MSKSEMI **ESD** TVS TSS MOV GDT **PLED** # Broduct data sheet #### SOP-8 1 Source 5 Drain 2 Source 6 Drain 3 Source 7 Drain 4 Gate 8 Drain #### Features - V_{DS} (V) =-30V - ID =-5.3 A (VGS =-10V) - RDS(ON) < 50m Ω (VGS =-10V) - RDS(ON) < 80m Ω (VGS =-4.5V) - Fast switching speed # Absolute Maximum Ratings Ta = 25° C | Parameter | | Symbol | Rating | Unit | | |---|----------|--------|------------|------|--| | Drain-Source Voltage | | VDS | -30 | V | | | Gate-Source Voltage | | Vgs | ±20 | | | | Continuous Drain Current | | ΙD | -5.3 | Α | | | Pulsed Drain Current | | Ірм | -20 | Α | | | Power Dissipation | (Note.1) | Po | 2.5 | | | | | (Note.2) | | 1.2 | W | | | | (Note.3) | | 1 | | | | Thermal Resistance.Junction- to-Ambient | | RthJA | 50 | °C/W | | | Thermal Resistance.Junction- to-Case | | RthJC | 25 | | | | Junction Temperature | | TJ | 150 | °C | | | Junction Storage Temperature Range | | Tstg | -55 to 150 | | | Note.1: 50°C/W when mounted on a 1in2 pad of 2 oz copper Note.2: 105°C/W when mounted on a .04 in² pad of 2 oz copper Note.3: 125°C/W when mounted on a minimum pad. #### ■ Electrical Characteristics Ta = 25°C | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |---------------------------------------|---------|--|-----|-----|------|------| | Drain-Source Breakdown Voltage | VDSS | ID=-250 μ A, VGS=0V | -30 | | | V | | Zero Gate Voltage Drain Current | IDSS | V _{DS} =-24V, V _{GS} =0V | | | -1 | μА | | Gate-Body leakage current | Igss | V _{DS} =0V, V _{GS} =±20V | | | ±100 | nA | | Gate Threshold Voltage | VGS(th) | VDS=VGS ID=-250 μ A | -1 | | -3 | V | | Static Drain-Source On-Resistance | Ros(on) | Vgs=-10V, Ip=-5.3A (Note.1) | | | 50 | | | | | Vgs=-10V, Ip=-5.3A ,TJ=125°C (Note.1) | | | 79 | mΩ | | | | Vgs=-4.5V, Ip=-4.2A (Note.1) | | | 80 | 1 | | On state drain current | ID(ON) | VGS=-10V, VDS=-5V (Note.1) | -20 | | | Α | | Forward Transconductance | grs | VDS=-15V, ID=-5.3A (Note.1) | | 12 | | S | | Input Capacitance | Ciss | Vgs=0V, Vbs=-15V, f=1MHz | | 690 | | pF | | Output Capacitance | Coss | | | 306 | | | | Reverse Transfer Capacitance | Crss | | | 77 | | | | Total Gate Charge | Qg | Vgs=-15V, Vps=-10V, Ip=-5.3A | | 14 | 23 | | | Gate Source Charge | Qgs | | | 2.4 | | nC | | Gate Drain Charge | Qgd | | | 4.8 | | | | Turn-On DelayTime | td(on) | Vgs=-10V, Vps=-15V, lp=-1A,Rg=6 Ω | | 7 | 14 | | | Turn-On Rise Time | tr | | | 10 | 18 | ns | | Turn-Off DelayTime | td(off) | | | 19 | 34 | | | Turn-Off Fall Time | tf | | | 11 | 20 | | | Maximum Body-Diode Continuous Current | Is | | | | -5.3 | Α | | Diode Forward Voltage | Vsd | Is=-5.3A,VGs=0V (Note.1) | | | -1.2 | V | Note.1: Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0% #### ■ Typical Characterisitics Figure 1. On-Region Characteristics. Figure 3. On-Resistance Variation with Temperature. Figure 5. Transfer Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. -Ip, DRAIN CURRENT (A) 0.1 #### ■ Typical Characterisitics 10 Figure 8. Capacitance Characteristics. Figure 9. Maximum Safe Operating Area. -V_{DS}, DRAIN-SOURCE VOLTAGE (V) 100 Figure 11. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design. # **PACKAGE MECHANICAL DATA** | Symbol | Dimensions In Millimeters | | Dimensions In Inches | | | |----------|---------------------------|--------|----------------------|--------|--| | Syllibol | Min | Max | Min | Max | | | A | 1.350 | 1.750 | 0.053 | 0.069 | | | A1 | 0.100 | 0.250 | 0.004 | 0.010 | | | A2 | 1.350 | 1.550 | 0.053 | 0.061 | | | b | 0.330 | 0.510 | 0.013 | 0.020 | | | С | 0.170 | 0. 250 | 0.007 | 0.010 | | | D | 4.800 | 5. 000 | 0. 189 | 0. 197 | | | e | 1. 270 | (BSC) | 0.050 | (BSC) | | | Е | 5.800 | 6. 200 | 0. 228 | 0. 244 | | | E1 | 3.800 | 4.000 | 0. 150 | 0. 157 | | | L | 0.400 | 1. 270 | 0.016 | 0.050 | | | θ | 0° | 8° | 0° | 8° | | # **Suggested Pad Layout** # Note: - 1.Controlling dimension:in millimeters. 2.General tolerance:± 0.05mm. 3.The pad layout is for reference purposes only. # **REEL SPECIFICATION** | P/N | PKG | QTY | |--------|-------|------| | MS9435 | SOP-8 | 3000 | # Attention - Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications. - MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specificationsof any andall MSKSEMI Semiconductor products described orcontained herein. - Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment. - MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design. - In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law. - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor. - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties. - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.