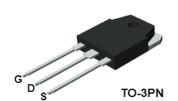


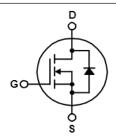
ON Semiconductor®

FDH50N50 / FDA50N50 N-Channel UniFETTM MOSFET 500 V, 48 A, 105 m Ω

Features

- $R_{DS(on)} = 89 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V, } I_D = 24 \text{ A}$
- · Low Gate Charge (Typ. 105 nC)
- Low C_{rss} (Typ. 45 pF)
- · 100% Avalanche Tested
- · Improved dv/dt Capability


Description


UniFETTM MOSFET is ON Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Applications

- · Lighting
- · Uninterruptible Power Supply
- · AC-DC Power Supply

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FDH50N50-F133 / FDA50N50	Unit
V _{DSS}	Drain-Source Voltage			500	V
I _D	Drain Current	- Continuous (T _C = 25°C) - Continuous (T _C = 100°C)		48 30.8	A A
I _{DM}	Drain Current	- Pulsed	(Note 1)	192	Α
V _{GSS}	Gate-Source voltage			±20	V
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	1868	mJ
I _{AR}	Avalanche Current		(Note 1)	48	Α
E _{AR}	Repetitive Avalanche Energy		(Note 1)	62.5	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	20	V/ns
P _D	Power Dissipation	(T _C = 25°C) - Derate Above 25°C		625 5	W W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C

Thermal Characteristics

Symbol	Parameter	FDH50N50-F133 / FDA50N50	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max. 0.2		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	40	C/VV	

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FDH50N50-F133	FDH50N50	TO-247	Tube	N/A	N/A	30 units
FDA50N50	FDA50N50	TO-3PN	Tube	N/A	N/A	30 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Charac	cteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	urce Breakdown Voltage V _{GS} = 0 V, I _D = 250 μA				V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.5		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500 V, V _{GS} = 0 V V _{DS} = 400 V, T _C = 125°C			25 250	μ Α μ Α
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Charac	cteristics				•	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 24 A		0.089	0.105	Ω
g _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 48 A		20		S
Dynamic C	Characteristics					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		4979	6460	pF
C _{oss}	Output Capacitance	f = 1 MHz		760	1000	pF
C _{rss}	Reverse Transfer Capacitance			50	65	pF
C _{oss}	Output Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz		161		pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		342		pF
	Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 250 V, I _D = 48 A,		105	220	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V, R}_{G} = 25 \Omega$		360	730	ns
t _{d(off)}	Turn-Off Delay Time			225	460	ns
t _f	Turn-Off Fall Time	(Note 4)		230	470	ns
Qg	Total Gate Charge	V _{DS} = 400 V, I _D = 48 A		105	137	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		33		nC
Q _{gd}	Gate-Drain Charge	(Note 4)		45		nC
Drain-Sou	rce Diode Characteristics and Maximur	n Ratings			'	
I _S	Maximum Continuous Drain-Source Diode Forward Current				48	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				192	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 48 A			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 48 A,		580		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt =100 A/μs		10		μC

- 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. L = 1.46 mH, I_{AS} = 48 A, V_{DD} = 50 V, R_{G} = 25 Ω , starting T_{J} = 25°C. 3. I_{SD} ≤ 48 A, di/dt ≤ 200 A/ μ s, V_{DD} ≤ BV_{DSs}, starting T_{J} = 25°C. 4. Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

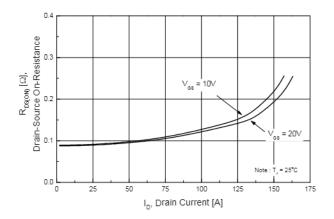


Figure 5. Capacitance Characteristics

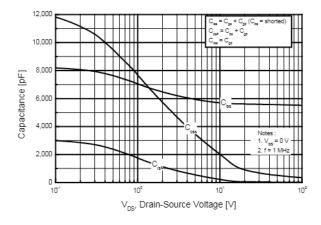


Figure 2. Transfer Characteristics

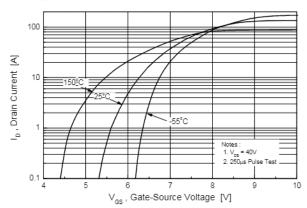


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

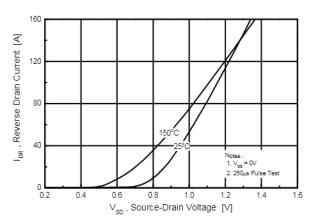
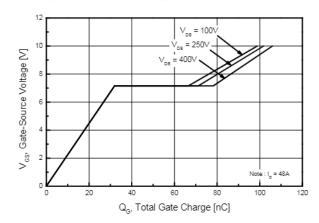



