposite direction. ## 8.4 Security level 0 Security level 0 is the initial delivery configuration of the PICC. The card can be operated either using the backwards compatibility protocol or the ISO/IEC 14443-4 protocol. In this level, the card can be personalized including the programming of user data as well as of CRYPTO1 and/or AES keys. In addition, the originality function can be used. The following mandatory AES keys need to be written using the Write Perso command before the PICC can be switched to security level 1 or security level 3 (for L3 card). Security level switching is performed using the Commit Perso command: - Card Configuration Key - Card Master Key - Level 3 Switch Key Using the originality function, it is possible to verify that the chip is a genuine NXP Semiconductors MIFARE Plus. ### 8.5 Security level 1 Security level 1 offers the same functionality as a MIFARE Classic 1K and MIFARE Classic 4K using the backwards compatibility protocol. The MIFARE Classic 1K and MIFARE Classic 4K products are specified in Ref. 1 and Ref. 2. Furthermore, an optional AES authentication is available in this level without affecting the MIFARE Classic 1K and MIFARE Classic 4K functionality. The authenticity of the card can be proven using strong cryptographic means with this additional functionality. The timings may differ from the MIFARE Classic 1K and MIFARE Classic 4K products. Using the originality function, it is possible to verify that the chip is a genuine NXP Semiconductors MIFARE Plus. ### 8.6 Security level 3 The operation in security level 3 is solely based on the ISO/IEC 14443-4 protocol layer. The usage of the backwards compatibility protocol is not possible. In security level 3, a mandatory AES authentication between PICC and reader is conducted, where two keys are generated as a function of the random numbers from the PICC and the reader as well as of the shared key. These two session keys are used to secure the data which is exchanged on the interface between the card and reader. One of the two keys is used to ensure the confidentiality of the command and the response while the other key ensures the integrity of the command and the response. All commands carry a MAC, such that the PICC will only accept commands from the reader with which it is authenticated. Tampering of operands and messages is detected by checking the MAC. Also all responses contain a MAC, so that the reader on each response knows that neither the command nor the response has been tampered with. Each response carries a MAC. When the appropriate MAC is received, due to linking of MACs, the reader knows that the command and commands before it was properly executed. All commands between two consecutive first authenticate commands belong to one transaction and the MACing mechanism assures integrity of the whole transaction. ## 9. Look-up tables #### 9.1 Security level 0, 1, 3: ISO/IEC 14443-3 Table 4. ISO/IEC 14443-3 | Command | Description | |---|--| | REQA | the REQA and ATQA commands are fully implemented according to ISO/IEC 14443-3. | | WUPA | the WAKE-UP command is fully implemented according to ISO/IEC 14443-3. | | ANTICOLLISION/SELECT cascade level 1 | the ANTICOLLISION and SELECT commands are fully implemented according to ISO/IEC 14443-3. The response is part 1 of the UID. | | ANTICOLLISION/SELECT cascade level 2 for 7 byte UID version | the ANTICOLLISION and SELECT commands are fully implemented according to ISO/IEC 14443-3. The response is part 2 of the UID. | | HALT | the HALT command is fully implemented according to ISO/IEC 14443-3 | ## 9.2 Security level 0, 1, 3: ISO/IEC 14443-4 Table 5. ISO/IEC 14443-4 | Command | Description | |----------|---| | RATS | the response to the RATS command identifies the PICC type to the $\ensuremath{PCD}.$ | | PPS | the PPS command allows an individual selection of the communication baud rate between PCD and PICC. It is possible for the MF1SPLUSx0y1 to individually set the communication baud rate independently of each other for both directions i.e. MF1SPLUSx0y1 allows a non-symmetrical information interchange speed. | | DESELECT | deselection according to ISO/IEC 14443-4 | Please find more information on ISO/IEC 14443 in $\underline{\text{Ref. 5}}$ as well as on the settings of ATQA, SAK and ATS in Ref. 4. ## 9.3 Security level 0 command overview Table 6. Security level 0 command overview | Command | Description | |---------------------------------|--| | Write Perso | pre-personalization of AES keys and all blocks | | Commit Perso | switch to security level 1 | | First Authenticate (part 1) | first authenticate | | Following Authenticate (part 1) | following authenticate | | Authenticate (part 2) | second authentication step | ### 9.4 Security level 1 command overview Table 7. Security level 1 command overview | MF1ICS50, MF1ICS70,
MF1ICS20 commands | Description | |--|---| | MF Authenticate key A | authentication with key A | | MF Authenticate key B | authentication with key B | | MF Read | reading data | | MF Write | writing data | | MF Increment | incrementing a value | | MF Decrement | decrementing a value | | MF Restore | restoring a value | | MF Transfer | transferring a value | | Commands using backwards | compatibility protocol, see Section 8.2.1 | | Following Authenticate (part 1) | following authenticate; protocol used as described in
Section 8.2.1 | | Authenticate (part 2) | second authentication step; protocol used as described in Section 8.2.1 | Table 7. Security level 1 command overview ...continued | MF1ICS50, MF1ICS70,
MF1ICS20 commands | Description | |--|--| | Command set for security leve protocol | el switch and originality function using ISO/IEC 14443-4 | | First Authenticate (part 1) | first authenticate | | Following Authenticate (part 1) | following authenticate | | Authenticate (part 2) | second authentication step | ## 9.5 Security level 3 command overview Table 8. Security level 3 command overview | Command | Description | |---------------------------------|---| | MIFARE Plus commands | | | First Authenticate (part 1) | first authenticate | | Following Authenticate (part 1) | following authenticate | | Authenticate (part 2) | second authentication step | | ResetAuth | reset the authentication step | | READ commands | | | Read Plain MACed | reading in plain, MAC on response, MAC on command | | WRITE commands | | | Write MACed | writing encrypted, MAC on response, MAC on command | | Write Plain MACed | writing in plain, MAC on response, MAC on command | | Virtual card concept | | | Virtual Card Support Last | check if the virtual card concept is supported, communicate PCD capabilities and retrieve the UID | | Deselect Virtual Card | deselect the virtual card | ## 10. Limiting values Table 9. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | | Min | Max[1][2] | Unit | |------------------------|-------------------------------------|------------|-----|------------|-----------|------| | I _I | input current | | | - | 30 | mA | | P _{tot} /pack | total power dissipation per package | | | - | 200 | mW | | T _{stg} | storage temperature | | | -55 | 125 | °C | | T _{amb} | ambient temperature | | | -25 | 70 | °C | | V _{ESD} | electrostatic discharge voltage | | [3] | 2 | - | kV | | I _{lu} | latch-up current | | | ±100 | - | mA | ^[1] Stresses above one or more of the limiting values may cause permanent damage to the device. ^[2] Exposure to limiting values for extended periods may affect device reliability. ^[3] MIL Standard 883-C method 3015; Human body model: C = 100 pF, R = 1.5 k Ω . ### 11. Abbreviations Table 10. Abbreviations and symbols | Acronym | Description | |---------|--| | AES | Advanced Encryption Standard | | EEPROM | Electrically Erasable Programmable Read-Only Memory | | LCR | L = inductance, Capacitance, Resistance (LCR meter) | | MAC | Message Authentication Code | | NUID | Non-Unique IDentifier | | NV | Non-Volatile memory | | PCD | Proximity Coupling Device (Contactless Reader) | | PICC | Proximity Integrated Circuit Card (Contactless Card) | | PPS | Protocol Parameter Selection | | RATS | Request Answer To Select | | REQA | REQuest Answer | | SAK | Select AcKnowledge, type A | | SECS-II | SEMI Equipment Communications Standard part 2 | | UID | Unique IDentifier | | VC | Virtual Card, one MIFARE Plus PICC is one virtual card | | WUPA | Wake-Up Protocol type A | | · | | ### 12. References - [1] Data sheet MF1ICS50 Functional specification, BU-ID Doc. No. 0010**2. - [2] Data sheet MF1ICS70 Functional specification, BU-ID Doc. No. 0435**. - [3] Data sheet M1PLUSx0y1 MIFARE Plus functional specification, BU-ID Doc. No. 1637**. - [4] Application note MIFARE Type identification procedure, BU-ID Doc. No. 1843**. - [5] Application note ISO 14443 PICC selection, BU-ID Doc. No. 1308**. - [6] NIST Special Publication 800-38A Recommendation for block cipher modes of operation: methods and techniques, 2001. - [7] NIST Special Publication 800-38B Recommendation for block cipher modes of operation: The CMAC mode for authentication. - [8] ISO/IEC Standard ISO/IEC 14443 Identification cards contactless integrated circuit cards proximity cards. - [9] FIPS PUB 197 ADVANCED ENCRYPTION STANDARD Recommendation for block cipher modes of operation: Methods and techniques. - [10] ISO/IEC Standard ISO/IEC 9797-1 Information technology security techniques Message Authentication Codes (MACs) Part 1: Mechanisms using a block cipher. - [11] MIFARE and handling of UIDs Application note, BU-ID Document number 1907**2 ^{2. ** ...} document version number ## 13. Revision history ### Table 11. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |------------------------|--|--|-------------------|--| | MF1SPLUSX0Y1_SDS v.3.2 | 20110221 | Product short data sheet | - | MF1SPLUSX0Y1_SDS_31 | | Modifications: | Added des
and <u>Section</u> | scription and ordering informat
on 8.2. | ion for NUID Type | s in <u>Section 2</u> , <u>Section 5</u> | | MF1SPLUSX0Y1_SDS_31 | 20100419 | Product short data sheet | - | 187030 | | Modifications: | Minor text | and standardization modificati | ons. | | | 187030 | 20100211 | Product short data sheet | - | - | ## 14. Legal information #### 14.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 14.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. **Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 14.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use** — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. MF1SPLUSX0Y1 SDS All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. #### Mainstream contactless smart card IC **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications. ### 14.4 Licenses #### ICs with DPA Countermeasures functionality NXP ICs containing functionality implementing countermeasures to Differential Power Analysis and Simple Power Analysis are produced and sold under applicable license from Cryptography Research, Inc. #### 14.5 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. MIFARE — is a trademark of NXP B.V. MIFARE Plus — is a trademark of NXP B.V. ## 15. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com ## Mainstream contactless smart card IC ## 16. Tables | Table 1. | Quick reference data2 | Table 6. | Security level 0 command overview1 | 10 | |----------|---------------------------------------|-----------|------------------------------------|----| | Table 2. | Ordering information3 | Table 7. | Security level 1 command overview | 10 | | Table 3. | Bonding pad assignments to smart card | Table 8. | Security level 3 command overview | 11 | | | contactless module4 | Table 9. | Limiting values | 11 | | Table 4. | ISO/IEC 14443-3 | Table 10. | Abbreviations and symbols | 12 | | Table 5. | ISO/IEC 14443-410 | Table 11. | Revision history | 13 | ## 17. Figures | Fig 1. | Block diagram4 | |--------|--| | Fig 2. | Contact assignments for SOT500-2 (MOA4)4 | | Fig 3. | Memory organization | ## Mainstream contactless smart card IC ## 18. Contents | 1 | General description | |---------|--| | 2 | Features and benefits | | 3 | Applications | | 4 | Quick reference data | | 5 | Ordering information 3 | | 6 | Block diagram | | 7 | Pinning information 4 | | 7.1 | Smart card contactless module 4 | | 8 | Functional description 5 | | 8.1 | Memory organization 5 | | 8.1.1 | Manufacturer block | | 8.1.2 | Data blocks 5 | | 8.1.2.1 | Access conditions6 | | 8.1.3 | AES keys 6 | | 8.1.4 | Multi-sector authentication 6 | | 8.1.5 | Originality function 6 | | 8.2 | Card activation and communication protocol 6 | | 8.2.1 | Backwards compatibility protocol 7 | | 8.2.2 | ISO/IEC 14443-4 Protocol | | 8.3 | Security level switching 8 | | 8.4 | Security level 0 | | 8.5 | Security level 1 | | 8.6 | Security level 3 | | 9 | Look-up tables | | 9.1 | Security level 0, 1, 3: ISO/IEC 14443-3 9 | | 9.2 | Security level 0, 1, 3: ISO/IEC 14443-4 10 | | 9.3 | Security level 0 command overview 10 | | 9.4 | Security level 1 command overview 10 | | 9.5 | Security level 3 command overview 11 | | 10 | Limiting values 11 | | 11 | Abbreviations 12 | | 12 | References | | 13 | Revision history 13 | | 14 | Legal information 14 | | 14.1 | Data sheet status | | 14.2 | Definitions | | 14.3 | Disclaimers | | 14.4 | Licenses | | 14.5 | Trademarks15 | | 15 | Contact information 15 | | 16 | Tables | | 17 | Figures | | 18 | Contents | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.