

GENERAL DESCRIPTION

FXS2281 is highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyback converter up to 60W output power system.

PWM switching frequency is internally fixed at 65kHz. At no load or light load condition, the IC operates in 'burst mode' to minimize switching dissipation. Therefore, lower standby power dissipation and higher conversion efficiency are achieved.

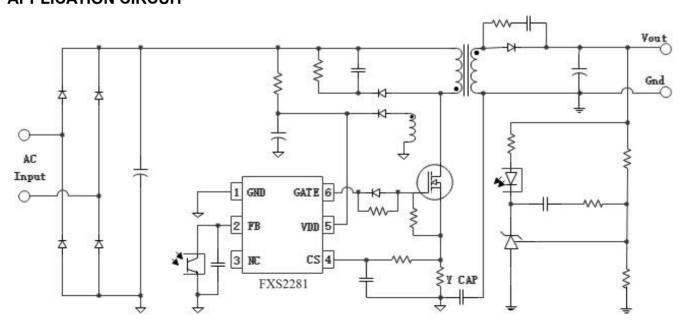
ORDER INFORMATION

CHIP	PACKAGE	QUANTITY
FXS2281	SOT23-6	3000pcs/tape

FEATURES

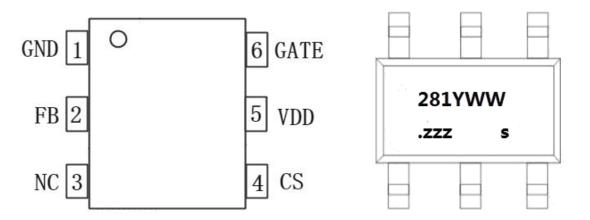
- Digit frequency shuffling technology to improve EMI performance
- Extended burst mode for improved efficiency and low standby power
- Leading-edge blanking on current sense

Internal synchronized slope compensation


High Performance Current Mode PWM Controller

- Soft-start to reduce MOSFET stress during power
- \triangleright Low standby power consumption (<75mW@AC 230V)
- VDD Under Voltage Lockout Protection(UVLO)
- Over voltage protection (OVP) on VDD
- Cycle-by-Cycle current limiting protection
- Current limitation compensation to obtain the same output current in universal ac line input
- Over load protection (OLP)
- Over temperature protection (OTP)
- \triangleright Low start-up current (<15uA@VDD=12V)
- 300mA of sinking and 150mA of sourcing current capability in GATE pin

APPLICATIONS


- Cell Phone Charger
- **Battery Charger**
- Digital Cameras Charger

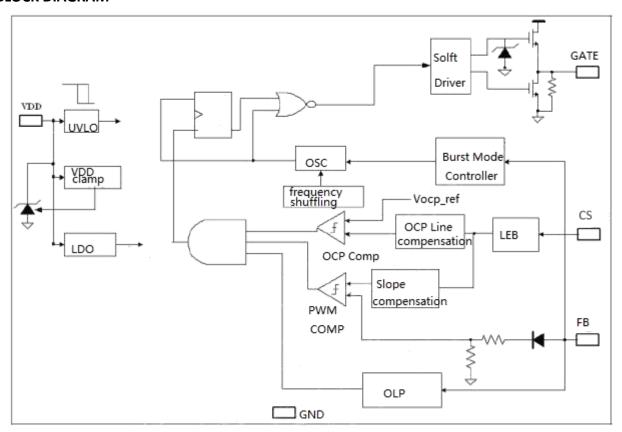
APPLICATION CIRCUIT

PIN ASSIGNMENT & MARKING INFORMATION

Y: Year code (2018=J)

WW: Week code (01-52)

ZZZ: lot number


S: Fixed code

PIN DESCRIPTION

Pin Number	Pin Name	I/O	Description
1	GND	P	Ground
2	FB	I	Feedback input pin. The PWM duty cycle is determined by voltage level into this pin and the current-sense signal at Pin 4.
3	NC	NC	Not connect, let this pin floating
4	CS	I	Current sense input
5	VDD	P	IC DC power supply Input
6	GATE	0	Gate drive output for the power MOSFET

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

Parameter	Value	Unit
VDD clamp voltage	29	V
VDD clamp current	10	mA
VFB input voltage	-0.3 to7	V
VCS input voltage to CS pin	-0.3 to7	V
Min/Max operating junction temperature	-55 to 150	${\mathbb C}$
Operating ambient temperature	-20 to 85	${\mathbb C}$
Thermal resistance, Junction to shell	250	°C/W

Note: Stresses above absolute maximum ratings may cause permanents damage to the device. Exposure to absolutely maximum-rated conditions for extended periods may affects device reliability

Recommended Operating Conditions

Symbol	Parameter	Min. Max.	Unit
VDD	Supply Voltage Vcc	9 to 25	V
Toa	Operating Ambient Temperature	-20 to 85	$^{\circ}$
ESD-HM	Human Model	2	kV
ESD-MM	Machine Model	150	V

Electrical Characteristics(TA = 25 $^{\circ}$ C, if not otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
Supply Voltag	Supply Voltage(V _{dd} Pin)						
Idd_startup	VDD start up current	VDD=12.5V		3	15	uA	
Idd	VDD operation current	VDD=16V, FB=2V		1.5		mA	
UVLO(ON)	VDD under voltage lockout enter		6.5	7.5	8.5	V	
UVLO(OFF)	VDD under voltage lockout exit		12.5	13.5	17	V	
VDD_OVP	VDD over voltage protection		25	26.5	28.5	V	
Voltage Feedb	oack (FB Pin)						
AVCS	PWM input gain	ΔVFB/ΔVCS		2		V/V	
VFB_open	VFB open loop voltage			5.7		V	
IFB_short	FB pin short current	Short FB pin to GND	75	150	320	uA	
VFB_burst	Burst mode voltage			1.1		V	
VTH_PL	Power limiting FB threshold voltage			3.7		V	
TD_PL	Power limiting delay time			60		ms	

High Performance Current Mode PWM Controller

DC MAX	Maximum duty cycle	VDD=18V, SENSE=0V, FB=2.2V		75		%	
	3 3	VDD-16 V, SENSE-0 V, 1 B-2.2 V		13		/0	
Current Sensi	Current Sensing (CS Pin)						
T_blanking	Leading-edge blanking time		100	400	800	ns	
ZSENSE_IN	Input impedance			40		kΩ	
VTH_OC	Over current threshold voltage	Duty=0%	0.5	0.56	0.62	V	
Oscillator							
FOSC	Normal oscillation frequency		58	66.5	75	kHz	
Δf_temp	Frequency temperature stability	TA =-20°C to 100°C		5		%	
Δf_{VDD}	Frequency voltage stability	VDD=16.5V to 25V		5		%	
FOSC_BM	Burst mode base frequency		16	25	30	kHz	
Δf_OSC	Frequency modulation range /Base frequency		-5		+5	%	
Gate Drive O	utput						
VOL	Output low level	VDD=16V, IO=-20mA			0.9	V	
VOH	Output high level	VDD=16V, IO=20mA	9			V	
V_Clamp	output clamp voltage level			12		V	
T_r	Output rising time	VDD=16V, CL=1nF		1300		ns	
T_f	Output falling time	VDD=16V, CL=1nF		50		ns	

OPERATION DESCRIPTION

General Description

FXS2281 is a highly integrated PWM control IC for the flyback converter. FXS2281 is designed specifically for switching power supply that requires level 6 energy-efficiency. The input power is less than 75mW at No-load condition in universal input voltage rang.

• Startup Current and Start up Control

FXS2281 has very low start-up current that is less than 15uA. Therefore, a large value resistor can be used to minimize the power dissipation in application. The typical resistance of start-up resistor is $4 \text{ M}\Omega$.

• Operating Current

The Operating current of FXS2281 is low at 1.5mA(typical). Good efficiency is achieved with FXS2281 low operating current together with the 'Extended burst mode' control features.

Soft Start

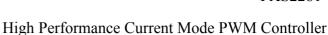
FXS2281 features an internal 4ms (typical) soft start to soften the electrical stress occurring in the power supply during startup. It is activated during the power on sequence. As soon as VDD reaches UVLO(OFF), the peak current is gradually increased from nearly zero to the maximum level of 0.56V. Every restart up is followed by a soft start.

• Frequency shuffling for EMI improvement

The frequency Shuffling is implemented in FXS2281. The oscillation frequency is modulated with a random source so that the harmonic energy is spread out. The spread spectrum minimizes the conduction EMI and therefore reduces system design challenge.

Extended Burst Mode Operation

At light load or zero load condition, most of the power dissipation in a switching mode power supply is from switching loss on the MOSFET, the core loss of the


transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the switching frequency. Lower switching frequency leads to the reduction on the power loss and thus conserves the energy. The switching frequency is internally adjusted at no load or light load condition. The switch frequency reduces at light/no load condition to improve the conversion efficiency. At light load or no load condition, the FB input drops below burst mode threshold level and device enters Burst Mode control. The gate drive output switches only when VDD voltage drops below a preset level and FB input is active to output an on state. Otherwise the gate drive remains at off state to minimize the switching loss and reduces the standby power consumption to the greatest extend. The switching frequency control also eliminates the audio noise at any loading conditions.

Oscillator Operation

The switching frequency of FXS2281 is internally fixed at 65kHz. No external frequency setting components are required for PCB design simplification.

• Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in FXS2281 current mode PWM control. The switch current is detected by a sense resistor into the CS pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial internal power MOSFET on state due to snubber diode reverse recovery and surge gate current of internal power MOSFET so that the external RC filtering on CS input is no longer needed. The current limiting comparator is disabled and cannot turn off the internal power MOSFET during the blanking period. The PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

Internal Synchronized Slope Compensation

Slope compensation circuit adds voltage ramp onto the CS voltage according to PWM pulse width. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage. Slope compensation can help FXS2281 obtain the same output current in universal ac input voltage.

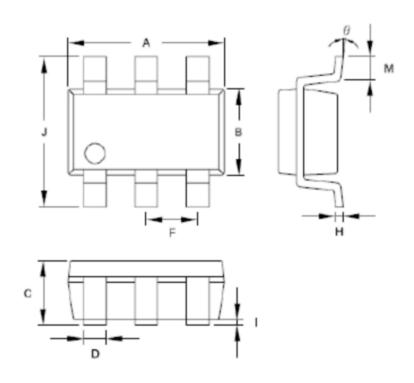
Gate Drive

The GATE pin of FXS2281 has 300mA of sinking and 150mA of sourcing current capability. Therefore, the MOSFET would be turned on slowly and turned off fast so that FXS2281 has high efficiency and low radiation EMI. The highest voltage of drive voltage is clamped at 12V.

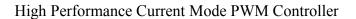
Protection Controls

FXS2281 has comprehensive protection functions including Cycle-by- Cycle current limitation (OCP), Over Load Protection (OLP) and over voltage clamp,

Under Voltage Lockout on VDD (UVLO), Over Temperature Protection (OTP).


• Current limitation compensation

To obtain the same output current capability, the OLP threshold voltage is compensated for the different input AC voltage. This function makes the current of OLP is in consistency whatever the AC input is (110V or 220V).


Package Information

SOT-23-6

Symbol	Dimension in Millimeters		Dimensions in Inches		
Symbol	Min	Max	Min	Max	
А	2.692	3.099	0.106	0.122	
В	1.397	1.803	0.055	0.071	
С		1.450		0.058	
D	0.300	0.550	0.012	0.022	
F	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
ı	0.050	0.150	0.002	0.006	
J	2.600	3.000	0.102	0.118	
М	0.300	0.600	0.012	0.024	
θ	0°	10°	0°	10°	

F-Chip Technology Version: 1.0 8 of 9

Note:

It is suggested that you read this instruction carefully before using the products of F-Chip.

We hope you will always make contact with the related departments of F-Chip to get the latest information, because the products of F-Chip are constantly updated and improved.

The information in the instruction is subjected to change without prior notice.

This product is used in the field of consumer electronics. It cannot be used for medical devices, industrial applications, aviation, and navigation without the written permission of F-Chip.

F-Chip Technology Version: 1.0 9 of 9