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

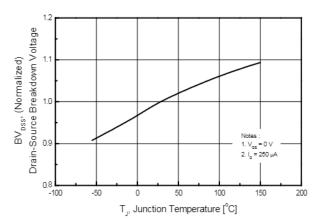


Figure 8. On-Resistance Variation vs. Temperature

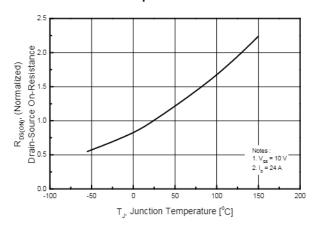


Figure 9. Maximum Safe Operating Area

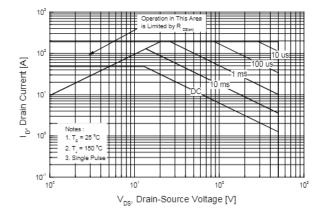


Figure 10. Maximum Drain Current vs. Case Temperature

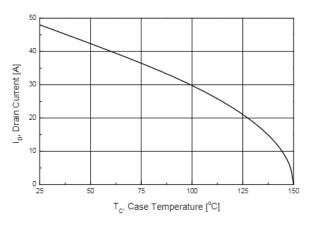


Figure 11. Typical Drain Current Slope vs. Gate Resistance

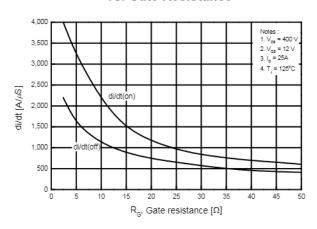
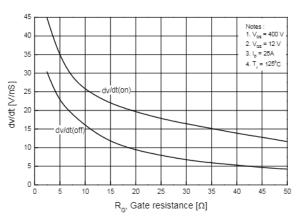



Figure 12. Typical Drain-Source Voltage Slope vs. Gate Resistance

Typical Performance Characteristics (Continued)

Figure 13. Typical Switching Losses vs. Gate Resistance

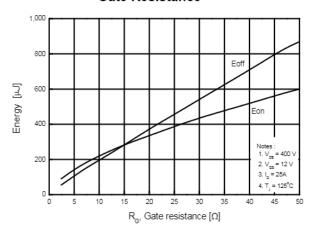


Figure 14. Unclamped Inductive Switching Capability

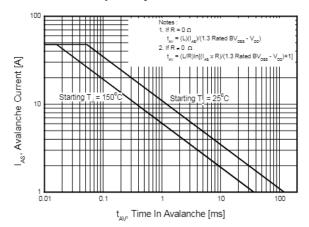
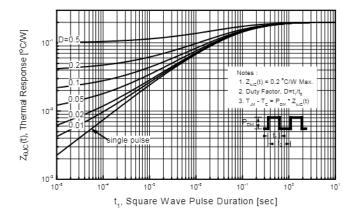



