EG5620 芯片用户手册

带 SD 和 DT 功能 MOS 管驱动芯片

版本变更记录

版本号	日期	描述
V1.0	2019年11月18日	EG5620 数据手册初稿

目 录

特性		2
描述		2
	• • •	
7.2		
7.3		
应用		
8.2		
8.3		
封装	尺寸	. 10
9.1	MSOP10 封装尺寸	. 10
	描应引 4.1 4.2 结典电气 7.1 7.2 7.3	4.2 引脚描述 结构框图 典型应用电路 电气特性 7.1 极限参数 7.2 典型参数 7.3 开关时间特性及死区时间波形图 应用设计 8.1 Vcc 端电源电压 8.2 输入逻辑信号要求和输出驱动器特性 8.3 自举电路 封装尺寸

EG5620 芯片数据手册 V1.0

1. 特性

- 高端悬浮自举电源设计,耐压可达 100V
- 适应 5V、3.3V 输入电压
- 最高频率支持 500KHZ
- VCC 电源带欠压保护
- VCC 电压范围 5V-20V
- 输出电流能力 IO+/- 1.6 A/2.5A
- 具有死区时间可调
- SD输入通道低电平有效,关闭 HO、LO 输出。
- 外围器件少
- 封装形式: MSOP10
- 无铅无卤符合 RHOS 标准

2. 描述

EG5620 是一款高性价比的带SD功能的 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、死区可调电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器、电源 DC-DC 中的驱动电路。

EG5620 高端的工作电压可达 100V, 低端 VCC 的电源电压范围宽 5V~20V。该芯片输入通道 IN 内建了一个 200K 下拉电阻, \$\overline{SD}\phi\phi\rm 7一个 200K 下拉电阻,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出电流能力 IO+/- 1.6/2.5A,采用 MSOP10 封装。

3. 应用领域

- 电子烟
- 无线充电驱动器
- DC-DC 电源
- 无刷电机驱动器

4. 引脚

4.1 引脚定义

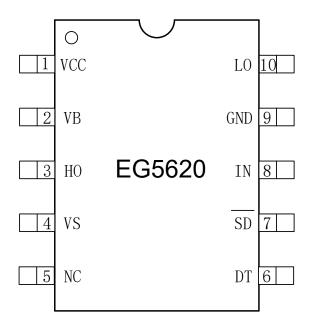


图 4-1. EG5620 管脚定义

4.2 引脚描述

引脚序号	引脚名称	I/O	描述			
1	1 Vcc		芯片工作电源输入端,电压范围 5V-20V,外接一个高频 0.1uF 旁路			
VCC		Power	电容能降低芯片输入端的高频噪声			
2	VB	Power	高端悬浮电源			
3	НО	0	输出控制高端 MOS 功率管的导通与截止			
4	VS	0	高端悬浮地端			
5	NC		空脚			
6	DT	I	死区时间可调			
		_	逻辑输入控制信号低电平有效,强行使 LO、HO 输出低电平。			
7	\overline{SD}		"1"允许 LO、HO 随 IN 输入控制。			
			"0"强行使 LO、HO 输出低电平。			
			逻辑输入控制信号,控制输出 MOS 管的导通与截止			
8	IN	I	"0"对应 LO 高电平,HO 低电平。			
			"1"对应 HO 高电平,LO 低电平。			
9	GND	GND	芯片的地端。			
10	LO	0	输出控制低端 MOS 功率管的导通与截止			

5. 结构框图

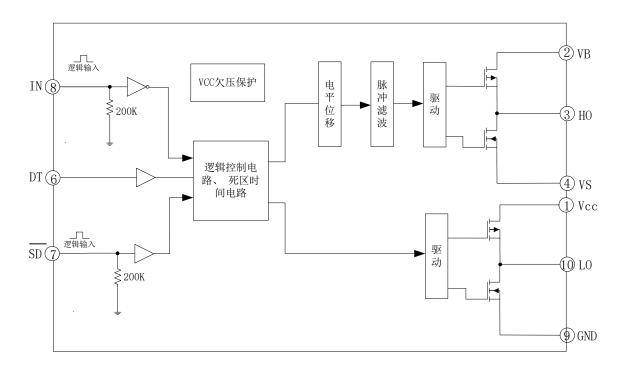


图 5-1. EG5620 内部电路图

6. 典型应用电路

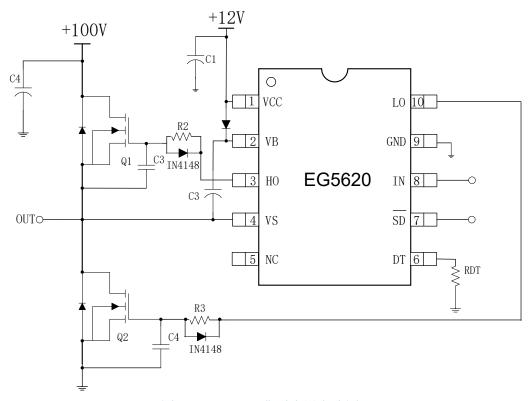


图 6-1. EG5620 典型应用电路图

7. 电气特性

7.1 极限参数

无另外说明,在 TA=25℃条件下

参数名称	符号	测试条件	最小	最大	单位
自举高端 VB 电源	VB	-	-0.3	100	V
高端悬浮地端	VS	ı	VB-20	VB+0.3	V
高端输出	НО	-	VS-0.3	VB+0.3	٧
低端输出	LO	-	-0.3	VCC+0.3	V
电源	VCC	-	-0.3	20	V
高通道逻辑信号 输入电平	IN	-	-0.3	6	V
使能和死区输入	SD和 DT	1	-0.3	6	V
环境温度	TA	ı	-45	125	${\mathfrak C}$
储存温度	Tstr	-	-55	150	${\mathfrak C}$
焊接温度	TL	T=10S	-	300	${\mathbb C}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在 TA=25℃, Vcc=12V, 负载电容 CL=10nF 条件下, RDT=100K。

参数名称	符号	测试条件	最小	典型	最大	单位	
电源	Vcc	-	5	12	20	V	
静态电流	Icc	输入悬空,Vcc=12V	-	350	600	uA	
VB 静态电流	Ivв	输入悬空, V _{VB} =12V	-	-	5	uA	
输入逻辑信号高 电位	Vin(H)	所有输入控制信号	2.5	-	-	V	
输入逻辑信号低 电位	Vin(L)	所有输入控制信号	-0.3	0	1.0	V	
输入逻辑信号高 电平的电流	lin(H)	Vin=5V	-	-	20	uA	
输入逻辑信号低 电平的电流	lin(L)	Vin=0V	-10	-	-	uA	
DT 管脚电压	VDT	RDT=100K	-	4.65	-	V	
DT 管脚电流	IDT	RDT=0	-	800	-	uA	
VCC 电源欠压关键	折特性						
Vcc 开启电压	Vcc(on)	-	4.0	4.7	5.4	V	
Vcc 关断电压	Vcc (off)	-	3.6	4.3	5.0	V	
低端输出 LO 开关	时间特性						
开延时	Ton	见图 7-1	-	620	920	nS	
关延时	Toff	见图 7-1	-	250	550	nS	
上升时间	Tr	见图 7-1	-	100	200	nS	
下降时间	Tf	见图 7-1	-	50	100	nS	
高端输出 HO 开关	时间特性						
开延时	Ton	见图 7-2	-	620	920	nS	
关延时	Toff	见图 7-2	-	250	550	nS	
上升时间	Tr	见图 7-2	-	100	200	nS	
下降时间	Tf	见图 7-2	-	50	100	nS	
SD开关时间特性							
开延时	Ton	见图 7-3	-	150	300	nS	
关延时	Toff	见图 7-3	-	130	280	nS	
死区时间特性							

EG5620 芯片数据手册 V1.0

带 SD 和 DT 功能 MOS 管驱动芯片

-							
	DT	RDT=10K	-	150	-	nS	
死区时间		RDT=30K	-	220	-	nS	
		RDT=100K	-	380	-	nS	
IO 输出最大驱动能力							
IO 输出拉电流	IO+	Vo=0V,VIN=VIH PW≤10uS	-	1.6	-	А	
IO 输出灌电流 IO-		Vo=12V,VIN=VIL PW≤10uS	-	2.5	-	Α	

7.3 开关时间特性及死区时间波形图

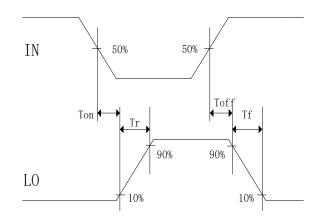
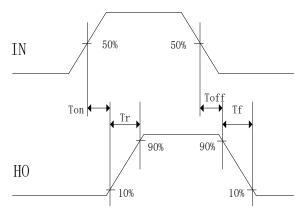



图 7-1. 低端输出 LO 开关时间波形图图

7-2. 高端输出 HO 开关时间波形图

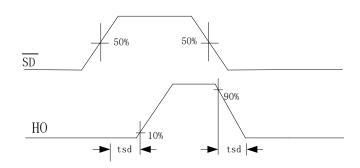


图 7-3. <u>SD</u>时间波形图

8. 应用设计

8.1 Vcc 端电源电压

针对不同的 MOS 管,选择不同的驱动电压,芯片电源电压范围 5V-20V。

8.2 输入逻辑信号要求和输出驱动器特性

EG5620 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥图腾柱式输出。逻辑信号输入端高电平阀值为 2.5V 以上,低电平阀值为 1.0V 以下,要求逻辑信号的输出电流小,可以使 MCU 输出逻辑信号直接连接到 EG5620 的输入通道上。

高端上桥臂和低端下桥臂输出驱动器的最大灌入可达 2.5A 和最大输出电流可达 1.6A,高端上桥臂通道可以承受 100V 的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为 620nS、关断传导延时为 250nS。低端输出开通 620nS、关断传导延时为 250nS。低端输出开通 的上升时间为 100nS、关断的下降时间为 50nS,高端输出开通的上升时间为 100nS、关断的下降时间为 50nS。输入信号和输出信号逻辑功能图如图 8-2:

图8-2. 输入信号和输出信号逻辑功能图

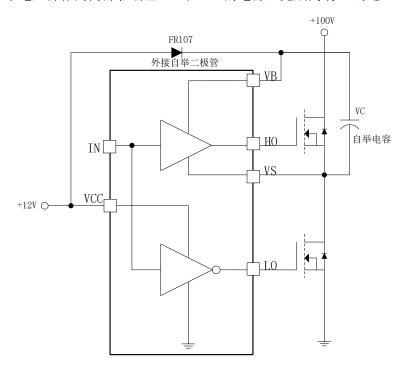
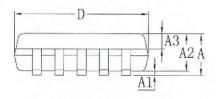
输入信号和输出信号逻辑真值表:

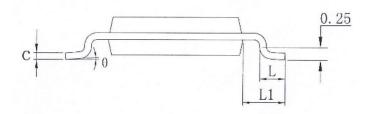
输入		输出				
输入、输出逻辑						
IN	SD	НО	LO			
0	0	0	0			
1	0	0	0			
0	1	0	1			
1	1	1	0			

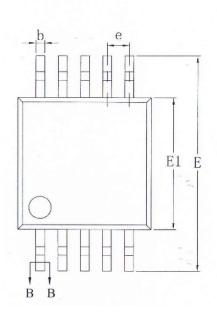
从真值表可知,在输入逻辑信号 \overline{SD} 为"0"时,不管 IN 为"1"或者"0"情况下,驱动器控制输出 HO、LO 同时为"0",上、下功率管同时关断;当输入逻辑信号 \overline{SD} 为"1"、IN 为"0"时,HO 输出为"0",LO 输出为"1";当输入逻辑信号 \overline{SD} 为"1"、IN 为"1"时,HO 输出为"1",LO 输出为"0"。

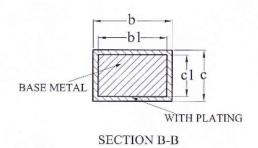
8.3 自举电路

EG5620 采用自举悬浮驱动电源结构大大简化了驱动电源设计,只用一路电源电压 VCC 即可完成高端 N 沟道 MOS 管和低端 N 沟道 MOS 管两个功率开关器件的驱动,给实际应用带来极大的方便。EG5620可以使用外接一个自举二极管如图 8-3 和一个自举电容自动完成自举升压功能,假定在下管开通、上管关断期间 VC 自举电容已充到足够的电压(Vc=VCC),当 HO 输出高电平时上管开通、下管关断时,VC 自举电容上的电压将等效一个电压源作为内部驱动器 VB 和 VS 的电源,完成高端 N 沟道 MOS 管的驱动。


图 8-3. EG5620 自举电路结构




9. 封装尺寸

9.1 MSOP10 封装尺寸

MILLIMETER SYMBOL MIN NOM MAX 1.10 0.15 A1 0.05 0.75 0.95 A2 0.85 A3 0.30 0.35 0.40 b 0.18 0.26 0.17 0.23 c 0.15 0.19 0.14 0.15 0.16 D 2.90 3.00 3.10 E 4.70 4.90 5.10 3.10 EI 2.90 3.00 0.50BSC L 0.40 0.70 LI 0.95REF 0 8°