Figure 15. Transient Thermal Resistance Curve

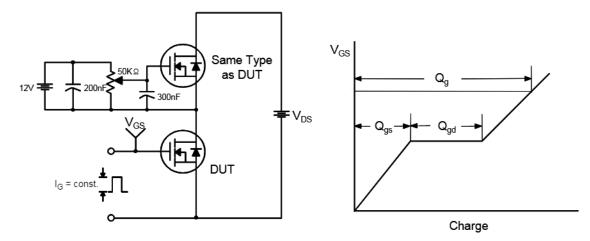


Figure 16. Gate Charge Test Circuit & Waveform

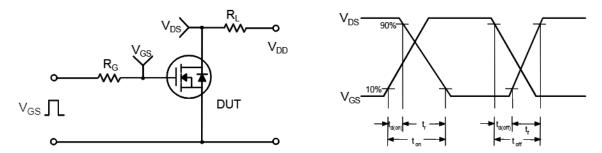


Figure 17. Resistive Switching Test Circuit & Waveforms

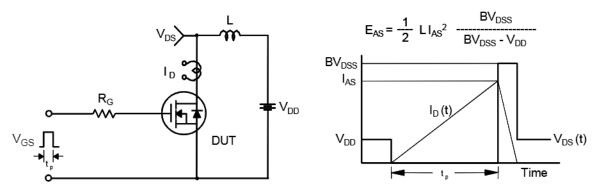
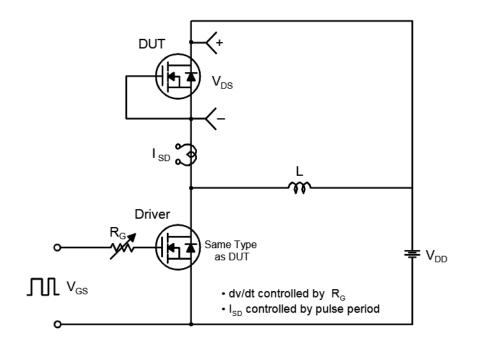



Figure 18. Unclamped Inductive Switching Test Circuit & Waveforms

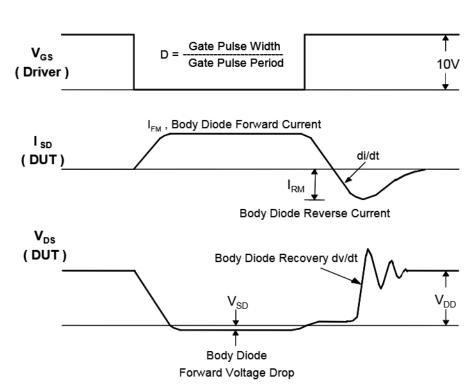
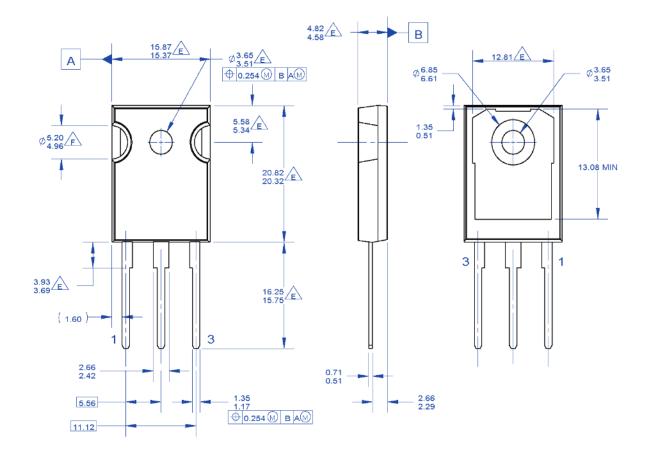



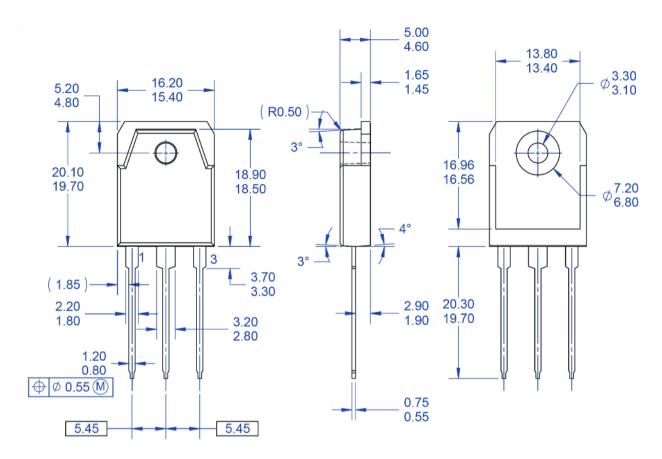
Figure 19. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH. AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994

DOES NOT COMPLY JEDEC STANDARD VALUE


F NOTCH MAY BE SQUARE

G. DRAWING FILENAME: MKT-TO247A03_REV03

Figure 20. TO-247, Molded, 3-Lead, Jedec Variation AB

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products.

Mechanical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO EIAJ SC-65 PACKAGING STANDARD.
- ALL DIMENSIONS ARE IN MILLIMETERS.
 DIMENSION AND TOLERANCING PER
 ASME14.5-2009.
- D) DIMENSIONS ARE EXCLUSSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSSIONS.
 E) DRAWING FILE NAME: TO3PN03AREV1.
- F) FAIRCHILD SEMICONDUCTOR.

Figure 21. TO3PN, 3-Lead, Plastic, EIAJ SC-65

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and warrance of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent=Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices with a same or similar classification in a foreign jurisdiction or any devices with a same or similar classification in a foreign jurisdiction or any devices with a same or similar cl

Phone: 81-3-5817-1050

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative